Download TrueGrid ® Output Manual for DYNA 3D

Transcript
TrueGrid®Output Manual For DYNA3D
A Guide and a Reference
by
Robert Rainsberger
Version 2.3.0
XYZ Scientific Applications, Inc.
October 12, 2006
Copyright © 2006 by XYZ Scientific Applications, Inc. All rights reserved.
TrueGrid,® the TrueGrid® Output Manual for DYNA3D, and related products of XYZ Scientific Applications, Inc. are
copyrighted and distributed under license agreements. Under copyright laws, they may not be copied in whole or in part
without prior written approval from XYZ Scientific Applications, Inc. The license agreements further restrict use and
redistribution.
XYZ Scientific Applications, Inc. makes no warranty regarding its products or their use, and reserves the right to change its
products without notice. This manual is for informational purposes only, and does not represent a commitment by XYZ
Scientific Applications, Inc. XYZ Scientific Applications, Inc. accepts no responsibility or liability for any errors or
inaccuracies in this document or any of its products.
TrueGrid ®is a registered trademark of XYZ Scientific Applications, Inc.
Some other product names appearing in this book may also be trademarks or registered trademarks of their trademark holders.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
ii
October 12, 2006
TrueGrid® Output Manual For DYNA3D
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
I. DYNA3D Output Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Font Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Supported Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Sliding (or Contact) Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Load Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Stone Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thick Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Joints and Rigid Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Springs and Dampers and Point Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Shared Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Tied with Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
II. DYNA3D Output Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
III. DYNA3D Output Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Command Syntax Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
bsd
global beam cross section definition . . . . . . . . . . . . . . . . . . . . . . 19
sid
sliding interface definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
si
select nodes or faces for sliding interface in merge phase . . . . . . 23
si
assign sliding interface to region in part phase . . . . . . . . . . . . . . 23
sii
assign sliding interfaces to progression in part phase . . . . . . . . . 23
spd
define the properties of a set of springs or dampers . . . . . . . . . . . 25
dynaeos
DYNA3D equation of state . . . . . . . . . . . . . . . . . . . . . . . 26
dynamats
DYNA3D materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
dynaopts
DYNA3D analysis options . . . . . . . . . . . . . . . . . . . . . . . . 47
IV. Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
V. INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
3
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
4
October 12, 2006
TrueGrid® Output Manual For DYNA3D
I. DYNA3D Output Guide
Introduction
DYNA3D is a nonlinear, explicit, three-dimensional finite element code for solid and structural
mechanics developed at Lawrence Livermore National Laboratories. The focus in this manual will
be on those features in TrueGrid® that are specific to creating a DYNA3D input file. The
TrueGrid® User Manual covers the creation of a mesh and will not be covered in this manual. This
manual is incomplete in another way because it cannot be used as a substitute for the DYNA3D
manual. For a full understanding of the use of these features, the user must have a working
knowledge of DYNA3D and be familiarity with a DYNA3D User Manual and, in particular, the one
written by Jerry I. Lin, dated January, 2005, UCRL-MA-107254.
Font Conventions
Different fonts are used through out this manual to indicate their meaning. A literal is highlighted
in bold. A symbol to be substituted with a literal or a number is italicized. A computer example uses
the Courier font.
Supported Features
There are many features in TrueGrid® to create a model for DYNA3D. The table below shows the
commands that are used for each feature. Sometimes there are several commands listed. For
example, shells can be generated using both the block and cylinder commands. The n and th are
used to set the properties of these shells. In another example, the si and sii commands are used to
identify the faces of the mesh that form the sliding (or contact) surfaces. The associated sid
command is used to assign properties to the sliding surface.
DYNA3D feature
TrueGrid® commands
parameters in the control cards
materials
equation of state
truss and beam element cross section properties
shell element cross section properties
thick shell element cross section properties
beam user defined integration rules
shell user defined integration rules
delamination elements
cohesive elements
nodal boundary conditions
dynaopts
dynamats, mate, mt, mti
dynaeos
dynamats, bsd
dynamats
dynamats
bind
sind
(under development)
(under development)
b, bi
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
5
symmetry
solid elements
beam and truss elements
shell and membrane elements
thick shell elements
interface save segment definition
nodal arbitrary single point constraints
sliding boundary planes
symmetry planes with failure
node time history blocks
element time history blocks
gravity stress initialization
brode functions
cross section definitions for force output
load curves
nodal forces and follower forces
pressure loads
prescribed velocities/accelerations/displacements
rigid or stone walls
coupled or shared nodal constraints
spot welds
rigid node set
initial velocity conditions
material initial rotation
sliding (or contact) surface
tie-breaking shell slide line
tied node sets with failure
rigid body merges
extra nodes with rigid bodies
rigid body joints
prescribed base accelerations
prescribed angular velocities
momentum deposition in solid elements
detonation points
shell-solid interfaces
discrete springs, dampers, and masses
rigid body inertial properties
nonreflecting boundary segments
temperature input option I
temperature input option II
one dimensional slide line
material initialization for rotational motion
plane
block, cylinder, or
block, cylinder, ibm, jbm, kbm, bm
block, cylinder, n, th, thi, ssf, ssfi, or
block, cylinder, or
iss
lsys, lb, sfb
plane, sfb
plane, syf
npb
epb
dynaopts (gvst)
dynaopts
csf
lcd, flcd
fc, mom, ndl, ffc, fmom
pr, pramp, dom, arri, dist
fv, acc, fd, frb, dynamats (bpm)
sw, swi
mpc
(under development)
(under development)
rotation, velocity, ve
(under development)
sid, si, sii
(under development)
fn, fni
rigbm
jt
jd, jt
dynaopts (grav)
dynaopts (xvel, yvel, zvel)
mdep
detp
(under development)
spd, spdp, spring, pm, npm
(under development)
nr, nri
tepro
temp, te, tei
sid, si, sii
(under development)
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
6
October 12, 2006
TrueGrid® Output Manual For DYNA3D
body force by material
CVS (MADTMO/ATB) Coupling
Air Bag Gas Flow Definitions
slide surface activation/deactivation times
fiber orientation
set the problem title
comments for specific sections of the output
merge parts into a single connected model
view properties in the merge phase
select the DYNA3D output format
write a DYNA3D input file
(under development)
(under development)
(under development)
(under development)
(under development)
title
comment
stp, tp, t
co
dyna3d
write
You may want to view some of the properties graphically using the condition (co) command in the
merge phase. The tmm command can be used to calculate the mass of each part. Be sure to merge
the nodes using one of the merging commands such as stp and, finally, use the dyna3d command
to select DYNA3D as the output option and the write command to actually create the input deck
forDYNA3D.
The file produced by TrueGrid® is an ASCII file that can be examined or modified using any text
editor. Some experienced users always inspect the file and modify it instead to rerunning TrueGrid®
when make easy changes to the model such as changing a material model parameter or the time step.
For this reason, the output file has helpful comments. However, this file can be very large and it
might be easier to modify the TrueGrid® session file and rerun TrueGrid®. One of the comments
that is automatically written has a time stamp for archiving purposes. The title is also helpful for
archiving. You can insert your own comments with the use of the comment command.
The readmesh command has a dyna3d option so that you can import a DYNA3D model into
TrueGrid®.This is intended to be used to translate a DYNA3D input file into another format or to
make small modifications to a model when a session file does not exist. This feature does not replace
the session file because the block structure of the mesh cannot be reconstructed. This also means
there are no block boundary interfaces (bb command) to utilize. If there is a block structure
underlying the mesh, you can form a block boundary interface using the mbb command, but this can
be tedious. As a cautionary note, because DYNA3D has header data that prescribe the bulk data that
follows it in the input file, when the format is changed due to additions, until the readmesh has been
updated, the additional data in the DYNA3D file will cause errors in the readmesh command. You
may have to experiment or check the documentation on readmesh to determine which features are
support in readmesh.
Sliding (or Contact) Surfaces
To form a contact surface, use the sid command to define the surface type. Some types have only one
side. Some are formed from faces of bricks or shells. Others are formed partially from nodes. The
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
7
sid command also has optional parameters such as friction. Be sure to choose a DYNA3D type,
since other types will not be recognized when writing the output file.
While in the part phase use the si or sii commands to select faces of that part for inclusion in the
surface definition. If the face is from a shell element, be sure to use the orpt orientation command
prior to issuing the si or sii command so that the orientation of the face is towards the opposing face
in the sliding surface. If you are using part replication (lrep, grep, or pslv), then you may want to
use the lsii or the gsii to increment the sliding interface command for each replication. You must use
the sid command for each sliding surface that is referenced when the lsii or gsii commands are used
with replication.
You can use sets in the merge phase to add faces or nodes to a sliding surface. These sets can be
formed with the combined use of the fset (for faces) and the nset (for nodes) commands in the part
and merge phase. Only use node sets when defining a sliding surface where nodes are on the slave
side and otherwise only use face sets. The node density between the master and slave sides of the
interface should be roughly equal. When forming the mesh in the part phase, it may be necessary to
build into the mesh a small gap between the master and slave sides of the contact surfaces, depending
on the mesh density and the curvature to avoid initial penetration of the slave side into the master
side.
When you merge the nodes (in the merge phase), the nodes from the slave side will not be allowed
to merge with the nodes on the master side. Use the mns command in the merge phase to override
this condition. When you fist merge the nodes, a table will be printed to the text window and the
tsave file listing the number of faces and nodes associated with each sliding surface. Check this table
carefully. You can also see the faces and nodes of either side of the sliding surfaces using the co
command. When using this in combination with the hide graphics option, you can see the orientation
of the faces. Use labels command to show how the nodes have merged graphically.
Initial and Boundary Conditions
There are several ways to constrain nodes. The b and bi commands in the part phase or the b
command in the merge phase will constrain nodes in the global coordinate system. Use the plane
command to specify symmetry plane constraints including symmetry planes with failure. Nodes in
the model will be assigned to these symmetry planes based on the tolerance you specify in the plane
command. The lb (and the associated lsys) command can be used to set the constraints in any
coordinate system. The sfb command can also be used to do this. Be sure that something in the
model has been constrained or the entire model might fly off.
To set non-reflective (or transmitting) boundary conditions, use the nr and nri commands in the part
phase or the nr command in the merge phase. Special care is needed when developing a model using
this type of boundary condition. See the DYNA3D User Manual for details.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
8
October 12, 2006
TrueGrid® Output Manual For DYNA3D
If you use the velocity or rotation command in the control phase, then all subsequent parts will be
assigned this initial velocity. This can be over ridden using the velocity or rotation command within
a part. Both of these conditions can be over ridden for specific regions of the mesh using the ve or
vei commands in the part phase or the ve command in the merge phase. Velocities are not
accumulative. Care is needed when assigning initial velocities so that when two nodes are merged,
the velocities of those two nodes match. Only one of the velocities will be used and if they do not
match, you may get an unexpect result. Usually, if the velocities of two merged nodes do not match,
this indicates an error in the model. There are other concerns regarding incompatible initial velocities
and prescriptions and the DYNA3D User Manual discusses this issue. TrueGrid® does not protect
you from or identify these incompatibilities.
