Download minimodule

Transcript
minimodule
Wrocław, 17.12.2013
The module along with the documentation have been developed by: Mateusz Cholewiński, Michał
Dziergwa, Paweł Kaczmarek, Jan Kędzierski, Marek Wnuk.
Department of Fundamental Cybernetics and Robotics,
Wrocław University of Technology
Wrocław 2013
The documentation consists of this manual and a project created using EAGLE ver. 6.5.0. software from
CadSoft. This project can be obtained from the authors of the module. It can be used for educational
purposes only.
Bilbao is a city in Spain, the capital of the province of Biscay. The population proper is just over 372,000. Nowadays, Bilbao is a vigorous
service city that is experiencing an ongoing social, economic, and aesthetic revitalisation process, started by the iconic Bilbao Guggenheim
Museum, and continued by infrastructure investments.
2
Contents
1.
Introduction ..................................................................................................................................... 5
2.
Overview.......................................................................................................................................... 5
3.
Features of MK60FX512VLQ15........................................................................................................ 6
4.
Clock Distribution ............................................................................................................................ 7
5.
Schematic and assembly ................................................................................................................. 8
6.
Power supply ................................................................................................................................. 10
7.
Programming ................................................................................................................................. 10
8.
Connectors and signals .................................................................................................................. 12
Bibliography........................................................................................................................................... 17
3
4
1. Introduction
The minimodule described in this document is based on a 32-bit MK60FX512 microcontroller from
Freescale’s Kinetis family [1]. It contains all the necessary components required to communicate with
the microcontroller and allow the proper operation of the on-board modules (JTAG and USB connector,
50 MHz/32 kHz clock sources, diodes, resistors, capacitors, inductors).
The main purpose of this project was to design a small and flexible standalone module that would
enable the use of the wide range of K60 microcontroller’s capabilities in a broad spectrum of educational
applications. The final version of the board can be seen in Fig 2 and Fig 1.
Fig 1 Assembled board - bottom
Fig 2 Assembled board - top
2. Overview
The Kinetis MCU portfolio consists of multiple pin-, peripheral- and software-compatible MCU families
based on the ARM® Cortex™-M4 core [2]. Families are built from innovative 90 nm thin-film storage
(TFS) flash technology with unique FlexMemory (EEPROM) capability, and offer industry-leading low
power and mixed signal analog integration. The K60 MCU family includes IEEE® 1588 Ethernet, Fulland High-Speed USB 2.0 On-The-Go with device charger detect capability, hardware encryption and
tamper detection capabilities. Devices start from 256 KB of flash in 100 LQFP packages extending up
to 1 MB in a 256 MAPBGA package with a rich suite of analog, communication, timing and control
peripherals. High memory density K60 family devices include an optional single precision floating point
unit, NAND flash controller and DRAM controller.
5
3. Features of MK60FX512VLQ15
 Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to
3.6 V
– Temperature range (ambient): -40 to
105° C
– 128-bit unique identification (ID)
number per chip
 Human-machine interface
– Low-power hardware touch sensor
interface (TSI)
– General-purpose input/output
 Performance
– Up to 150 MHz ARM Cortex-M4
core with DSP instructions delivering
1.25 Dhrystone MIPS per MHz
 Analog modules
– Four 16-bit SAR ADCs
– Programmable gain amplifier (PGA)
(up to x64) integrated into each ADC
– Two 12-bit DACs
– Four analog comparators (CMP)
containing a 6-bit DAC and
programmable reference input
– Voltage reference
 Memories and memory interfaces
– Up to 1024 KB program flash
memory on non-FlexMemory devices
– Up to 512 KB program flash memory
on FlexMemory devices
– Up to 512 KB FlexNVM on
FlexMemory devices
– 16 KB FlexRAM on FlexMemory
devices
– Up to 128 KB RAM
– Serial programming interface
(EzPort)
– FlexBus external bus interface
– NAND flash controller interface
 Timers
– Programmable delay block
– Two 8-channel motor control/general
purpose/PWM timers
– Two 2-channel quadrature
decoder/general
– purpose timers
– IEEE 1588 timers
– Periodic interrupt timers
– 16-bit low-power timer
– Carrier modulator transmitter
– Real-time clock
 Clocks
– 3 to 32 MHz crystal oscillator
– 32 kHz crystal oscillator
– Multi-purpose clock generator
 Communication interfaces
– Ethernet controller with MII and
RMII interface to external PHY and
hardware IEEE 1588 capability
– USB high-/full-/low-speed On-theGo controller with ULPI interface
– USB high-/full-/low-speed On-theGo controller with on-chip high
speed transceiver
– USB full-/low-speed On-the-Go
controller with on-chip transceiver
– USB Device Charger detect
– Two Controller Area Network
(CAN) modules
– Three SPI modules
– Two I2C modules
– Six UART modules
– Secure Digital host controller
(SDHC)
– Two I2S modules
 System peripherals
– Multiple low-power modes to
provide power optimization based on
application requirements
– Memory protection unit with multimaster protection
– 32-channel DMA controller,
supporting up to 128 request sources
– External watchdog monitor
– Software watchdog
– Low-leakage wakeup unit
 Security and integrity modules
– Hardware CRC module to support
fast cyclic redundancy checks
– Hardware random-number generator
– Hardware encryption supporting
DES, 3DES, AES, MD5, SHA-1, and
SHA-256 algorithms
6
4. Clock Distribution
The Multipurpose Clock Generator (MCG, [1]) module controls which clock source is used to derive
the system clocks. The clock generation logic divides the selected clock source into a variety of clock
domains, including the clocks for the system bus masters, system bus slaves, and flash memory. The
clock generation logic also implements module-specific clock gating to allow granular shutoff of
modules.