Loads
There are numerous ways to assign loads. The list of commands that can be used to assign loads in
the part phase includes:
fc
fci
fcc
fcci
fcs
fcsi
mom
momi
ndl
ndli
pr
pri
pramp
fv
fvi
fvc
fvci
fvs
fvsi
fvv
fvvi
fvvc
fvvci
fvvs
fvvsi
acc
Cartesian concentrated nodal loads
Cartesian concentrated nodal loads
cylindrical concentrated nodal loads
cylindrical concentrated nodal loads
spherical concentrated nodal loads
spherical concentrated nodal loads
nodal moment about one of the nodal axis in the global coordinate system
nodal moment about one of the nodal axis in the global coordinate system
pressure converted to distributed nodal loads
pressure converted to distributed nodal loads
pressure loads on element faces
pressure loads on element faces
pressure loads on element faces
Cartesian prescribed nodal velocities
Cartesian prescribed nodal velocities
cylindrical prescribed nodal velocities
cylindrical prescribed nodal velocities
spherical prescribed nodal velocities
spherical prescribed nodal velocities
Cartesian variable prescribed nodal velocities
Cartesian variable prescribed nodal velocities
cylindrical variable prescribed nodal velocities
cylindrical variable prescribed nodal velocities
spherical variable prescribed nodal velocities
spherical variable prescribed nodal velocities
Cartesian prescribed nodal acceleration
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
9
acci
accc
accci
accs
accsi
vacc
vacci
vaccc
vaccci
vaccs
vaccsi
fd
fdi
fdc
fdci
fds
fdsi
frb
frbi
Cartesian prescribed nodal acceleration
cylindrical prescribed nodal acceleration
cylindrical prescribed nodal acceleration
spherical prescribed nodal acceleration
spherical prescribed nodal acceleration
Cartesian variable prescribed nodal acceleration
Cartesian variable prescribed nodal acceleration
cylindrical variable prescribed nodal acceleration
cylindrical variable prescribed nodal acceleration
spherical variable prescribed nodal acceleration
spherical variable prescribed nodal acceleration
Cartesian displacement
Cartesian displacement
cylindrical displacement
cylindrical displacement
spherical displacement
spherical displacement
prescribed rotation
prescribed rotation
The list of commands that can be used to assign loads in the merge phase includes:
fc
mom
ndl
pr
pramp
fv
fvv
vacc
fd
frb
ffc
fmom
Cartesian concentrated nodal loads
nodal moment about one of the nodal axis in the global coordinate system
pressure converted to distributed nodal loads
pressure loads on element faces
pressure loads on element faces
Cartesian prescribed nodal velocities
Cartesian variable prescribed nodal velocities
Cartesian variable prescribed nodal acceleration
Cartesian displacement
prescribed rotation
concentrated nodal load with a follower force
nodal moment with a follower force
The pramp command is used with either pr or pri. It applies a pressure based on a function for all
nodes that have a zero pressure. In most cases, the magnitude of the load is specified using a load
curve. This varies the amplitude of the load with respect to time.
Load Curves
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
10
October 12, 2006
TrueGrid® Output Manual For DYNA3D
Load curves are 2D polygonal curves that can be created using the lcd and flcd commands. Load
curves are typically used to define the relative amplitude of a load with respect to time. They can be
used to relate any two variables. Almost all prescribed loads require a load curve in time so that the
amplitude of the load can vary. It is best to define a load curve before it is referenced in a load or
material model to avoid a warning message. When the output file is written, if a load curve is
referenced but not defined, you will also receive a warning message. Then a simple load curve will
be used in the output file so that a valid DYNA3D file is written. It is advised that you correct this
by defining the appropriate load curve for the problem. Do not rely on the load curve that is
automatically generated.
In some dialogue boxes you might be prompted for a load curve or a set id. This is because such
commands can be used to define, for example, a dynamic load for DYNA3D or a static load for
another output option that has the option to turn loads on or off depending on the set id. Simply
ignore the set id portion of the prompt and supply the load curve number.
Stone Walls
A stone wall is defined with two commands. Use the plane command to set the properties of the
stone wall. Nodes to react to the stone wall will not be selected automatically based on the tolerance.
Use the sw and swi commands in the part phase to assign faces of the model to react to the stone
wall. You can use the sw command in the merge phase as well to assign faces from a face set to
react to the stone wall.
Bricks
Brick elements refer to hexahedral, prism (wedge), and tetrahedral elements and are considered the
same type in DYNA3D. Only one element type can associated with a material definition. If you want
two different element types with the same material properties, you must define two materials. Most,
but not all, materials support the different brick element types. There are no section properties for
bricks. Be sure to use the mate, mt, or mti command to assign the proper material to each section
of the mesh.
The element local coordinate system used in an orthotropic or anisotropic material is imposed by the
order of the nodes that define the element. You can flip the nodal ordering to switch the orientation
of this local coordinate system using the or command in the part phase.
Shells
Shell elements refer to both quadrilateral and triangular elements and sometimes referred to as
structural elements. Cross sectional properties are included in the material model when the shell type
is selected. There are no section properties for bricks. Be sure to use the mate, mt, or mti command
to assign the proper material to each section of the mesh. The default shell thicknesses are included
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
11
as part of the cross sectional properties. These default thicknesses can be over ridden with the use
of the thic command in the part phase. Both can be over ridden for a region of the part using the th
and thi commands. If you have two surfaces that represent the inner and outer surfaces of a structure
that is to be modeled using shell elements, than you can use the ssf and ssfi commands in the part
phase to create shells with variable thickness.
The orientation of the positive normal direction to the shell is dictated by the nodal ordering of the
nodes that define the shell. This positive direction is used, for example, to determine the direction
of a positive pressure. This direction can be flipped using the n command in the part phase. The
order of the nodes also dictate the local material coordinate system which can be important when
using an orthotropic or anisotropic material. Use the or command to flip the coordinate system to
the desired direction. When an angle is specified for the orientation of a composite material, it is with
respect to this orientation.
You may need to specify the through thickness integration points when defining a composite
material. This can be done by defining an integration rule with the sind command. Then identify this
rule in the material definition.
Thick Shells
Thick shells are generated and look like hexahedral elements. Only a few materials support thick
shells. Be sure to use the mate, mt, or mti command to assign the proper material to each section
of the mesh.
The element local coordinate system used in an orthotropic or anisotropic material is imposed by the
order of the nodes that define the element. You can flip the nodal ordering to switch the orientation
of this local coordinate system using the or command in the part phase.
You may need to specify the through thickness integration points when defining a composite
material. This can be done by defining an integration rule with the sind command. Then identify this
rule in the material definition. All other cross section information is specified in the material
definition.
Beams
Two nodes are required to form a beam element. In many cases, a third node is needed to define the
local coordinate system used to form the cross sectional properties. These element are sometimes
referred to as structural elements. Use the ibm, ibmi, jbm, jbmi, kbm, and kbmi commands to form
beam elements with shell or brick structures while in the part phase. If the material of the shell or
brick structure is set to zero using the mt, mti, or mate command, then the shells or bricks will be
ignored, but the embedded beams will not be ignored. This is a convenient way to build an array of
beams using block structured methods. You can also use the bm command in the merge phase to
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
12
October 12, 2006
TrueGrid® Output Manual For DYNA3D
build a string of beams that can be made to follow a 3D curve. The beam command (this command
has been denigrated) can also be used to form beam elements, but the command is not interactive.
Both the element type and the default cross section properties are defined in the material definition.
You can also use the bsd command to define cross sectional properties to over ride the material
default cross sectional properties. When you create a beam, refer to the bsd number to assign these
cross sectional properties to the beam. Use the bind command to define beam integration rule, if
needed. Then refer to this integration rule when defining the material.
Joints and Rigid Bodies
A rigid body is formed using shells and bricks that are assigned the rigid body material. Each rigid
body can be attached to other parts of the model using joints. A joint is defined in two steps. The jd
command is used to define the properties of a joint. Then the jt command is used to identify which
nodes are used to form the joint. Nodes within a joint are not merged.
Springs and Dampers and Point Masses
Springs and dampers are treated the same in TrueGrid®. They are only distinguishable by the
material properties assigned them. Use the spd command to define the properties of the spring or
damper. Then use the spring command to assign nodes to a numbered spring. Alternatively, the
spdp command can be used in the part phase to create an array of springs between two parts,
analogous to a contact surface.
Point masses can be generated in the part or merge phase. There are two types of point masses. The
pm command will assign a mass to an existing node. The npm will create a new node and assign
it a mass. The latter must then be connected either to a spring or beam.
Temperatures
There are two methods in DYNA3D to set the temperatures for material properties. For the first
option, use the tepro command in the part or merge phase. You can use the temp command to set
a default constant temperature. Then use the te and tei commands in the part phase or the te
command in the merge phase to vary the temperature in different regions of the mesh.
Shared Constraints
Use the mpc command to couple a set of nodes. This requires that you create a node set first. The
nset or nseti command can be used in the part phase and the nset command in the merge phase to
create a node set. Also, click on the pick button in the environment window during the merge phase.
Then you can use the mouse to modify or create a node set. The nodes sharing a set of constraints
will not be merged together.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
13
Tied with Failure
The fn and fni commands in the part phase will generate a shell mesh where there are 4 unique nodes
for each shell element. These are automatically tied together with a failure criteria where shell
elements meet. The nodes that are tied together are merged together in the merge phase.
Post Processing
There are a number of options of the dynaopts command to control the data saved in the database
by DYNA3D for post processing. You can get more information from the reference section on the
iff, prti, plti, ssdm, drtflg options of dynaopts. You may wish to analyze in greater detail the
evolution of certain nodes or elements. Use the npb and epb commands (referred to as time history
blocks), respectively, to identify areas of the mesh requiring a more detailed accumulation of data
by DYNA3D.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
14
October 12, 2006
TrueGrid® Output Manual For DYNA3D
II. DYNA3D Output Example
The following example was provided by Dr. Richard J. Fields at National Institute of Standards and
Technology of the United States Department of Commerce. It has been modified from a model
developed for another code.
This model forms a pair of clamps and a rectangular block of metal to be drawn as the clamps move
apart. The first part forms both the rectangular metal to be drawn as well as the majority of the
clamps. This removes the need of merging the nodes of the clamp with the nodes of the drawn
material. The wedge portion is made as a separate part to take advantage of the transitional block
boundary. The clamps are made rigid. The entire bottom face is constrained in the z-direction.
Displacements are applied to the end faces of the clamps.
title Metal Drawing Process using DYNA3D by NIST Metallurgy Div.
c choose the output format
dyna3d
c set the termination time and the plot interval
dynaopts term 1.e-3 plti 1.e-4 ; ;
c load curve
lcd 1 0 0 1 1000.;
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
15
c elastic material for the sample material being drawn
dynamats 1 24 rho 7.e-4 mhead workpiece
e 3.e7 pr 0.3 sigy 75000 et 1.e5 efp 0.2 ;
c rigid material for the clamps
dynamats 2 20 rho 7.e-4 e 3.e7 pr 0.3 ;
c main part with both elastic and rigid materials
block 1 13 17 31 35 47;1 5 9 13;1 25;
1 13 17 31 35 47;1 5 9 13;1 25;
c remove some of the unneeded regions between the clamps
dei 2 5; 1 2 0 3 4;;
c set the default material to elastic
mate 1
c set the clamp regions of the part to rigid material
mti 1 3 0 4 6; 1 2 0 3 4; ; 2
c position some of the key nodes
mbi -2; -1 0 -4; 1 2;x -1
mbi -5; -1 0 -4; 1 2;x 1
c save the interface for the second part
bb 2 2 1 3 2 2 1;
c nodal constraints
bi ;; -1;dz 1;
c displacements
fdi -6;1 2 0 3 4;1 2;1 1 1 0 0
fdi -1;1 2 0 3 4;1 2;1 1 -1 0 0
endpart
c part to form the transitional region of the clamps
block 1 3;1 5;1 25; 13 17 1 5 1 25
c all rigid material
mate 2
c position some of the nodes
mb 1 1 1 1 1 2 x -1
mb 2 1 1 2 1 2 x -4
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
16
October 12, 2006
TrueGrid® Output Manual For DYNA3D
c transitional interface
trbb 1 2 1 2 2 2 1;
c replicate this part
lct 3 rzx my 14;ryz mx 48;rzx ryz my 14 mx 48;
lrep 0:3;
c nodal constraints
bi ;; -1;dz 1;
endpart
c enter the merge phase to write the output file
merge
c merge the nodes at the interfaces
stp .001
c write the output file
write
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
17
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
18
October 12, 2006
TrueGrid® Output Manual For DYNA3D
III. DYNA3D Output Reference
The commands found here are provided to the user so that a complete input file can be generated by
TrueGrid®. This manual does not try to explain the meaning of these parameters. For this, the user
is referred to the DYNA3D User Manual.
Command Syntax Conventions
When an arbitrarily long list of arguments are required, a semi-colon terminates the list. Sometimes
the abbreviation #_things is used to mean “number of things”. Each command is described by an
entry like the following:
command
summary description
command arguments
brief description of functionality
with brief descriptions of what the arguments should be.
indentation is used to indicate a list of options to the arguments
Remarks
When present, the Remarks section describes the command in even greater detail. It may describe
the context in which the command is normally used, and other commands used in association with
this command. It may describe side effects. It may describe other, similar commands. In many
cases, it includes a description of where to find the command in the menus.
Example
When present, this shows the exact use of the command. If you use the dialogues, this command will
be generated by simple selection options with the mouse and entering data where indicated. The
command, as shown here, will appear in the session file for later reuse and possible modification.
You can also enter the command into the text window or insert it into a command file to be run in
batch mode.
bsd
global beam cross section definition
bsd option_list ;
where an option can be:
for the Hughes-Liu beam with constant thickness
sthi thickness
s-thickness at both ends
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
19
tthi thickness
t-thickness at both ends
for the Hughes-Liu beam with variable thickness
sthi1 thickness
s-thickness at beginning
sthi2 thickness
s-thickness at ending
tthi1 thickness
t-thickness at beginning
tthi2 thickness
t-thickness at ending
for the Belytschko-Schwer beam
carea area
cross section area
iss iss
area moment of inertia about s-axis
itt itt
area moment of inertia about t-axis
irr irr
area moment of inertia about r-axis
sarea area
shear area of cross section
for the truss
carea area
cross section area
Figure 3 Beam Local Coordinate System for DYNA3D
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
20
October 12, 2006
TrueGrid® Output Manual For DYNA3D
Remarks
A third node is always required but is not significant for a truss. For other beam types, the third node
is used to define the cross section orientation.
There are other options to this command, but they are not shown here because they do not apply to
the DYNA3D output. For a complete description of the bsd command, see the TrueGrid® User
Manual.
Since there are default cross section properties provided in the definition of the material using the
dynamats command, not all of the parameters need to be assigned through the bsd command. Only
use the parameters appropriate for the beam type selected in the dynamats command. Inappropriate
parameters will be ignored.
Each cross section definition is assigned a number by you so that you can reference it when defining
a set of beams with the ibm, ibmi, jbm, jbmi, kbm, kbmi, bm, and beam commands.
Example
bsd 2 sthi .03 tthi .03 ; ;
sid
sliding interface definition
sid slide_# option_list ;
where an option can be
tied
tied sliding surface
sl
sliding only
sv
sliding with voids
single
single sided slide surface
dni
discrete nodes impacting surface
dnt
discrete nodes tied to surface
sets
hell element edge tied to shell element surface
nsw
nodes spot welded
break
tie-break interface
owsv
one way sliding with voids
dummy
is only used to insure that nodes in this interface will not be merged
sand type
Slide Surface with Adaptive New Definitions
where type can be
sms slave_material_list ;
mms master_material_list ;
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
21
auto
for automatic contact
rebar type
to define properties of REBAR 1D sliding interface
where type can be any of the following:
rbrad radius
rbstr strength
rbshr modulus
rbumax displacement
rbexp exponent
rbibond non-negative_number
fric friction_factor
for static coefficient of friction
kfric kinetic_coefficient_of_friction
for kinetic coefficient of friction
decay exponential_decay_coefficient
for exponential decay coefficient
pen
for small penetration flag
sfif
for slave to be printed in force file
mfif
for master to be printed in force file
pnlts slave_penalty_factor
for slave penalty factor
pnltm master_penalty_factor
for master penalty factor
pnlt penalty_factor
for sliding penalty
Remarks
Sliding interfaces or contact surfaces are constructed in 3 steps. These steps can be done in any order.
1. define the properties
2. select the slave side
3. select the master side, if applicable
The sid command is used to define the properties. The si and sii commands are used in the part phase
or the merge phase to select the nodes or faces that form the master and slave sides of the interface.
When nodes are merged, nodes across a sliding interface will not be merged. When a merge
command is first issued in the merge phase, a table is written listing the number of nodes and faces
associated with each sliding interface.
The dummy type interface is actually used to avoid merging of nodes. A sliding interface of this type
is not written to the output file.
The nodes and faces of a sliding interface or contact surface can be viewed in the merge phase using
the si option of the co command.
If the output option has been selected prior to using the dialogue box to make a selection, only the
options available to that output option will be displayed in the dialogue box.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
22
October 12, 2006
TrueGrid® Output Manual For DYNA3D
si
select nodes or faces for sliding interface in merge phase
si type interface_# boundary parameters ;
where type and parameters can be one of:
n node_number
to select a single node
rt x y z
to select a node close to a Cartesian point
cy rho theta z
to select a node close to a cylindrical point
sp rho theta phi
to select a node close to a spherical point
nset name_of_set
to select an entire node set
fset face_set
to select a face set
where boundary can be one of
m
master side of the interface
s
slave side of the interface
si
assign sliding interface to region in part phase
si region sliding_# type options
where
sliding_#
reference number for the interface
type
m for master and s for slave
options
this depends on the type.
sii
assign sliding interfaces to progression in part phase
sii progression sliding_# type options
where
sliding_#
sliding interface reference number
type
m for master and s for slave
options
this depends on the type.
Example
A model was created by the use of the following command file. Some normals are displayed as
circular arcs with arrows. This is caused by the normals pointing almost orthogonally from the
screen. There is an angle parameter in the co command setting the range of such behavior. You can
modify it, or totally disable it.
c Sliding Interface -> master side
c Part definition -> shells.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
23
block 1 3 5 7 9;-1;1 3 5 7 9; 0 2 4 6 8; 9 ; 0 2 4 6 8;
c Definition of orientation point in Cartesian coord x,y, and z
orpt - 9 0 9
c Definition of the type of the sliding interface
sid 1 sv ;
c Assignment of region (;-1;;) and type(1 m)of slid. interf.
sii ;-1;; 1 m
c Definition of 3 global transformations around y-axis
gct 3 ry 90; ry 180; ry 270 ; c for 90,180 and 270 degrees.
c Global replication 3 times by rotation for
grep 0 1 2 3; 90,180 and 270 degrees
c Cylinder part -> tube made from hexahedrons.
cylinder 1 6; 1 3 5 7 9 11 13 15 17 19 21 23 25; 1 10;
2 4;0 30 60 90 120 150 180 210 240 270 300 330 360;0 20;
c Definition of the orientation point in the default coordinate
c system of the part (in Cylindrical coordinates r,eta,z).
orpt - 0 20 5
c Assignment of region (-2;;) and type(1 s) of slid. interf.
sii -2;;; 1 s
c Assignment of region (;;-1;) and type(1 s) of slid. interf.
sii ;;-1; 1 s
c Assignment of region (;;-1;) and type(1 s) of slid. interf.
sii ;;-2; 1 s
lct 1 my 20 ; c Definition of the local transformation
lrep 1;
c Transformation 1 is applied.
merge
labels size 3
c Scale the size of arrows.
rx 20 ry 20 rz 20
c Rotate mesh in window.
center
c Center picture in window.
set tv disp
c Set hide display option.
co si 1 m;
c Display of master side of sliding interface 1
co si 1 s;
c Display of slave side of sliding interface 1
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
24
October 12, 2006
TrueGrid® Output Manual For DYNA3D
Figure 4
master side of interface
Figure 5
slave side of interface
Remarks
The options for the si and sii commands are not used for DYNA3D.
spd
define the properties of a set of springs or dampers
spd spring/damper_# type parameters
where type is the spring or damper's material model and
parameters is one of the following:
le stiffness
linear elastic
lv damping
linear viscous
iep elastic tangent yield
isotropic elastic
ne ld_curve_#
nonlinear elastic
nv ld_curve_#
nonlinear viscous
nesf ld_curve_# force_curve_#
nonlinear elastic w/ force load curve
gn loading_# unloading_# hardening tension compression general nonlinear
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
25
Remarks
A spring or damper is defined using either the spdp command forming a set of springs/dampers
between two surfaces, or using the spring command to create a single spring at a time. In each case,
the definition of a spring includes a reference to a material definition spd number.
DYNA3D, use linear elastic, linear viscous (damper), isotropic elastoplastic, nonlinear elastic,
nonlinear viscous, general tabulated nonlinear, and dashpot.