The primary clocks for the system are generated from the MCGOUTCLK clock. The clock
generation circuitry provides several clock dividers that allow different portions of the device to be
clocked at different frequencies. This allows for tradeoffs between performance and power dissipation.
Various modules, such as the USB OTG Controller, have module-specific clocks that can be generated
from the MCGPLLCLK or MCGFLLCLK clock. In addition, there are various other module-specific
clocks that have other alternate sources. Clock selection for most modules is controlled by the SOPT
registers in the SIM module. The clocking diagram for MCG module can be seen in detail in Fig 3.
Fig 3 Clocking diagram
In addition to the MCG module, K60 possesses three additional clock modules [1]:
 Oscillators (OSC) – two high frequency crystal oscillators, which generate filtered oscillator
clock signals - OSCCLK for MCU system, OSCERCLK for on-chip peripherals, and
OSC32KCLK. On Bilbao Bizkaia minimodule, OSC is omitted and an external 50 MHz crystal
oscillator (Q1) and a small set of necessary components is used as a clock source.
 RTC Oscillator (RTC OSC) – provides a clock source for the Real Time Clock (RTC) module.
It is used in conjunction with an external 32 kHz crystal (Q2).
The following are a few of the more common clock configurations for this device:
Core clock
System clock
Bus clock
FlexBus clock
Flash clock
Option 1
Option 2
120 MHz
120 MHz
60 MHz
40 MHz
20 MHz
150 MHz
150 MHz
75 MHz
50 MHz
25 MHz
7
5. Schematic and assembly
Module schematic is presented on page 9. The placement of components on top and bottom side of the
module is shown in Fig 6 and Fig 7 respectively. The components needed to assemble the module are
listed in Table 1.
Components mounted on the board include: MK60FX512VLQ15 microcontroller in LQFP144
package (U1), a 50Mhz crystal oscillator (Q1) along with accompanying components (R1, R2 – 68 Ω),
an 32kMHz oscillator (Q2), power supply filtering capacitors (C1, C2, C3 .. C18 – 100nF, C5 – 22uF),
power supply filtering chokes (L1 .. L7 – 100MHz), micro USB B connector along with accompanying
components (R4, R5 – 33Ω) and a safety diode D1.
Table 1 Bill of materials
Qty
Parts
1
1
1
2
1
7
12
USB
PWR
J-LINK
SVL, SVR
SVT
L1, L2, L3, L4, L5, L6, L7
C1, C2, C3, C4, C6, C8, C9,
C10, C11, C13, C17, C18
C15
C14, C16
C12
R2
R4, R5
R1, R3
R6
Q1
Q2
U1
D1
J1
1
2
1
1
2
2
1
1
1
1
1
1
resistor
diode
Value
Description
SMD
LED0603
ML10
100MHz
100nF
M0805
C0603
micro USB connector
LED
2x5 connector
2x24 pin header
2x13 pin header
inductor
capacitor
10nF
1uF
22uF
1k
33
68
510
50MHz
32768Hz
MK60FX512VLQ15
C0603
C0603
SMC B
R0603
R0603
R0603
R0603
DXO-57
2-POLE SMD
LQFP144
SOD523
N/A
capacitor
capacitor
polarized capacitor
resistor
resistor
resistor
resistor
crystal oscillator
crystal
Freescale Kinetis K60 microcontroler
schottky diode
! NOT A PART
capacitor
LED
2x5 connector
8
polarized
capacitor
inductor
2-pole crystal
crystal oscillator
pin headers
Package
Freescale Kinetis K60
micro USB
connector
1
2
3
4
5
6
7
8
PTA[4..17],PTA19,PTA[24..29],PTB[0..11],PTB[16..23],PTC[0..19],PTD[0..15],PTE[0..12],PTE[24..28],GND,VDDA,VREFH,VREFL,VSSA,+5V_USB,VOUT33,ADC0,ADC1,DAC0,DAC1,PGA0_DP,PGA0_DM,PGA1_DP,PGA1_DM,PGA2_DP,PGA2_DM,PGA3_DP,PGA3_DM,USB0_DP,USB0_DM,RESET,V+,CLK
SVL
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
36
35
ADC0_SE16/CMP1_IN2/ADC0_SE21
ADC1_SE16/CMP2_IN2/ADC0_SE22
DAC0
DAC1
38
39
DAC0_OUT/CMP1_IN3/ADC0_SE23
DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23
PGA0_DP
PGA0_DM
27
28
PGA0_DP/ADC0_DP0/ADC1_DP3
PGA0_DM/ADC0_DM0/ADC1_DM3
PGA1_DP
PGA1_DM
29
30
PGA1_DP/ADC1_DP0/ADC0_DP3
PGA1_DM/ADC1_DM0/ADC0_DM3
PGA2_DP
PGA2_DM
23
24
PGA2_DP/ADC2_DP0/ADC3_DP3/ADC0_DP1