If the output option has been selected prior to using the dialogue box to make a selection, only the
options available to that output option will be displayed in the dialogue box.
dynaeos
DYNA3D equation of state
dynaeos material_# eos_type parameters_list ;
where the eos_type can be
1
linear polynomial
2
JWL
3
Sack
4
Gruneisen
5
ratio of polynomials
6
linear polynomial with energy deposition
7
ignition and growth of reaction in HE
8
tabulated model with compaction
9
tabulated
11
pore collapse
where the parameters_list for EOS linear polynomial (type 1) is:
c0 constant
c1 coefficient
c2 coefficient
c3 coefficient
c4 coefficient
c5 coefficient
c6 coefficient
e0 energy
v0 volume
where the parameters_list for EOS JWL (type 2) is:
a constant
b constant
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
26
October 12, 2006
TrueGrid® Output Manual For DYNA3D
r1 constant
r2 constant
omega constant
e0 energy
v0 volume
where the parameters_list for EOS Sack (type 3) is:
a1 constant
a2 constant
a3 constant
b1 constant
b2 constant
b0 constant
v0 constant
where the parameters_list for EOS Gruneisen (type 4) is:
vci intercept
s1 coefficient
s2 coefficient
s3 coefficient
gamma coefficient
sa coefficient
b0 energy
v0 volume
where the parameters_list for EOS ratio of polynomials (type 5) is:
a10 constant
a11 constant
a12 constant
a13 constant
a20 constant
a21 constant
a22 constant
a23 constant
a30 constant
a31 constant
a32 constant
a33 constant
a40 constant
a41 constant
a42 constant
a43 constant
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
27
a50 constant
a51 constant
a52 constant
a53 constant
a60 constant
a61 constant
a62 constant
a63 constant
a70 constant
a71 constant
a72 constant
a73 constant
alpha constant
beta constant
a14 constant
a24 constant
e0 energy
v0 volume
where the parameters_list for EOS linear polynomial with energy deposition (type 6) is:
c0 constant
c1 coefficient
c2 coefficient
c3 coefficient
c4 coefficient
c5 coefficient
c6 coefficient
e0 energy
v0 volume
lc load_curve
where the parameters_list for EOS ignition and growth of reaction in HE (type 7) is:
ap constant
bp constant
r1p constant
r2p constant
g coefficient
wpcp constant
ae constant
be constant
wece constant
r1e constant
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
28
October 12, 2006
TrueGrid® Output Manual For DYNA3D
r2e constant
fcrit fraction
i coefficient
h coefficient
z exponent
x exponent
y exponent
cp heat_capacity
ce heat_capacity
m exponent
e0 energy
t0 temperature
where the parameters_list for EOS tabulated model with compaction (type 8) is::
eps list_strains ;
pc list_constants ;
t list_temperatures ;
ku list_modulus ;compression
gamma gamma
e0 energy
v0 volume
where the parameters_list for EOS tabulated (type 9) is:
eps list_strains ;
pc list_constants ;
t list_temperatures ;
gamma gamma
e0 energy
v0 volume
where the parameters_list for EOS pore collapse (type 11) is:
mu1 compression
mu2 compresion
e0 energy
mu0 compression
virgin load_curve_pairs ;
crushed load_curve_pairs ;
NOTE: The following EOS models are under development
where the parameters_list for EOS Ignition and Growth of Reaction in HE 3-Term (type 13) is:
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
29
where the parameters_list for EOS Self-Generated Table with Compaction (type 14) is:
(No arguments)
Remarks
The material in this command assigns this equation of state to a specific material. An equation of
state is not required by DYNA3D. When using an equation of state, be sure to choose a material,
using the dynamats command, that supports an equation of state.
You must be in the control phase to issue this command. When you first start TrueGrid® you are in
the control phase and it is convenient to issue this command at that time. However, one can return
to the control phase anytime using the control command.
Example
dynaeos 1 4 vci 159634 s1 19400 s2 -1992.2 s3 92.33
gamma 1.69 sa 0.9976 b0 0 v0 1.0 ;
dynamats
DYNA3D materials
dynamats material_# material_type options_list properties_list ;
where the following options are available for all materials:
mhead text
comment w/ max. of 80 characters (to end of line)
shell features_list
with the following features
elfor option
where the option can be
hl
for Hughes-Lui shell
bt
for Belytschko-Tsay shell
bciz
for triangular shells
c0
for triangular shells
membrane
yase
shear factor
tsti #_points
for through shell thickness integration
propt option
for print out options
where option can be
1
for element center
2
for plan integration points
3
for through thickness and plan integration points
quad integration_rule_#
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
30
October 12, 2006
TrueGrid® Output Manual For DYNA3D
where the integration_rule_# can be
n
positive for the number of points using the trapezoidal rule
0
Gauss
-n
negative of the user specified rule number (from sind command)
shth thickness
default shell thickness
shth1 thickness
default shell thickness at the first node
shth2 thickness
default shell thickness at the second node
shth3 thickness
default shell thickness at the third node
shth4 thickness
default shell thickness at the fourth node
shloc location
through thickness location of the shell
where location can be
1
top surface
0
middle surface
-1
bottom surface
beam features_list
with the following features
elfom option
where the option can be
hl
Hughes-Lui beams
bt
Belytschko-Tsay beams
truss
shear factor
quad option
where the option can be
1
for a truss
2
for 2x2 Gauss quadrature
3
for 3x3 Gauss quadrature
4
for 3x3 Lobatto integration
5
for 4x4 Gauss quadrature
bmcross shape
where the shape can be
0
for rectangular
1
for tubular
sthi thickness
tthi thickness
sthi1 thickness
sthi2 thickness
tthi1 thickness
tthi2 thickness
sloc location
where location can be
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
31
1
meaning the side where s is 1
0
meaning centered
-1
meaning the side where s is -1
tloc location
where location can be
1
meaning the side where t is 1
0
meaning centered
-1
meaning the side where t is -1
tshell features_list
with the following features
shear shear
tsti #_points
quad integration_rule_#
rho density
where the properties_list is specific to the selected material type:
Experimental Material Model - Material type 0
pij value
repeat as often as is needed
where i can be from 3 to 8 (index to the record number of the material definition)
where j can be from 1 to 8 (index to the field number of the material definition)
Elastic - Material type 1
e modulus
pr ratio
Orthotropic Elastic - Material type 2
ea ea
eb eb
ec ec
prba vba
prca vca
prcb vcb
gab gab
gbc gbc
gca gca
aopt option parameters
for material orientation
where the option can be one of
0
for by nodes
1
for by point and element center
2
for by normal vectors
3
for by cross product with shell normal (shell elements only)
where the parameters can be
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
32
October 12, 2006
TrueGrid® Output Manual For DYNA3D
xp x-coordinate
yp y-coordinate
zp z-coordinate
ax x-component
ay y-component
az z-component
dx x-component
dy y-component
dz z-component
vx x-component
vy y-component
vz z-component
beta angle
for aopt 1
for aopt 1
for aopt 1
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 3
for aopt 3
for aopt 3
Kinematic/Isotropic Elastic-Plastic - Material type 3
e modulus
pr ratio
sigy stress
etan modulus
beta parameter
Thermo-Elastic-Plastic - Material type 4
temp temperature_list ;
e modulus_list ;
pr ratio_list ;
alpha secant_list ;
sigy stress_list ;
etan modulus_list ;
Soil And Crushable Foam - Material type 5
g modulus
ku modulus
a0 yield
a1 yield
a2 yield
pc pressure
vs strain_list ;
p pressure_list ;
Viscoelastic - Material type 6
k modulus
g0 modulus
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
33
gi modulus
beta constant
mflag option
where the option can be
0
1
which means that beta is the delay constant
which means that beta is the time relaxation constant
Blatz-Ko Hyperelastic Rubber - Material type 7
g modulus
High Explosive Burn - Material type 8
d velocity
pcj pressure
Fluid - Material type 9
pc pressure
mu coefficient
Isotropic-Elastic-Plastic-Hydrodynamic - Material type 10
g modulus
sigy stress
etan modulus
pc pressure
a1 coefficient
a2 coefficient
ispall model
where the model can be
pl
for pressure limit
max
for maximum principal stress spall criterion
hydro
for hydrostatic tension spall criterion
eps strain_list ;
up to 16 values
es stress_list ;
up to 16 values
Steinberg-Guinan High Rate Elastic-Plastic - Material type 11
g0 modulus
sig0 stress
beta constant
n exponent
gama strain
sigm stress
b modulus
bpm stress
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
34
October 12, 2006
TrueGrid® Output Manual For DYNA3D
h coefficient
f exponent
t0 temperature
gam0 gamma
sa constant
pc pressure
ispall model
where the model can be
pl
for pressure limit
max
for maximum principal stress spall criterion
hydro
for hydrostatic tension spall criterion
a atomic_weight
r r_prime
spall
ivar option
where the option can be
0
for cold compression polynomial coefficient in eta
1
for cold compression polynomial coefficient in mu
ec0 coefficient
ec1 coefficient
ec2 coefficient
ec3 coefficient
ec4 coefficient
ec5 coefficient
ec6 coefficient
ec7 coefficient
ec8 coefficient
ec9 coefficient
Isotropic-Elastic-Plastic - Material type 12
g modulus
sigy stress
eh modulus
k modulus
Elastic-Plastic With Failure - Material type 13
g modulus
sigy stress
eh modulus
fs strain
fp pressure
k modulus
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
35
Soil And Crushable Foam With Failure - Material type 14
g modulus
ku modulus
a0 constant
a1 constant
a2 constant
pf pressure
iflag flag
where the flag can be
0
for hydrostatic tension
1
for maximum principal stress
sigmaf stress
vs strain_list ;
ps pressure_lis ;
Johnson/Cook Elastic-Plastic - Material type 15
g modulus
a stress
b coefficient
n exponent
sc coefficient
m exponent
tm temperature
tr temperature
x0 rate
sh heat
ispall model
where the model can be
pl
for pressure limit
max
for maximum principal stress spall criterion
hydro
for hydrostatic tension spall criterion
iter flag
where the flag can be
0
for fast approximate solution
1
for accurate iterative solution
d1 parameter
d2 parameter
d3 parameter
d4 parameter
d5 parameter
e modulus
pr ratio
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
36
October 12, 2006
TrueGrid® Output Manual For DYNA3D
dtcrit step_size
Concrete/Geological Model - Material type 16
pr ratio
g modulus
sigy stress
a0 cohesion
a1 coefficient
a2 coefficient
b1 factor
a0f cohesion
a1f coefficient
r percent
emr modulus
prr ratio
sigma0 stress
tm modulus
lc load_curve
lcr load_curve
eps list_strain ;
es list_stress ;
p list_pressure ;
Isotropic Elastic-Plastic With Oriented Crack - Material type 17
e modulus
pr ratio
sigy stress
eh modulus
fs strength
pc pressure
Power Law Isotropic Elastic-Plastic - Material type 18
e modulus
pr ratio
k coefficient
n exponent
Strain Rate Dependent Isotropic Elastic-Plastic - Material type 19
e modulus
pr ratio
lcs0 load_curve
etan modulus
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
37
lce load_curve
lce load_curve
lcfs load_curve
tss step_size
Rigid - Material type 20
e modulus
pr ratio
bpm options ;
where an option can be
dof flag
where flag can be
1
2
3
4
x-translational degree-of-freedom
y-translational degree-of-freedom
z-translational degree-of-freedom
translational motion in the given vector direction (use v
below)
x-rotational degree-of-freedom
y-rotational degree-of-freedom
z-rotational degree-of-freedom
rotational motion about the given vector (use v below)
5
6
7
8
lcid load_curve_#
sf scale_factor
v x0 y0 z0
rbv load_curve amplitude fx fy fz
(obsolete)
Thermal Orthotropic Elastic - Material type 21
ea modulus
eb modulus
ec modulus
prba ratio
prca ratio
prcb ratio
alpa coefficient
alpb coefficient
alpc coefficient
gab modulus
gbc modulus
gca modulus
aopt option parameters
for material orientation
where the option can be one of
0
for by nodes
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
38
October 12, 2006
TrueGrid® Output Manual For DYNA3D
1
2
3
where parameters can be
xp x-coordinate
yp y-coordinate
zp z-coordinate
ax x-component
ay y-component
az z-component
dx x-component
dy y-component
dz z-component
vx x-component
vy y-component
vz z-component
beta angle
for by point and element center
for by normal vectors
for by cross product with shell normal (shell elements
only)
for aopt 1
for aopt 1
for aopt 1
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 3
for aopt 3
for aopt 3
Fiber Composite With Damage - Material type 22
ro density
ea modulus
eb modulus
ec modulus
k modulus
sn strength
syz strength
szx strength
prba ratio
prcb ratio
prca ratio
gab modulus
gbc modulus
gca modulus
aopt option parameters
for material orientation
where the option can be one of
0
for by nodes
1
for by point and element center
2
for by normal vectors
3
for by cross product with shell normal (shell elements only)
where the parameters can be
xp x-coordinate
for aopt 1
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
39
yp y-coordinate
zp z-coordinate
ax x-component
ay y-component
az z-component
dx x-component
dy y-component
dz z-component
vx x-component
vy y-component
vz z-component
axes flag
where the flag can be
1
2
3
sc strength
xt strength
yt strength
yc strength
alpha parameter
beta list_angles ;
for aopt 1
for aopt 1
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 2
for aopt 3
for aopt 3
for aopt 3
for the default
for switch material axes a and b
for switch material axes a and c
Thermal Orthotropic Elastic With Variable Properties - Material type 23
ea ea_list ;
eb eb_list ;
ec ec_list ;
vba vba_list ;
vca vca_list ;
vcb vcb_list ;
aa aa_list ;
ab ab_list ;
ac ac_list ;
gab gab_list ;
gbc gbc_list ;
gca gca_list ;
t temperature_list ;
angles angle_list ;
aopt option parameters
for material orientation
where the option can be one of
0
for by nodes
1
for by point and element center
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
40
October 12, 2006
TrueGrid® Output Manual For DYNA3D
2
for by normal vectors
3
for by cross product with shell normal (shell elements only)
where the parameters can be
xp x-coordinate
for aopt 1
yp y-coordinate
for aopt 1
zp z-coordinate
for aopt 1
ax x-component
for aopt 2
ay y-component
for aopt 2
az z-component
for aopt 2
dx x-component
for aopt 2
dy y-component
for aopt 2
dz z-component
for aopt 2
vx x-component
for aopt 3
vy y-component
for aopt 3
vz z-component
for aopt 3
Rate-Dependent Tabular Isotropic Elastic-Plastic - Material type 24
e modulus
pr ratio
sigy stress
et modulus
efp strain
dtcrit time
lc load_curve
eps strain
es stress
Extended Two Invariant Geologic Cap - Material type 25
k modulus
g modulus
alpha parameters
theta coefficient
gamma coefficient
beta exponent
r ratio
d exponent
w coefficient
x0 parameter
cbar coefficient
n parameter
nplot option
where the options are
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
41
1
hardening variable, k
2
cap - j1 axis intercept, x(k)
3
volumetric plastic strain
4
first stress invariant, j1
5
second stress invariant, square root of j2
8
response mode number
9
number of iterations
ltype option
where the options are
1
soil or concrete (cap surface may contract)
2
rock (cap surface does not contract)
ivec option
where the options are
0
vectorization (fixed number of iterations)
1
fully iterative
t cutoff
Metallic Honeycomb - Material type 26
e modulus
pr ratio
sigy stress
sigaa load_curve
sigbb load_curve
sigcc load_curve
ssrv load_curve
crv volume
ea modulus
eb modulus
ec modulus
gab modulus
gbc modulus
gca modulus
Compressible Mooney-Rivlin Hyperelastic Rubber - Material type 27
a coefficient
b coefficient
pr ratio
Resultant Plasticity - Material type 28
e modulus
pr ratio
sigy stress
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
42
October 12, 2006
TrueGrid® Output Manual For DYNA3D
etan modulus
Closed-Form Update Elastic-Plastic For Shells - Material type 30
e modulus
pr ratio
sigy stress
etan modulus
Frazer-Nash Hyperelastic Rubber - Material type 31
g001 coefficient
g010 coefficient
g020 coefficient
g100 coefficient
g101 coefficient
g110 coefficient
g200 coefficient
g210 coefficient
g300 coefficient
g400 coefficient
ilimit option
where the option can be
0
to stop if strain limits are exceeded
1
to continue if strain limits are exceeded
stmx strain
stmn strain
Ramberg-Osgood Elastic-Plastic - Material type 32
gammay strain
tauy stress
alpha coefficient
r exponent
k modulus
General Anisotropic Elastic-Plastic - Material type 33
ea modulus
eb modulus
ec modulus
r coefficient
acp coefficient
qbc coefficient
qab coefficient
qac coefficient
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
43
prba ratio
prca ratio
prcb ratio
aopt option parameters
for material orientation
where the option can be one of
0
for by nodes
1
for by point and element center
2
for by normal vectors
3
for by cross product with shell normal (shell elements only)
where the parameters can be
xp x-coordinate
for aopt 1
yp y-coordinate
for aopt 1
zp z-coordinate
for aopt 1
ax x-component
for aopt 2
ay y-component
for aopt 2
az z-component
for aopt 2
dx x-component
for aopt 2
dy y-component
for aopt 2
dz z-component
for aopt 2
vx x-component
for aopt 3
vy y-component
for aopt 3
vz z-component
for aopt 3
sigya stress
beta angle
eap modulus
gbc modulus
gab modulus
gac modulus
npss substeps
epsap list_strain ;
sigmaya list_stress ;
Normal Anisotropic Elastic-Plastic For Shells - Material type 34
e modulus
pr ratio
sigy stress
etan modulus
r parameter
Elastic-Plastic With Forming Limit Diagram - Material type 35
e modulus
ifld option
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
44
October 12, 2006
TrueGrid® Output Manual For DYNA3D
where the option can be
1
for total
2
for incremental
3
for damage
pr ratio
lclh load_curve
lcrh load_curve
lcpx load_curve
lcedf load_curve
lcedm load_curve
sigy stress
scldev factor
etan modulus
beta parameter
ep list_strain ;
sigmay list_stress ;
Brittle Damage Model - Material type 36
e modulus
pr ratio
ft0 limit
fs0 limit
gc toughness
beta retention
nu viscosity
NOTE: The following material models are under development.
Three-Invariant Viscoplastic Cap Model - Material type 37
Bammann Plasticity Model - Material type 38
Snadia Damage Model - Material type 39
Fahrenthold Brittle Damage - Material type 40
Fabric with Damage - Material type 41
Multi-Material Shell Element Model - Material type 42
Transversely Isotropic Visco-Hyperelasticity - Material type 43
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
45
Rigid Foam - Material type 44
DTRA Concrete/Geological - Material type 45
Anisotropic Elastic - Material type 46
MIG - Material Interface Guide - Material type 47
Visco-Elastic with Statistical Crack Mechanics - Material 48
LANL Hyperfoam - Material type 49
Braided Composite Model with Damage - Material type 50
Uni-Directional Elasto-Plastic Composite - Material type 56
Uni-Directional Elasto-Plastic Composite - Material 62
Visco-Hyper Elastic - Material type 63
Steinberg-Guinan with 3-D Failure - Material 64
K&C Concrete/Geological - Material type 65
Brittle Damage Model with Power-law Plasticity - Material 70
Delamination Element Material Model
Cohesive Element Material Model
Remarks
You must be in the control phase to issue this command. When you first start TrueGrid® you are in
the control phase and it is convenient to issue this command at that time. However, one can return
to the control phase anytime using the control command.
Example
para
c sheet metal
e_stl
200.0e3
v_stl
0.33
yld_stl
207
c modulus of elasticity for steel
c poisson ratio for steel
c yield stress for steel
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
46
October 12, 2006
TrueGrid® Output Manual For DYNA3D
tan_stl
200
c tangent modulus for steel
den_stl
7.86e-9 ; c density of steel
dynamats 12 3 shell
e %e_stl pr %v_stl sigy %yld_stl etan %tan_stl
beta 0. rho %den_stl tsti 3;
dynamats 18 3 beam
e %e_stl pr %v_stl rho %den_stl sigy %yld_stl
etan %tan_stl beta 0.
bmcross 1 elfom hl sthi 25 tthi 10 quad 3 sloc 0 tloc 0 ;
dynamats 9 1 e 1 pr 0.35 ;
dynaopts
DYNA3D analysis options
dynaopts options
where any or all of the following options can be invoked:
iif interval
time interval between writes of the interface segment save file
stsm factor
minimum time step size for thin shell element using the
materials kinematic/isotropic elastic-plastic, strain rate
dependent elastic-plastic, or rate dependent tabular isotropic
elastic-plastic
rfpf flag
set the reaction force print flag
where the flag can be
0
no printing
1
reactions are printed
defpf flag
set the discrete (lumped parameter) element forces print flag
where the flag can be
0
no printing
1
forces in all elements are written
edsdf flag
set the element delete (SAND database flag)
where the flag can be
0
failed elements not deleted
1
failed elements deleted
2
triggers a debug run
10
same as 0 except failed shells not printed
11
same as 1 except failed shells not printed
12
same as 2 except failed shells not printed
gvst acceleration direction mat_1 mat_2 ... ;
initialize gravity stress
density_1 depth_1 density_2 depth_2 ... ;
stat interval
number of steps between problem status reports (default
1000)
yldb yield
brode function yield in ktons
hiteb distance
brode function height of burst
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
47
xb0 x
yb0 y
zb0 z
tb0 time
lcb1 load_curve
model x-coordinate of brode origin
model y-coordinate of brode origin
model z-coordinate of brode origin
model time of brode time origin
brode function arrival versus range load curve relative to
brode origin
lcb2 load_curve
brode function yield scaling versus time load curve relative to
brode
clb factor
brode function conversion factor kft to DYNA3D length units
ctb factor
brode function conversion factor milliseconds to DYNA3D
time units
cpb factor
brode function conversion factor psi to DYNA3D pressure
units
ticsf interval
time interval between output cross section forces
ngrav x_acceleration load_curve prescribed base acceleration
y_acceleration load_curve
z_acceleration load_curve
xvel x_velocity load_curve angular velocity about the x-axis
yvel y_velocity load_curve angular velocity about the y-axis
zvel z_velocity load_curve angular velocity about the z-axis
term time
termination time
prti interval
time interval between writes of time history node and element
print block plot data
plti interval
time interval between writes of state plot database for all
nodes and elements and, optionally, the interface force
database containing pressures and shear traction for all sliding
interfaces
nrest time_step
number of time steps between writes of the saved restart files
nrunr time_step
number of time steps between writes of the continuously
overwritten running restart file
itss time_step
initial time step size
pnlt factor
global scale factor for sliding interface penalty stiffness
controlling inter-penetration and stability (default 0.1)
teo load_curve
thermal effects option
where a non-positive value for load_curve means
0
no thermal effects
-1
nodal temperatures in TOPAZ3D generated plot files
-2
nodal temperatures use temperature option 2
-3
TOPAZ3D coupling
-4
nodal temperatures use temperature option2; subsequent
temperature history are defined in TOPAZ3D generated plot
files.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
48
October 12, 2006
TrueGrid® Output Manual For DYNA3D
nodal temperatures use temperature option 1
time step scale factor (default is 0.67 for high explosives, 0.90
otherwise)
lcmax load_curve
load curve number that limits maximum time step size
(optional)
ssdm
write shell strain tensor at inner and outer surface
snrs option
Hughes-Liu shell normal update option
where option is the number of time steps between computations or
-2
unique nodal fibers
-1
compute normals each time step
1
compute on restarts
n
compute every n steps
stup
shell thickness change due to membrane straining
sfor option
default shell element formulation
where the option can be
hl
Hughes-Liu
bt
Belytschko-Tsay
bciz
triangle
c0
triangle
membrane
yase
yase2
YASE with full in-plane integration
bd
Bath-Dvorkin (full integration)
blt
Belytschko-Lin-Tsay with selective-reduced integration
tsmin factor
reduction factor for initial time step size to determine minimum time step size. When this minimum time step is reached,
DYNA 3D terminates with a restart dump.