PGA2_DM/ADC2_DM0/ADC3_DM3/ADC0_DM1
PGA3_DP
PGA3_DM
25
26
PGA3_DP/ADC3_DP0/ADC2_DP3/ADC1_DP1
PGA3_DM/ADC3_DM0/ADC2_DM3/ADC1_DM1
+3V3
100n
C10
ADC0
ADC1
GND
C
USB0_DP
USB0_DM
19
20
USB0_DP
USB0_DP
USB0_DM
R2
RESET
1K
+3V3
USB0_DM
Q2
32768Hz
RESET
74
41
40
6
17
44
57
71
93
107
121
134
D
VSSA
RESET_B
EXTAL32
XTAL32
VSS1
VSS2
VSS3
VSS4
VSS5
VSS6
VSS7
VSS8
VSS9
34
VSSA
18
VSSUSB
GND
PTB0/LLWU_P5
PTB1
PTB2
PTB3
PTB4
PTB5
PTB6
PTB7
PTB8
PTB9
PTB10
PTB11
PTB16
PTB17
PTB18
PTB19
PTB20
PTB21
PTB22
PTB23
81
82
83
84
85
86
87
88
89
90
91
92
95
96
97
98
99
100
101
102
PTB0
PTB1
PTB2
PTB3
PTB4
PTB5
PTB6
PTB7
PTB8
PTB9
PTB10
PTB11
PTB16
PTB17
PTB18
PTB19
PTB20
PTB21
PTB22
PTB23
PTC0
PTC1/LLWU_P6
PTC2
PTC3/LLWU_P7
PTC4/LLWU_P8
PTC5/LLWU_P9
PTC6/LLWU_P10
PTC7
PTC8
PTC9
PTC10
PTC11/LLWU_P1
PTC12
PTC13
PTC14
PTC15
PTC16
PTC17
PTC18
PTC19
103
104
105
106
109
110
111
112
113
114
115
116
117
118
119
120
123
124
125
126
PTC0
PTC1
PTC2
PTC3
PTC4
PTC5
PTC6
PTC7
PTC8
PTC9
PTC10
PTC11
PTC12
PTC13
PTC14
PTC15
PTC16
PTC17
PTC18
PTC19
PTD0/LLWU_P12
PTD1
PTD2/LLWU_P13
PTD3
PTD4/LLWU_P14
PTD5
PTD6/LLWU_P15
PTD7
PTD8
PTD9
PTD10
PTD11
PTD12
PTD13
PTD14
PTD15
127
128
129
130
131
132
133
136
137
138
139
140
141
142
143
144
PTD0
PTD1
PTD2
PTD3
PTD4
PTD5
PTD6
PTD7
PTD8
PTD9
PTD10
PTD11
PTD12
PTD13
PTD14
PTD15
PTE0
PTE1/LLWU_P0
PTE2/LLWU_P1
PTE3
PTE4/LLWU_P2
PTE5
PTE6
PTE7
PTE8
PTE9
PTE10
PTE11
PTE12
PTE24
PTE25
PTE26
PTE27
PTE28
1
2
3
4
7
8
9
10
11
12
13
14
15
45
46
47
48
49
PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7
PTE8
PTE9
PTE10
PTE11
PTE12
PTE24
PTE25
PTE26
PTE27
PTE28
V+
100MHz
2
4
6
8
10
12
14
16
18
20
22
24
26
PTD11
PTD9
PTD7
PTD5
PTD3
PTD1
PTC19
PTC17
PTC15
PTC13
PTC11
PTC9
C9
C8
B
L1
C12
22uF
C6
C4
C3
C2
C1
100n 100n 100n 100n 100n 100n 100n
GND
GND
GND GND GND GND GND GND GND
L7
d1
D1
+5V_USB
100n
100MHz
C11
1u
1
2
3
4
5
R5
USB0_DM
33
100MHz
33
USB0_DP
C14
R4
1
2
3
4
5
C
L6
GND
GND
GND
L5
L3
VREFL
C15
C13 100MHz
C17
10n
100n
100n 1u
L4
C16 100MHz
L2
VREFH
100MHz
100n
100MHz
D
Q1
1
C18
2
INH VDD
4
VSS OUT
3
R1
EXTAL
68
R3
50MHz
GND
68
CLK
VOUT33
2
1
J1
Close J1 to supply from USB
M. Cholewinski, M. Dziergwa, P. Kaczmarek, J. Kedzierski
Wroclaw University of Technology
MK60FX512VLQ15
E
1
3
5
7
9
11
13
15
17
19
21
23
25
USB
37
B
SVT
PTD10
PTD8
PTD6
PTD4
PTD2
PTD0
PTC18
PTC16
PTC14
PTC12
PTC10
PTC8
CLK
+3V3
VOUT33
A
VSSA
21
PTA19
PTA24
PTA25
PTA26
PTA27
PTA28
PTA29
V+
PTC6
PTC4
PTC2
PTC0
PTB22
PTB20
PTB18
PTB16
PTB10
PTB8
PTB6
PTB4
PTB2
PTB0
PTA28
PTA26
PTA24
PTA19
PTA16
PTA14
PTA12
PTA10
PTA8
VDDA
VOUT33
EXTAL
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
+3V3
VREGIN
R6
22
+5V_USB
GNDGND
PTA4
PTA5
PTA6
PTA7
PTA8
PTA9
PTA10
PTA11
PTA12
PTA13
PTA14
PTA15
PTA16
PTA17
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
GND
PTC7
PTC5
PTC3
PTC1
PTB23
PTB21
PTB19
PTB17
PTB11
PTB9
PTB7
PTB5
PTB3
PTB1
PTA29
PTA27
PTA25
RESET
PTA17
PTA15
PTA13
PTA11
PTA9
PWR
VBAT
+5V_USB
VREFL
J-LINK
PTD12
PTD14
PTE0
PTE2
PTE4
PTE6
PTE8
PTE10
PTE12
USB0_DM
+5V_USB
PGA2_DM
PGA3_DM
PGA0_DM
PGA1_DM
ADC0
DAC1
PTE25
PTE27
PTA4
PTA6
VREFH
VDDA
GND
+3V3
VREFH
VREFL
42
VDDA
VREFH
RESET
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
+3V3
VDDA
32
33
VREFH
VREFL
50
51
52
53
54
55
58
59
60
61
62
63
64
65
66
67
68
69
72
73
75
76
77
78
79
80
SVR
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
510
31
VDDA
PTA0
PTA1
PTA2
PTA3
PTA4/LLWU_P3
PTA5
PTA6
PTA7
PTA8
PTA9
PTA10
PTA11
PTA12
PTA13/LLWU_P4
PTA14
PTA15
PTA16
PTA17
PTA18
PTA19
PTA24
PTA25
PTA26
PTA27
PTA28
PTA29
PTD13
PTD15
PTE1
PTE3
PTE5
PTE7
PTE9
PTE11
USB0_DP
VOUT33
PGA2_DP
PGA3_DP
PGA0_DP
PGA1_DP
ADC1
DAC0
PTE24
PTE26
PTE28
PTA5
PTA7
VREFL
VSSA
V+
+
K60
VDD1
VDD2
VDD3
VDD4
VDD5
VDD6
VDD7
VDD8
VDD9
1
3
5
7
9
V+
U1
5
16
43