itrx #_iterations
number of iterations between convergence checks for dynamic relaxation in quasi-static problems (default 250)
tolrx tolerance
convergence tolerance for dynamic relaxation option (default
0.0001)
facrx factor
dynamic relaxation static analysis velocity reduction factor
(default 0.995)
scftrx factor
scale factor for computed time step during dynamic relaxation
stss option
alternative methods for approximating the maximum stable
time step size for 4-node shell elements
where the option can be
0
characteristic length is area/longest side
1
characteristic length is area/longest diagonal
2
based on bar wave, shortest side, area/longest side
plas option
plane stress constitutive integration algorithms for elastoplast
ic shell material models
-9999
tssf factor
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
49
where the option can be
1
2
3
prtflg
drdb
rayl alpha
ihq option
where the option can be
1
2
3
4
5
6
7
8
9
10
12
qh coefficient
q1 coefficient
q2 coefficient
iterative plasticity with 3 secant iterations
full iterative plasticity
stress scaling non-iterative plasticity
print element time step sizes on the first cycle
write the taurus database at every convergence check during
dynamic relaxation
global generalized Rayleigh damping mass proportional
coefficient
select an hourglass stabilization method
standard DYNA3D (viscous form)
Flanagan-Belytschko (viscous form)
Flanagan-Belytschko with exact volume integration (viscous
form)
stiffness with Flanagan-Belytschko
stiffness with Flanagan-Belytschko with exact volume
bricks: selective-reduced 8-point hexahedral element (B-bar)
shells: viscous form type 2 and stiffness form type 3
bricks: physical stabilization (models 1, 40, 56 & 62 only)
total displacement physical stabilization (models 2, 7, 21, 23,
27, 31, 43, 46, 60 & 63 only)
bricks: physical stabilization - exact volume (models 1, 40, 56
& 62 only)
bricks: total displacement physical stabilization - exact
volume (models 2, 7, 21, 23, 27, 31, 43, 46, 60 & 63 only)
bricks: fully integrated, 8-pt. hexahedral element
hourglass stabilization coefficient
quadratic bulk viscosity coefficient for added stability and
resolution with shock waves
linear bulk viscosity coefficient for added stability and
resolution with shock waves
NOTE: The following options are under development.
debug
ndacc
drstep steps
DYNA3D places various debug information into the plot files
and terminates.
high accuracy coordinates for MILI plot data
maximum time steps allowed in dynamic relaxation phase.
Execution ends or switches to transient phase after this step
limit is reached regardless of convergence.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
50
October 12, 2006
TrueGrid® Output Manual For DYNA3D
drtime time
hgmodes modes
iforce
irestt flag
where flag can be
0
1
2
mili file_name
normck flag
where flag can be
0
1
2
numrrf n
pressure_display
reaction_force_out
rotational_vel_out
smp_dynamic smp
where smp can be
0
1
taurus_plot off
threads threads
zero_init_vol vol
ptsming ptsming
Maximum time allowed in dynamic relaxation phase. Execution ends or switches to transient phase after this time limit is
reached regardless of convergence.
Select the number of enhanced modes used in the physically
stabilized brick element hourglass control (default=3). Modes
can either be 3 or 6. This feature only applies to material
models 3, 4, and 18 when hourglass type 7 or 9 are used.
activate the interface force output
start time designation
simulation start time is set to 0. This is used for most cases.
simulation start time is set to the time recorded in the stress/
deformation initialization file.
same as 1, but also read the initial time step from the stress/
deformation initialization file.
family name of MILI format output files
check for consistent slide surface normals
slide surface normals are not checked.
consistency check is performed and warning is printed if
inconsistent normals are detected
consistency check is performed and program terminates if
inconsistent normals are detected
Number of running restart data dumps maintained
Activate the external pressure display for segments listed in
the Pressure Loads section
Activate the nodal reaction forces output into the MILI plot
database.
Activate the rotational velocity/displacement output
Assign number of SMP processors used statically or dynamically
Static - always use threads number of processors during run
Dynamic - use threads or less number of processor during run
to instantaneously maximize use of system resources.
Disable the TAURUS state plot output.
Number of shared-memory processors to use
On initialization, reset the relative volume of brick elements
to unity when an element’s initial volumetric strain (in
absolute value) is less than vol
Default time-step size factor for element deletion
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
51
where ptsming can be
0
greater than 0
Option inactive
Elements with non-zero ptsming will be deleted when their
time-step size becomes less than ptsmin times the initial
global time-step size. Brick elements will also be deleted
when their volume becomes non-positive.
tsming tsming Default time-step size for element deletion
where tsming can be
0
Option inactive
greater than 0
Elements with non-zero tsmins will be deleted when their
time-step size becomes less than tsmin. Brick elements will
also be deleted when their volume becomes non-positive.
ascii_output_file filename Rename the ASCII output file filename
rigid_wall irigid
Print all rigid-wall normal forces to FORCES file
where irigid can be
0
No forces print to file
1
Forces printed to file
verbose_hsp
Generate verbose input and initialization data in hsp file
pencfile file_name
PENCRV3D input file in a DYNA3D-PENC RV 3D analysis.
penhnose hnose
define the PENCRV3D nose height
pen_off off_time
turn off PENCRV3D when the analysis time exceeds off_time
pennose node_num
Designate node_num as the nose tip of the projectile in a
DYNA 3D PENC RV3D analysis.
pensym sym
fraction of the penetrator represented by the mesh
pentail node_num
centroid of the projectile tail in a DYNA3D PENCRV3D
analysis
beamfile file_name
Name of the file that contains beam element definitions
brickfile file_name
Name of the file that contains hex element definitions
include* file_name
Name of new input file to be read from.
infree file_name
Name of the file that contains auxiliary keyword definitions.
loadcurvefile file_name
Name of the file that contains the load curve definitions
matfile file_name
Name of the file that contains material definitions
nikefile file_name
Name of the stress/deformation file to be created at the end of
either a regular or restart analysis.
nodefile file_name
Name of the file that contains nodal definitions
pressurefile file_name
Name of the file that contains pressure definitions
shellfile file_name
Name of the file that contains shell element definitions
slidefile file_name
Name of the file that contains the sliding interface definitions
tshellfile file_name
Name of the file that contains thick shell element definitions
velofile file_name
Name of the file that contains the initial nodal velocity
definitions
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
52
October 12, 2006
TrueGrid® Output Manual For DYNA3D
ptsmin_ex ptsmin mat_list ; Set ptsmin for all other material numbers except those in the
list
ptsmin_in ptsmin mat_list ; Set ptsmin for materials in the list
tsmin_ex tsmin mat_list ;
Set tsmin for all other material numbers except those in the
list
tsmin_in tsmin mat_list ;
Set tsmin for materials in the list
verbose_hsp
Generate verbose input and initialization data in hsp file
rigid_wall irigid
Print all rigid-wall normal forces to FORCES file
where irigid can be
0
No forces print to file (default).
1
Forces printed to file.
dump_times llist_times ;
write a restart file after the analysis reaches a time in the list
dt_plot dt_list ;
write a plotfile for each time step
fdt_plot fdt_list ;
write a plotfile for each factor multiplied by the time step in
dt_plot
group_velocity_ex mat_list ;
Include in the MILI time-history and plot files the
mass averaged velocity or this group of materials.
group_velocity_in mat_list ;
Include in the MILI time-history and plot files the
mass averaged velocity for this group of materials.
mat_sv_ex mat_list ; name_list ;
Alter which material model dependent state variables
and peak derived variables are included in the plotfile
for all brick-element materials in the model except for
the materials in the list
mat_sv_in mat_list ; name_list ;
Alter which material model dependent state variables
and peak derived variables are included in the plotfile
for the materials in the list
max_mises
Track the maximum value of the von Mises stress
with time.
min_press
Track the minimum value of the pressure with time.
max_press
Track the maximum value of the pressure with time.
min_prin1
Track the minimum value of the 1st principle stress with time.
max_prin1
Track the maximum value of the 1st principle stress with time.
min_prin3
Track the minimum value of the 3rd principle stress with time.
max_prin3
Track the maximum value of the 3rd principle stress with time.
plotall
Select all state variables for this material model to be included in
plotfile for the current material number chosen.
plotno state_variable_name
Exclude the variable from the plotfile for the current
material chosen.
plotnone
Exclude all state variables from the plotfile for the current material
chosen.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
53
nip_thickness num
For elements with more than one integration point, determine the
number of integration points data is output for. For hex elements, the
num is limited to 1 or the actual number of integration points.
nip_inplane num
For multiple in-the-plane integrated shell & beam elements, output
data at num in-plane locations. The number num is limit to 1 or the
actual number of in-plane integration points.
maxpfile file_name mat_list ;
Write the maximum pressure for the materials in the
list at the time history output frequency to a text file.
pencvmat lst
Provide a list of materials that are included in the projectile in a
DYNA3D PENCRV3D analysis. Listed materials must only be
associated with elements that are part of the projectile.
where lst can be
list mat_list ;
List of materials must be provided.
exclude mat_list ;
List of excluded materials must be provided.
all
All materials are considered as part of the projectile.
cavity_expansion load_curve
Initialize a new cavity expansion model and designate
the pressure segments associated with the load curve
as belonging to this model.
cavity0 c0
First cavity expansion coefficient for the current layer
cavity1 c1
Second cavity expansion coefficient for the current layer
cavity2 c2
Third cavity expansion coefficient for the current layer
cavitycyl
cylindrical cavity expansion idealization for the present C.E. model.
fscale fscale
current layer
load_curve lc_num start_time
load curve to scale the C.E. pressures.
normal nx ny nz
normal of the target surface
pen_off off_time
turn off this cavity expansion model when the analysis time exceeds
off_time
pennose node_num tip node of the body in this cavity expansion model.
pentail node_num
tail node of the body in this cavity expansion mode.
point_fs px py pz
reference point lies on the upper surface of the target’s top layer
sc_radius rad
minimum spherical/cylindrical radius
spherical
spherical cavity expansion idealization for the present C.E. model.
thickness thick
thickness of the current layer
velocity_min velmin velocity cutoff used in calculating the C. E. pressures
velocity_trans veltrans
transition velocity used in calculating the optional decay
factor
closed_volume law cutoff ld_curve pressure power plane node
pressure loads associated with load curve are determined by the gas
pressure in a closed volume.
where law can be
ideal_gas
The current pressure is computed
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
54
October 12, 2006
TrueGrid® Output Manual For DYNA3D
cutoff
Negative pressure cutoff. Only positive pressure (compression) is allowed on associated element facets.