56
70
94
108
122
135
2
4
6
8
10
+3V3
+3V3
+3V3
A
JTAG_TMS
JTAG_TCK
JTAG_TDO
JTAG_TDI
BILBAO Minimodule
Bilbao is a city in Spain, the capital of the province of Biscay. The population proper is just over 372,000. Nowadays, Bilbao is a vigorous service
city that is experiencing an ongoing social, economic, and aesthetic revitalisation process, started by the iconic Bilbao Guggenheim Museum,
and continued by infrastructure investments.
1
2
3
4
5
6
7
8
E
Fig 7 Placement of components - bottom
Fig 6 Placement of components - top
6. Power supply
The minimodule is powered from an external 3.3V power source. It is also possible to power the K60
microcontroller directly from USB. In order to achieve this, J1 jumper has to be shorted. This will cause
the internal voltage regulator to be used to supply power to the MCU. Please note that it is not allowed
to exceed 290mA load. Also, when using USB to power the module DO NOT apply any other
external power source to the module. Moreover, the MCU peak current consumption can reach
300mA. This means that when the MCU is running at full speed it is impossible to power any devices
from the internal voltage regulator.
7. Programming
The Bilbao Bizkaia minimodule can be programmed using a specialized interface such as the SEGGER
J-Link [6], which is the most widely used line of debug probes available today, due to impressive
performance, extensive feature set, large number of supported CPUs, and compatibility with all popular
development environments. With up to 3 MBytes/s download speed to RAM and record breaking
flashloaders, as well as the ability to set an unlimited number of breakpoints in flash memory of MCUs,
the J-Link (Fig 8) debug probes are undoubtedly the best choice to optimize debugging and flash
programming experience.
Fig 8 Bilbao Bizkaia minimodule connected to J-Link EDU
10
In order to start programming, the minimodule has to be connected to the programmer using an
IDC connector. The module uses a 10 pin IDC socket and J-Link uses a 20 pin IDC socket. This dictates
the need to use some form of an adapter, as shown in Fig 8. J-Link has to be connected to a PC, running
software compatible with Freescale Kinetis MCUs such as CodeWarrior Development Studio [3] (at
least version 10.X.), which features:
 Eclipse IDE,
 Build system with optimizing C/C++ compilers for RS08, HCS08, ARM, and ColdFire
processors,
 Extensions to Eclipse C/C++ Development Tools (CDT) to provide sophisticated features to
troubleshoot and repair embedded applications.
Another useful tool when beginning to work with Freescale microcontrollers is Processor Expert [4, 5],
which is designed for rapid application development of embedded applications for a wide range of
microcontrollers and microprocessor systems. It is integrated as a plug-in into the CodeWarrior IDE.
Processor Expert generates code from the Embedded Components and CodeWarrior manages the project
files, and compilation and debug processes.
Fig 8 Processor Expert plug-in
In order to start working with a new project a project creation wizard is used. Choose File, then New
and click Bareboard Project. A wizard window will show up where the project name and workspace
path can be specified. Then, the following project options need to be configured:
 Devices: select K60FX512 (150 Mhz),
 Connections: select (unless using a different programmer) Segger J-Link / J-Trace / SWO
(SWD based)
 Language and Build Tools Options
o Language: leave C,
o Floating Point: leave Hardware (-mfloat-abi=hard),
o ARM Build Tools: select Freescale,
 Rapid Aplication Development
o Rapid Aplication Development: select Processor Expert,
o Start with perspective designed for: select Hardware configuration.
11
When a project is created Processor Expert automatically
introduces one or more CPU modules. These can be adjusted to the
user’s needs via graphical user interface. After the CPU has been
initialized, various new components can be added to the project. These
are divided into the following categories project (Fig. 9):
 CPU External Devices – components for devices externally
controlled to the CPU. For example sensors, memories,
displays or EVM equipment,
 CPU Internal Peripherals – components using any of on-chip
peripherals offered by the CPU,
 Logical Device Drivers – developed to offer users the
Hardware Abstraction Layer (HAL) for bare-metal applications
as well as RTOS applications,
 Operating systems – components related to Processor Expert
interaction with operating system running on the target,
 SW – components encapsulating pure software algorithms or
inheriting a hardware-dependent components for accessing
peripherals.
After double-clicking on the selected component, PE will add it to the
current project, and it will show up in the Components tab. Doubleclicking a component added this way will open the configuration
window for that module. Importantly, after each change in the module
configuration, it has to be built again. Some configuration options
Fig 9 PE module categories
may be unavailable, depending on how a certain block is set up.
Unfortunately, Processor Expert does not allow to change all
available registers/fields. In such situations it is advisable to use Peripheral Initialization modules, which
provide only initialization configuration of a function block. These modules can be found in the
Components library in Processor Internal Peripherals/Peripheral Initialization section. More detailed
information on configuring and adding components can be found in [5] (K40 and K60 microcontrollers
can be configured using PE in an almost identical manner)
8. Connectors and signals
In order to allow the user to utilize the full capabilities of the K60 microcontroller, all the signals have
been connected to two row pin headers (SVL, SVT, SVR). This allows for a fast and reliable connection
to another, custom designed board. Numbering and spacing of the pins is shown in Fig 10. A detailed
description of pins and along with their various functions is presented in Table 2, Table 3 and Table 4.
Fig 10 Pin header overview
12
Table 2 SVL Connector
4
Pin
Name
PTD13
PTD12
PTD15
PTD14
DISABLED
DISABLED
DISABLED
DISABLED
5
PTE1
ADC1_SE5a
ADC1_SE5a
6
7
PTE0
PTE3
ADC1_SE4a
ADC1_SE7a
ADC1_SE4a
ADC1_SE7a
8
PTE2
ADC1_SE6a
ADC1_SE6a
9
PTE5
DISABLED
10
PTE4
DISABLED
11
20
PTE7
PTE6
PTE9
PTE8
PTE11
PTE10
USB0_DP
PTE12
V_OUT33
USB0_DM
21
PGA2_DP
22
+5V_USB
23
PGA3_DP
24
PGA2_DM
25
PGA0_DP
26
PGA3_DM
27
PGA1_DP
28
PGA0_DM
29
ADC1
30
PGA1_DM
31
DAC0
32
ADC0
33
PTE24
34
DAC1
35
36
1
2
3
12
13
14
15
16
17
18
19
Default
ALT0
DISABLED
DISABLED
ADC2_SE17
ADC2_SE16
ADC3_SE16
DISABLED
USB0_DP
ADC3_SE17