Both positive and negative pressures are admissible.
no_cutoff
where plane can be
x
Project the closed volume to a plane normal to the global x-axis for
volume calculation.
y
Project the closed volume to a plane normal to the global y-axis for
volume calculation.
z
Project the closed volume to a plane normal to the global z-axis for
volume calculation.
any
Project the closed volume to an arbitrary plane for volume calculation.
where node can be
any
DYNA3D chooses the node to define the plane of projection.
n
Plane of projection passes through node n. n must be a positive
integer.
dam_base direction coordinate
must be used ifWestergaard hydrodynamic pressure is
present in the Pressure Loads section
where direction can be
+x
-x
+y
-y
+z
-z
free_surface direction coordinate must be used if hydro static/hydrodynam ic pressure
is present in the Pressure Loads section
where direction can be
+x
-x
+y
-y
+z
-z
gravity g
acceleration of gravity, g, for hydrostatic or hydrodynamic
pressure calculation use.
hydro_density rho
water (or other fluid) density for hydrostatic or hydrodynamic
pressure calculation use
hydro_cutoff switch
hydrodynamic pressure
where switch can be
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
55
the hydrodynamic pressure will be set to zero if the instantaneous base acceleration generates negative pressure according
to the Westergaard’s formula
off
default
shear_traction ld_curve option
Designate the pressure loads associated with Load
Curve to be applied in a tangential direction instead of
the segment normal direction.
where the tangential direction is controlled by option
local_r
tangential traction is applied in direction of local r-direction
local_s
tangential traction is applied in direction of local s-direction
aux_vector x y z
tangential traction is applied in a direction that is determined
by the segment normal vector and an auxiliary vector.
aux_nodes x y z
tangential traction is applied in a direction that is determined
by the segment normal vector and an auxiliary vector
weibull mat
Calculate the Weibull statistic probability of failure (volume
based) for material
wistrength value
specify the strength value as for the current Weibull material
definition.
wiexponent m
specify the exponent value as m for the current Weibull
material definition.
wigamma offset
specify the optional offset value of for the current Weibull
material definition.
on
Remarks
This commands sets parameters that are found in the control cards for the DYNA3D input file
format.
You must be in the control phase to issue this command. When you first start TrueGrid® you are in
the control phase and it is convenient to issue this command at that time. However, one can return
to the control phase anytime using the control command.
All keywords that have one indentation from the left are keyword options to this command. Many
of these keywords are followed by additional data. If the additional data is one of several options,
those options are further indented. Each further indentation indicates a set of options to the keyword
above the list.
For example, the iif option must be followed by a number that is the factor. The sfor option must
be followed by one of hl, bt, bciz, c0, membrane, yase, yase2, bd, or blt.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
56
October 12, 2006
TrueGrid® Output Manual For DYNA3D
This command can be issued to set just one option or it can continue with as many options as desired
until this list of options is terminated with a semi-colon. This command can be issued as many times
as desired.
Because of the complexity of this command, it is advised that you use the dialogue box to select the
options you require. The execution of the dialogue box will produce a command that follows the
syntax above. Since this command will automatically be saved in the session file for future reruns,
one can use this description of the command to make modifications to the options without having
to use the dialogue box interactively.
Example
dynaopts term 1. velocity 0. 0. 0. plti 1.
prti 1. nrest 20000 nrunr 1000 ;
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
57
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
58
October 12, 2006
TrueGrid® Output Manual For DYNA3D
IV. Frequently Asked Questions
1. How do I create an output deck for DYNA3D?
Go to the merge phase, issue a merge command, such as stp, issue the dyna3d command followed
by the write command.
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
59
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
60
October 12, 2006
TrueGrid® Output Manual For DYNA3D
V. INDEX
a . . . . . . . . . . . . . . . . . . . . . . . . 26, 35, 36, 42
Acc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9
Accc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Accci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Acceleration . . . . . . . . . . . . . . . . . . . 9, 10, 48
prescribed . . . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Acci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Accs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Accsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
alpha . . . . . . . . . . . . . . . . . . 28, 33, 40, 41, 43
angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Angular velocity . . . . . . . . . . . . . . . . . . . . . 48
Anisotropic . . . . . . . . . . . . . . . . . . . . . . 11, 12
aopt . . . . . . . . . . . . . . . . . . . . . . 32, 38, 39, 44
Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Arri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Automatic contact . . . . . . . . . . . . . . . . . . . 22
ax . . . . . . . . . . . . . . . . . . . . . . . 33, 39-41, 44
ay . . . . . . . . . . . . . . . . . . . . . . . 33, 39-41, 44
az . . . . . . . . . . . . . . . . . . . . . . . 33, 39-41, 44
b . . . . . . . . . . . . . . . . . . . . 5, 8, 26, 34, 36, 42
Base acceleration . . . . . . . . . . . . . . . . . . . . 48
Base accelerations . . . . . . . . . . . . . . . . . . . . 6
Bb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
make . . . . . . . . . . . . . . . . . . . . . . . . . 7
Bciz . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 49
be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
beam . . . . . . . . . . . . . . . . . . . . . . 5, 12, 13, 31
beam cross section . . . . . . . . . . . . . 21
Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Belytschko-Schwer . . . . . . . . . . . . . . . 20, 31
beta . . . . . . . . . . . . . 28, 33, 34, 39-41, 44, 45
Bi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 8
Bind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 13
Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6
Block boundary . . . . . . . . . . . . . . . . . . . . . . 7
Bm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 12
beam cross section . . . . . . . . . . . . . 21
Bmcross . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Body force
material . . . . . . . . . . . . . . . . . . . . . . 7
Bold
syntax . . . . . . . . . . . . . . . . . . . . . . . . 5
Boundary conditions . . . . . . . . . . . . . . . . 5, 8
nonreflecting . . . . . . . . . . . . . . . . . . 6
si . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Brick elements . . . . . . . . . . . . . . . . . . . . . . . 6
Bricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Brode . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 48
Brode functions . . . . . . . . . . . . . . . . . . . . . . 6
Bsd . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 13, 19
Bt . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 31, 49
C0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 49
Carea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Clb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Co . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 8
si . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Concentrated loads . . . . . . . . . . . . . . . . . 9, 10
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
si . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Constitutive . . . . . . . . . . . . . . . . . . . . . . . . 49
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Contact Surface . . . . . . . . . . . . . . . . . 5-7, 21
1D . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
faces . . . . . . . . . . . . . . . . . . . . . . . . . 8
gap . . . . . . . . . . . . . . . . . . . . . . . . . . 8
graphics . . . . . . . . . . . . . . . . . . . . . . 8
initial penetration . . . . . . . . . . . . . . . 8
merged nodes . . . . . . . . . . . . . . . . . . 8
mesh density . . . . . . . . . . . . . . . . . . . 8
orientation . . . . . . . . . . . . . . . . . . . . 8
penalty . . . . . . . . . . . . . . . . . . . . . . 48
replication . . . . . . . . . . . . . . . . . . . . 8
sets . . . . . . . . . . . . . . . . . . . . . . . . . . 8
table . . . . . . . . . . . . . . . . . . . . . . . . . 8
type . . . . . . . . . . . . . . . . . . . . . . . . . . 7
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Contact surfaces
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
61
sii . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Control cards . . . . . . . . . . . . . . . . . . . . . 5, 56
Control phase . . . . . . . . . . . . . . . . . 30, 46, 56
Convergence . . . . . . . . . . . . . . . . . . . . . . . . 49
Cpb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Cross section . . . . . . . . . . . . . 5, 6, 11-13, 48
crushed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Csf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ctb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6
d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 41
Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Data base . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Database . . . . . . . . . . . . . . . . . . . . . 14, 47-50
Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Defpf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Detonation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Detp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Dialogue box
sid . . . . . . . . . . . . . . . . . . . . . . . . . . 22
spd . . . . . . . . . . . . . . . . . . . . . . . . . 26
Displacement . . . . . . . . . . . . . . . . . . . . . . . 10
Displacements
prescribed . . . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Distributed loads . . . . . . . . . . . . . . . . . . 9, 10
Dom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Drdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Drtflg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Dummy interface . . . . . . . . . . . . . . . . . . . . 22
Dyna3D . . . . . . . . . . . . . . . . . . . 7, 26, 30, 47
Dynaeos . . . . . . . . . . . . . . . . . . . . . . . . . 5, 26
Dynamats . . . . . . . . . . . . . . . . . . . . . . . . . . 30
beam cross section . . . . . . . . . . . . . 21
Dynamic relaxation . . . . . . . . . . . . . . . 49, 50
Dynaopts . . . . . . . . . . . . . . . . . . . . . . 5, 6, 14
analysis option . . . . . . . . . . . . . . . . 47
e . . . . . . . . . . . . . . . . . . 32, 33, 36, 38, 41-44
ea . . . . . . . . . . . . . . . . . . . . 32, 38-40, 42, 43
eb . . . . . . . . . . . . . . . . . . . . 32, 38-40, 42, 43
Edsdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Elastoplastic . . . . . . . . . . . . . . . . . . . . . . . . 49
Element
delete . . . . . . . . . . . . . . . . . . . . . . . 47
sand . . . . . . . . . . . . . . . . . . . . . . . . 47
Element forces . . . . . . . . . . . . . . . . . . . . . . 47
Element history . . . . . . . . . . . . . . . . . . . . . . 6
Element type . . . . . . . . . . . . . . . . . . . . . . . 49
Elfom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Elfor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
EOS
Energy deposition . . . . . . . . . . 26, 28
Gruneisen . . . . . . . . . . . . . . . . . 26, 27
Ignition and growth . . . . . . . . . 26, 28
JWL . . . . . . . . . . . . . . . . . . . . . . . . 26
Linear Polynomial . . . . . . . 26, 27, 29
pore collapse . . . . . . . . . . . . . . 26, 29
Ratio of polynomials . . . . . . . . 26, 27
Sack . . . . . . . . . . . . . . . . . . . . . 26, 27
tabulated . . . . . . . . . . . . . . . . . . 26, 29
tabulated w/ compaction . . . . . 26, 29
Epb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 14
Equation of state . . . . . . . . . . . . . . . . . . . . . 5
Experimental material . . . . . . . . . . . . . . . . 32
Extra nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Face sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Facrx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 14
Fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
Fcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fcci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fcsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 10
Fdc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fdci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Ffc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fields, Richard . . . . . . . . . . . . . . . . . . . . . . 15
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
62
October 12, 2006
TrueGrid® Output Manual For DYNA3D
Flcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 11
Fmom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Fni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Follower force . . . . . . . . . . . . . . . . . . . . . . 10
Follower forces . . . . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Force . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 48
Force output . . . . . . . . . . . . . . . . . . . . . . . . . 6
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Frb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 10
Frbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Fset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Fv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
Fvc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 10
Fvvc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvvci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvvs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fvvsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
g . . . . . . . . . . . . . . . . . . . . . . . . 28, 33-37, 41
gab . . . . . . . . . . . . . . . . . . . 32, 39, 40, 42, 44
gama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Gravity stress initialization . . . . . . . . . . . . . 6
Grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Gsii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Gvst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Hexahedral . . . . . . . . . . . . . . . . . . . . . . . . . 11
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Hiteb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Hl . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 31, 49
Hour glass . . . . . . . . . . . . . . . . . . . . . . . . . 50
Hughes-Lui . . . . . . . . . . . . . . . . . . . . . . 20, 31
Ibm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 12
beam cross section . . . . . . . . . . . . . 21
Ibmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
beam cross section . . . . . . . . . . . . . 21
Iff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Ihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Iif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Indentation . . . . . . . . . . . . . . . . . . . . . . . . . 56
Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Initial velocity . . . . . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Integration . . . . . . . . . . . . . . . . . . . . . . . . . 49
Integration points . . . . . . . . . . . . . . . . . 12, 13
Integration rules . . . . . . . . . . . . . . . . . . . . . . 5
Interface saved segment . . . . . . . . . . . . . . . 47
Interface saved segments . . . . . . . . . . . . . . . 6
Irr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Iss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 20
Italicized
syntax . . . . . . . . . . . . . . . . . . . . . . . . 5
Itrx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Itss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Itt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Jbm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 12