VOUT33
USB0_DM
PGA2_DP/
ADC2_DP0/
ADC3_DP3/
ADC0_DP1
USB0_DP
ADC3_SE17
VOUT33
USB0_DM
PGA2_DP/
ADC2_DP0/
ADC3_DP3/
ADC0_DP1
PGA3_DP/
ADC3_DP0/
ADC2_DP3/
ADC1_DP1
PGA2_DM/
ADC2_DM0/
ADC3_DM3/
ADC0_DM1
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA3_DM/
ADC3_DM0/
ADC2_DM3/
ADC1_DM1
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
PGA1_DP/
ADC1_DP0/
ADC0_DP3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC0_SE17/
EXTAL1
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
PGA3_DP/
ADC3_DP0/
ADC2_DP3/
ADC1_DP1
PGA2_DM/
ADC2_DM0/
ADC3_DM3/
ADC0_DM1
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA3_DM/
ADC3_DM0/
ADC2_DM3/
ADC1_DM1
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
PGA1_DP/
ADC1_DP0/
ADC0_DP3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC0_SE17/
EXTAL1
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
PTE26
ADC3_SE5b
PTE25
ADC0_SE18/
XTAL1
ADC2_SE17
ADC2_SE16
ADC3_SE16
ALT1
PTD13
PTD12
PTD15
PTD14
PTE1/
LLWU_P0
PTE0
PTE3
PTE2/
LLWU_P1
PTE5
PTE4/
LLWU_P2
PTE7
PTE6
PTE9
PTE8
PTE11
PTE10
ALT2
SPI2_SOUT
SPI2_SCK
SPI2_PCS1
SPI2_SIN
ALT3
FTM3_FLT0
ALT4
ALT5
ALT6
SDHC0_D5
SDHC0_D4
SDHC0_D7
SDHC0_D6
FB_A21
FB_A20
FB_A23
FB_A22
ALT7
SPI1_SOUT
UART1_RX
SDHC0_D0
I2C1_SCL
SPI1_SIN
SPI1_PCS1
SPI1_SIN
UART1_TX
UART1_RTS_ b
SDHC0_D1
SDHC0_CMD
I2C1_SDA
RTC_CLKOUT
SPI1_SOUT
SPI1_SCK
UART1_CTS_ b
SDHC0_DCLK
SPI1_PCS2
UART3_RX
SDHC0_D2
SPI1_PCS0
UART3_TX
SDHC0_D3
UART3_RTS_ b
UART3_CTS_ b
UART5_RX
UART5_TX
UART5_RTS_ b
UART5_CTS_ b
I2S0_RXD0
I2S0_MCLK
I2S0_RX_ BCLK
I2S0_RX_FS
I2S0_TX_FS
I2S0_TXD0
FTM3_CH2
FTM3_CH1
FTM3_CH4
FTM3_CH3
FTM3_CH6
FTM3_CH5
I2S0_TX_ BCLK
FTM3_CH7
SPI1_PCS3
I2S0_TXD1
I2S0_RXD1
PTE12
FTM3_CH0
USB_SOF_ OUT
PTE24
CAN1_TX
UART4_TX
I2S1_TX_FS
EWM_OUT_b
I2S1_RXD1
ADC3_SE5b
PTE26
ENET_158
8_ CLKIN
UART4_CTS_ b
I2S1_TXD0
RTC_CLKOUT
USB_CLKIN
ADC0_SE18/
XTAL1
PTE25
CAN1_RX
UART4_RX
I2S1_TX_ BCLK
EWM_IN
I2S1_TXD1
13
38
PTE28
PTE27
ADC3_SE7a
ADC3_SE4b
39
PTA5
DISABLED
PTA5
ULPI_DIR
FTM0_CH4
I2S1_RX_ BCLK
ULPI_CLK
FTM0_CH3
I2S1_RXD0
37
ADC3_SE7a
ADC3_SE4b
PTE28
PTE27
40
PTA4
41
PTA7
NMI_b/
EZP_CS_b
ADC0_SE10
ADC0_SE10
PTA4/
LLWU_P3
PTA7
42
PTA6
ADC3_SE6a
ADC3_SE6a
PTA6
43
VREFL
VREFH
VSSA
VDDA
V+
GND
VREFL
VREFH
VSSA
VDDA
VREFL
VREFH
VSSA
VDDA
44
45
46
47
48
TSI0_CH5
UART4_RTS_ b
USB_CLKIN
FTM0_CH2
I2S1_MCLK
RMII0_RXER/
MII0_RXER
CMP2_
OUT
I2S0_TX_ BCLK
FTM0_CH1
JTAG_TRST_ b
NMI_b
TRACE_D3
TRACE_
CLKOUT
Table 3 SVT Connector
Pin
Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
PTD10
DISABLED
PTD10
2
PTD11
DISABLED
PTD11
SPI2_PCS0
UART5_CTS_ b
3
PTD8
DISABLED
PTD8
I2C0_SCL
UART5_RX
4
PTD9
DISABLED
PTD9
I2C0_SDA
UART5_TX
PTD6/
LLWU_P15
SPI0_PCS3
UART0_RX
FTM0_CH6
PTD7
CMT_IRO
UART0_TX
FTM0_CH7
ADC0_SE6b
PTD5
SPI0_PCS2
ADC0_SE5b
PTD2/
PTD3
PTD0/
PTD1
SPI0_SOUT
SPI0_SIN
SPI0_PCS0
SPI0_SCK
PTD6
ADC0_SE7b
6
PTD7
DISABLED
7
PTD4
8
PTD5
ADC0_SE6b
PTD2
10 PTD3
11 PTD0
12 PTD1
DISABLED
DISABLED
DISABLED
ADC0_SE5b
9
ADC0_SE7b
UART5_RTS_ b
UART0_CTS_b/
UART0_COL_ b
UART2_RX
UART2_TX
UART2_RTS_ b
UART2_CTS_ b
SDHC0_
CLKIN
FTM0_CH5
FTM3_CH2
FTM3_CH3
FTM3_CH0
FTM3_CH1
PTC18
DISABLED
PTC18
UART3_RTS_ b
ENET0_1588
_ TMR2
14
PTC19
DISABLED
PTC19
UART3_CTS_ b
ENET0_1588
_ TMR3
15
PTC16
DISABLED
PTC16
CAN1_RX
UART3_RX
ENET0_1588
_ TMR0
16
PTC17
DISABLED
PTC17
CAN1_TX
UART3_TX
ENET0_1588
_ TMR1
PTC14
PTC15
19 PTC12
20 PTC13
DISABLED
DISABLED
DISABLED
DISABLED
PTC14
PTC15
PTC12
PTC13
18
21
PTC10
22
PTC11
23
PTC8
24
PTC9
25
CLK
----
26
ADC1_SE6b
UART4_RX
UART4_TX
UART4_RTS_ b
UART4_CTS_ b
ADC1_SE6b
PTC10
I2C1_SCL
FTM3_CH6
I2S0_RX_FS
ADC1_SE7b
ADC1_SE7b
PTC11/
LLWU_P11
I2C1_SDA
FTM3_CH7
I2S0_RXD1
ADC1_SE4b/
CMP0_IN2
ADC1_SE5b/
CMP0_IN3
ADC1_SE4b/
CMP0_IN2
ADC1_SE5b/
CMP0_IN3
PTC8
FTM3_CH4
I2S0_MCLK
PTC9
FTM3_CH5
I2S0_RX_
BCLK
14
ALT7
FB_A19
FB_A16/
NFC_CLE
FB_A17/
NFC_ALE
13
17
ALT6
FB_A18/
NFC_RE
1
5
ALT5
FB_AD0
FTM0_FLT0
FTM0_FLT1
FB_AD1/
NFC_DATA0
FB_AD4
FB_AD3
FB_ALE/
FB_CS0_b
FB_TBST_b/
FB_CS2_b/
FB_BE15_8_b
FB_CS3_b/
FB_BE7_0_b
FB_CS5_b/
FB_TSIZ1/
FB_BE23_16_b
FB_CS4_b/
FB_TSIZ0/
FB_BE31_24_b
FB_AD25
FB_AD24
FB_AD27
FB_AD26
FB_AD5/
NFC_DATA2
FB_RW_b/
NFC_WE
FB_AD7/
NFC_DATA4
FB_AD6/
NFC_DATA3
EWM_OUT_b
I2S1_RX_FS
I2S1_RX_ BCLK
I2S1_RXD1
I2S1_RXD0
NFC_CE1_b
FB_TA_b
NFC_RB
NFC_CE0_b
FTM3_FLT0
I2S1_MCLK
FTM2_FLT0
ADC0_SE5b
Table 4 SVR Connector
2
Pin
Name
GND
V+
3
PTC7
CMP0_IN1
CMP0_IN1
PTC7
SPI0_SIN
USB_SOF_ OUT
I2S0_RX_FS
FB_AD8/
NFC_DATA5
4
PTC6
CMP0_IN0
CMP0_IN0
PTC6/
LLWU_P1
0
SPI0_SOUT
PDB0_EXTRG
I2S0_RX_
BCLK
FB_AD9/
NFC_DATA6
5
PTC5
DISABLED
PTC5/
SPI0_SCK
LPTMR0_ ALT2
I2S0_RXD0
6
PTC4
DISABLED
PTC4/
SPI0_PCS0
UART1_TX
FTM0_CH3
CMP1_IN1
CMP1_IN1
PTC3/
LLWU_P7
SPI0_PCS1
UART1_RX
FTM0_CH2
CLKOUT
I2S0_TX_ BCLK
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
ADC0_SE15/
TSI0_CH14
ADC0_SE14/
TSI0_CH13
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15/
ADC0_SE15/
TSI0_CH14
ADC0_SE14/
TSI0_CH13
PTC2
SPI0_PCS2
UART1_CTS_ b
FTM0_CH1
FB_AD12/
NFC_DATA9
I2S0_TX_FS
PTC1/
LLWU_P6
SPI0_PCS3
UART1_RTS_ b
FTM0_CH0
FB_AD13/
I2S0_TXD0
1
7
PTC3
8
PTC2
9
PTC1
10
PTC0
11
PTB23
12
Default
ALT0
ALT1
ALT2
ALT3
PTC0
SPI0_PCS4
PDB0_EXTRG
DISABLED
PTB23
SPI2_SIN
SPI0_PCS5
PTB22
DISABLED
PTB22
SPI2_SOUT
13
PTB21
ADC2_SE5a
ADC2_SE5a
PTB21
SPI2_SCK
14
PTB20
ADC2_SE4a
ADC2_SE4a
PTB20
SPI2_PCS0
15
PTB19
TSI0_CH12
TSI0_CH12
PTB19
CAN0_RX
FTM2_CH1
16
PTB18
TSI0_CH11
TSI0_CH11
PTB18
CAN0_TX
FTM2_CH0
PTB17
PTB16
19 PTB11
TSI0_CH10
TSI0_CH9
ADC1_SE15
TSI0_CH10
TSI0_CH9
ADC1_SE15
PTB17
PTB16
PTB11
SPI1_SIN
SPI1_SOUT
SPI1_SCK
UART0_TX
UART0_RX
UART3_TX
PTB10
ADC1_SE14
17
18
ADC1_SE14
PTB10
SPI1_PCS0
UART3_RX
PTB9
22 PTB8
23 PTB7
24 PTB6
DISABLED
DISABLED
ADC1_SE13
ADC1_SE12
SPI1_PCS1
UART3_CTS_ b
UART3_RTS_ b
ADC1_SE13
ADC1_SE12
PTB9
PTB8
PTB7
PTB6
25
PTB5
ADC1_SE11
ADC1_SE11
PTB5
26
PTB4
ADC1_SE10
ADC1_SE10
PTB4
27
PTB3
28
PTB2
29
PTB1
30
PTB0
31
38
PTA29
PTA28
PTA27
PTA26
PTA25
PTA24
RESET
PTA19
ADC0_SE13/
TSI0_CH8
ADC0_SE12/
TSI0_CH7
ADC0_SE9/
ADC1_SE9/