beam cross section . . . . . . . . . . . . . 21
Jbmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
beam cross section . . . . . . . . . . . . . 21
Jd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
Jt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
Kbm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 12
beam cross section . . . . . . . . . . . . . 21
Kbmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
beam cross section . . . . . . . . . . . . . 21
Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Lcb1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Lcb2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Lcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 11
Lcmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Load curve . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Load curves . . . . . . . . . . . . . . . . . . . . . . . . 11
Local constraints . . . . . . . . . . . . . . . . . . . . . 8
Local system . . . . . . . . . . . . . . . . . . . . . . . . . 8
Lrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Lsii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Lsys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
63
Make BB . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mass points . . . . . . . . . . . . . . . . . . . . . . . . . 6
Mate . . . . . . . . . . . . . . . . . . . . . . . . . 5, 11, 12
Material
coordinate system . . . . . . . . . . . 11, 12
Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
body force . . . . . . . . . . . . . . . . . . . . 7
rotation . . . . . . . . . . . . . . . . . . . . . . . 6
max . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-36
Mbb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mdep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Membrane . . . . . . . . . . . . . . . . . . . . 6, 30, 49
Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
dummy interface . . . . . . . . . . . . . . 22
nodes . . . . . . . . . . . . . . . . . . . . . . . . 7
Merged nodes . . . . . . . . . . . . . . . . . . 8, 13, 14
Mesh density . . . . . . . . . . . . . . . . . . . . . . . . 8
Mns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Mom . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
Moments . . . . . . . . . . . . . . . . . . . . . . . . 9, 10
Momentum
deposition . . . . . . . . . . . . . . . . . . . . . 6
Momi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
Mt . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 11, 12
Mti . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 11, 12
Multiple constraints . . . . . . . . . . . . . . . . . . . 6
Multiple point constraints . . . . . . . . . . . . . 13
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 12
shell orientation . . . . . . . . . . . . . . . . 5
Ndl . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
Ndli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Ngrav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
NIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Nodal constraints . . . . . . . . . . . . . . . . . . . . . 5
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Nodal forces . . . . . . . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Nodal history . . . . . . . . . . . . . . . . . . . . . . . . 6
Node set . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Node sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Non-reflecting . . . . . . . . . . . . . . . . . . . . . . . 8
Nonreflecting boundaries . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Normal vector . . . . . . . . . . . . . . . . . . . . . . 12
Npb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 14
Npm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
Nr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 8
Nrest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Nri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 8
Nrunr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Nset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 13
Nseti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
omega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Or . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 11, 12
Orientation . . . . . . . . . . . . . . . . . 8, 11, 12, 21
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Orpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Orthotropic . . . . . . . . . . . . . . . . . . . . . . 11, 12
Outout format . . . . . . . . . . . . . . . . . . . . . . . . 7
Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 8, 11
Plane strain . . . . . . . . . . . . . . . . . . . . . . . . . 49
Plas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Plot data . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Plti . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 48
Pm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
Pnlt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Point mass . . . . . . . . . . . . . . . . . . . . . . . . . 13
Point masses . . . . . . . . . . . . . . . . . . . . . . . . . 6
Post processing . . . . . . . . . . . . . . . . . . . . . . 14
Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
Pramp . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
Prescribed . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pressure . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Print flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Prism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Propt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Prtflg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Prti . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 48
Pslv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Q2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
64
October 12, 2006
TrueGrid® Output Manual For DYNA3D
Qh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
quad . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-32
Rayl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Reaction force . . . . . . . . . . . . . . . . . . . . . . 47
Readmesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Rebar
sliding . . . . . . . . . . . . . . . . . . . . . . . 22
Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Replication . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Rfpf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Rho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Rigbm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . 6
inertia . . . . . . . . . . . . . . . . . . . . . . . . 6
Rigid body . . . . . . . . . . . . . . . . . . . . . . . . . 13
Rigid walls . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Rotation . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 10
material . . . . . . . . . . . . . . . . . . . . . . 6
Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Sarea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Scftrx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Set ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Sfb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Sfor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Shared constraints . . . . . . . . . . . . . . . . . 6, 13
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
shear . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-32
Shear area . . . . . . . . . . . . . . . . . . . . . . . . . . 20
shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 30
Shell elements . . . . . . . . . . . . . . . . . . . . . . 49
Shell normal . . . . . . . . . . . . . . . . . . . . . . . . 49
Shell orientation . . . . . . . . . . . . . . . . . . . . . . 5
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Shell strain . . . . . . . . . . . . . . . . . . . . . . . . . 49
Shell thickness . . . . . . . . . . . . . . . . . . . . 5, 49
Shell type . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Shloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Shth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Shth1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Shth2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Shth3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Shth4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Si . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6, 8, 23
sid . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Sid . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 7, 21
with si and sii . . . . . . . . . . . . . . . . . 22
Sii . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6, 8, 23
Siid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Sind . . . . . . . . . . . . . . . . . . . . . . . . . 5, 12, 31
Single point constraintsts . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Slide lines . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Sliding boundary planes . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Sliding interface . . . . . . . . . . . . . . . . . . . . . 21
display . . . . . . . . . . . . . . . . . . . . . . 23
dummy interface . . . . . . . . . . . . . . 22
si . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
sii . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Sliding Surface . . . . . . . . . . . . . . . . . . . . . 5-7
1D . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
faces . . . . . . . . . . . . . . . . . . . . . . . . . 8
gap . . . . . . . . . . . . . . . . . . . . . . . . . . 8
graphics . . . . . . . . . . . . . . . . . . . . . . 8
initial penetration . . . . . . . . . . . . . . . 8
merged nodes . . . . . . . . . . . . . . . . . . 8
mesh density . . . . . . . . . . . . . . . . . . . 8
orientation . . . . . . . . . . . . . . . . . . . . 8
penalty . . . . . . . . . . . . . . . . . . . . . . 48
replication . . . . . . . . . . . . . . . . . . . . 8
sets . . . . . . . . . . . . . . . . . . . . . . . . . . 8
table . . . . . . . . . . . . . . . . . . . . . . . . . 8
type . . . . . . . . . . . . . . . . . . . . . . . . . . 7
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Sloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Snrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Solid to shell . . . . . . . . . . . . . . . . . . . . . . . . 6
spall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Spd . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13, 25
Spdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
spd . . . . . . . . . . . . . . . . . . . . . . . . . 26
Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
properties . . . . . . . . . . . . . . . . . . . . 25
spd . . . . . . . . . . . . . . . . . . . . . . . . . 26
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
65
Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ssdm . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 49
Ssf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Ssfi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Stabilization . . . . . . . . . . . . . . . . . . . . . . . . 50
stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Statis reports . . . . . . . . . . . . . . . . . . . . . . . . 47
Sthi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 31
Sthi1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 31
Sthi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 31
Stone wall . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Stone walls . . . . . . . . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Stp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
dummy interface . . . . . . . . . . . . . . 22
Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Stsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Stss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Stup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Surface constraint . . . . . . . . . . . . . . . . . . . . . 8
Sw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 11
Swi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 11
Syf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 6, 8
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Symmetry w/ failure . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
T .................................. 7
dummy interface . . . . . . . . . . . . . . 22
Tb0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
Tei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
temp . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13, 33
Temperature . . . . . . . . . . . . . . . . . . . . . . 6, 13
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Teo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Tepro . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13
term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Termination . . . . . . . . . . . . . . . . . . . . . . . . 48
Tetrahedral . . . . . . . . . . . . . . . . . . . . . . . . . 11
Th . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6, 12
Thermal effects . . . . . . . . . . . . . . . . . . . . . 48
Thi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thick shells . . . . . . . . . . . . . . . . . . . . . . 5, 12
Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . 12
beam . . . . . . . . . . . . . . . . . . . . . . . . 19
Ticsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Tie-breaking . . . . . . . . . . . . . . . . . . . . . . . . . 6
Tied contact . . . . . . . . . . . . . . . . . . . . . . . . 21
Tied nodes . . . . . . . . . . . . . . . . . . . . . . . 6, 14
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
Time history . . . . . . . . . . . . . . . . . . . 6, 14, 48
Time interval . . . . . . . . . . . . . . . . . . . . . . . 48
Time stamp . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Time step . . . . . . . . . . . . . . . . . . . . 47, 49, 50
Time steps
initial . . . . . . . . . . . . . . . . . . . . . . . 48
restart file . . . . . . . . . . . . . . . . . . . . 48
saved restart file . . . . . . . . . . . . . . . 48
Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Tloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
tmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Tolrx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Tp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
dummy interface . . . . . . . . . . . . . . 22
Truss . . . . . . . . . . . . . . . . . . . . . . . . . 5, 20, 31
Tshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Tsmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Tssf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Tsti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Tthi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 31
Tthi1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 31
Tthi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 31
US Dept. Commerce . . . . . . . . . . . . . . . . . 15
Vacc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Vaccc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Vaccci . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Vacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Vaccs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Vaccsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Variable acceleration . . . . . . . . . . . . . . . . . 10
Variable thickness . . . . . . . . . . . . . . . . . . . 12
Variable velocity . . . . . . . . . . . . . . . . . . 9, 10
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
66
October 12, 2006
TrueGrid® Output Manual For DYNA3D
Ve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9
Vei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Velocities . . . . . . . . . . . . . . . . . . . . . . . . 9, 10
Velocity . . . . . . . . . . . . . . . . . . . . 6, 9, 48, 49
prescribed . . . . . . . . . . . . . . . . . . . . . 6
view . . . . . . . . . . . . . . . . . . . . . . . . . 7
virgin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Xb0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Xvel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Yase . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 49
Yb0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Ylbd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Yvel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Zb0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Zvel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights Reserved
TrueGrid® Output Manual For DYNA3D
October 12, 2006
67