ADC2_SE9/
ADC3_SE9/
TSI0_CH6
ADC0_SE8/
ADC1_SE8/
ADC2_SE8/
ADC3_SE8/
TSI0_CH0
ADC2_SE12
ADC2_SE13
ADC2_SE14
ADC2_SE15
CMP3_IN5
CMP3_IN4
RESET_b
XTAL0
ADC0_SE13/
TSI0_CH8
ADC0_SE12/
TSI0_CH7
ADC0_SE9/
ADC1_SE9/
ADC2_SE9/
ADC3_SE9/
TSI0_CH6
ADC0_SE8/
ADC1_SE8/
ADC2_SE8/
ADC3_SE8/
TSI0_CH0
ADC2_SE12
ADC2_SE13
ADC2_SE14
ADC2_SE15
CMP3_IN5
CMP3_IN4
RESET_b
XTAL0
39
PTA17
ADC1_SE17
ADC1_SE17
20
21
32
33
34
35
36
37
40
PTA16
CMP3_IN2
CMP3_IN2
ALT4
I2S0_TX_FS
I2S0_TX_
BCLK
I2S1_TXD1
I2S1_TXD0
I2S1_TX_FS
I2S1_TX_
BCLK
ALT5
FB_AD10/
NFC_DATA7
FB_AD11/
NFC_DATA8
FB_AD14/
NFC_DATA11
FB_AD28/
NFC_DATA12
FB_AD29/
NFC_DATA13
FB_AD30/
NFC_DATA14
FB_AD31/
NFC_DATA15
FB_OE_b
ALT6
I2S0_MCLK
CMP0_OUT
I2S1_TX_FS
CMP1_OUT
I2S1_TX_ BCLK
I2S0_TXD1
CMP3_OUT
CMP2_OUT
CMP1_OUT
CMP0_OUT
FTM2_QD_ PHA
FB_AD16
FB_AD17
FB_AD18
EWM_OUT_b
EWM_IN
FTM0_FLT2
FB_AD19
FTM0_FLT1
FB_AD20
FB_AD21
FB_AD22
FB_AD23
ENET0_1588
_ TMR3
ENET0_1588
_ TMR2
ENET0_1588
_ TMR1
ENET0_1588
_ TMR0
FTM2_FLT0
FTM1_FLT0
I2C0_SDA
UART0_CTS_b/
UART0_COL_ b
PTB2
I2C0_SCL
UART0_RTS_ b
PTB1
I2C0_SDA
FTM1_CH1
RMII0_MDC/
MII0_MDC
FTM1_QD_ PHB
PTB0/
I2C0_SCL
FTM1_CH0
RMII0_MDI/
MII0_MDIO
FTM1_QD_ PHA
PTA29
PTA28
PTA27
PTA26
PTA25
PTA24
ULPI_DATA7
ULPI_DATA6
ULPI_DATA5
ULPI_DATA4
ULPI_DATA3
ULPI_DATA2
MII0_COL
MII0_TXER
MII0_CRS
MII0_TXD3
MII0_TXCLK
MII0_TXD2
FB_A24
FB_A25
FB_A26
FB_A27
FB_A28
FB_A29
FTM_CLKIN1
RMII0_TXD1/
MII0_TXD1
RMII0_TXD0/
MII0_TXD0
LPTMR0_ ALT1
PTA17
PTA16
FTM1_FLT0
SPI0_SIN
UART0_RTS_ b
SPI0_SOUT
UART0_CTS_b/
UART0_COL_ b
15
ADC2_SE4a
FTM2_QD_ PHB
FB_AD15
PTB3
PTA19
ALT7
FTM0_FLT0
FTM0_FLT3
I2S0_MCLK
I2S0_RX_FS
I2S0_RXD1
41
PTA15
CMP3_IN1
CMP3_IN1
PTA15
SPI0_SCK
UART0_RX
42
PTA14
CMP3_IN0
CMP3_IN0
UART0_TX
PTA13
CMP2_IN1
CMP2_IN1
PTA14
PTA13/
LLWU_P4
SPI0_PCS0
43
CAN0_RX
FTM1_CH1
44
PTA12
CMP2_IN0
CMP2_IN0
PTA12
CAN0_TX
FTM1_CH0
ADC3_SE15
ADC3_SE4a
ADC3_SE5a
ADC0_SE11
ADC3_SE15
ADC3_SE4a
ADC3_SE5a
ADC0_SE11
PTA11
PTA10
PTA9
PTA8
ULPI_DATA1
ULPI_DATA0
ULPI_STP
ULPI_NXT
FTM2_CH1
FTM2_CH0
FTM1_CH1
FTM1_CH0
PTA11
46 PTA10
47 PTA9
48 PTA8
45
16
RMII0_TXEN/
MII0_TXEN
RMII0_CRS_
RMII0_RXD0/
MII0_RXD0
RMII0_RXD1/
MII0_RXD1
MII0_RXCLK
MII0_RXD2
MII0_RXD3
I2S1_RX_FS
I2S0_RXD0
I2S0_RX_ BCLK
I2S0_TXD1
I2S0_TX_FS
FTM1_QD_ PHB
I2S0_TXD0
FTM1_QD_ PHA
FTM2_QD_ PHB
FTM2_QD_ PHA
FTM1_QD_ PHB
FTM1_QD_ PHA
TRACE_D0
TRACE_D1
TRACE_D2
Bibliography
[1] K60 Sub-Family Reference Manual, K60P144M150SF3RM, Freescale Semiconductor, Inc. 2011.
[2] K60 Family Product Brief, K60PB, Freescale Semiconductor, Inc. 2011.
[3] CodeWarrior Development Studio for Microcontrollers V10.x Getting Started Guide, Freescale
Semiconductor, Inc. 2011.
[4] CodeWarrior for Microcontrollers V10.x Processor Expert User Manual, Freescale
Semiconductor, Inc. 2011.
[5] J. Kędzierski, M. Wnuk, Programowanie mikrokontrolera z rodziny Kinetis K40 w środowisku
CodeWarrior Development Studio, Wrocław 2013
[6] J-Link / J-Trace User Guide, UM08001, SEGGER Microcontroller GmbH & Co. KG, 2013.
17