Download Tender - Egyptian Association for Energy and

Transcript
Egyptian Association for
Energy and Environment (EAEE)
EgyptianAssociationforEnergyandEnvironment(EAEE)
CALLFORTENDER
Design,Supply,Delivery,Installation
andCommissioningof79.2kWpGrid–
ConnectedSolarPhotovoltaicSystems
inMatrouhGovernorate
ClosingDate: 17-02-2015
Address:Engineeringtowerno.3,28th floor,CornishElMaadi, Cairo,Egypt
Telephone:+(202)25266038
e-mail:[email protected]
Egyptian Association for
Energy and Environment (EAEE)
Contents
1Purpose............................................................................................................................................................
3
2.ProjectTitle…..……………………....................................................................................................................
3
3GeneralTermsandConditions.....................................................................................................................
4
3.1Termofreference........................................................................................................................................
4
3.2Tendertimeplan.........................................................................................................................................
5
3.3TenderBond.................................................................................................................................................
6
3.3.1Bidbond....................................................................................................................................................
6
3.3.2Performanceguaranteebond..............................................................................................................
6
3.3.3MaintenanceandOperationalguaranteebond...............................................................................
7
3.4DocumentsComprisingtheBid………………………………………………………………..…………….………
7
3.5BidOpening………………………………………………………………………………………………………….…….…
7
4Offerformat.....................................................................................................................................................
10
4.1Technicaloffer.............................................................................................................................................
10
4.2Financialoffer..............................................................................................................................................
11
5.EvaluationCriteria......................................................................................................................................
12
5.1EvaluationStep1:Quali icationsandgeneralrequirements: .......................................................
12
5.2EvaluationStep2:Technicalevaluation(outof70marks):...........................................................
12
5.3Evaluationstep3:Financialevaluation(outof30marks):.............................................................
13
6MethodofPayment(TermofPayment).................................................................................................
14
7Systemoperationperformancetesting...................................................................................................
14
8Penalties..........................................................................................................................................................
15
9Annexes...........................................................................................................................................................
15
ListofTables
Table1:Tendertimeplan.............................................................................................................................
5
Table2:Technicalevaluationcriteria......................................................................................................
13
Table3:Financialevaluationcriteria......................................................................................................
14
Egyptian Association for
Energy and Environment (EAEE)
Design,Supply,Delivery,Installation
andCommissioningof79.2kWpGrid–
ConnectedSolarPhotovoltaicSystems
CallForTenders
1. Introduction
The Egyptian Association for Energy and Environment (EAEE) isimplementing a
projectfundedbytheEuropeanUnion-ENPICBCMED-crossbordercooperationat
theMediterranean,titled "Developing andImplementingDecentralizedInnovative
Solar Energy Technologies in Public Building (DIDSOLIT-PB) " where as the
projectaimsto:
 Transferup-to-date- solarenergyusestechnologies
 Transform the governorate's public buildings into energy saving buildings
through the installation of developed solar systems that generate energy of
totalcapacityof79.2kWp tobeusedinlightingandair-conditioning
 Providetechnicalsupportandcreatenewexpertiseinthefieldofsolarenergy
technology.
ThegrowingconcernfortheuseofrenewableenergiesandthereductionofCO2
emissions of the society has led the Public Administrations to promote Projects
regardingalternativeenergysources.
Photovoltaic solar energy presents itself as a clean and environmentally friendly
alternative.Inaddition,ithastheadvantage,duetoitsmorphology,ofbeingeasily
integrated in urban environments, where most of the demand and energetic
consumptionisconcentrated.
2. Purpose
This tender aims at Design, Supply, Delivery, Installation Commissioning and
Maintenance of79.2kWpGrid- connectedsolarPhotovoltaictobeinstalledon
Egyptian Association for
Energy and Environment (EAEE)
the roof spaces available on the selected four buildings. The proposed systems
shall comply with the relevant laws and regulations issued by the Ministry of
ElectricityandRenewableEnergy,EgyptianElectricRegulatoryAgency(EERA),
andinlinewiththerequirementsoftheBehiraElectricityDistribution Company
(BEDC).
TheproposedOn-gridsolarPVsystemshallgenerateelectricalpowerdirectlyto
LowVoltage(LV)distributiongirdsupplyduringdaytimesharingtheloadwith
systemmaximumoutletatanytime.Intheeventwhereenergygeneratedbythe
solar system is larger than the operation load, for example in weekend and
vacation,thesystemmusthavetheabilitytoautomaticallyfeednationalgrid.
3. GeneralTermsandConditions
3.1Termsofreference
3.1.1Allproposeddocumentsareconsideredconfidentialandcanonlybeshared
withtheEAEEanditsthirdpartyconsultantteam.
3.1.2TheBiddershall submit two originalhardand softcopies(CD's)with two
separate envelopes ( one envelope for the technical offer and the other for the
financial offer) sealed and stamped; any bidder who mixes the technical and
financialofferswillbedirectlydisqualified.
3.1.3 The envelope with the financial offer will only be opened for the Bidders
whopassthetechnicalevaluation,thefinancialofferofthedisqualified technical
oneswillbereturnedbacktotheBiddersealedandstamped.
3.1.4 TheBiddermustfilltheTechnicalDataSheetsofPVmodulesandinverter
asdescribedintheExecutiveProjectandsubmititinthetechnicaloffer,knowing
that not completing and submitting the technical data sheets will directly
disqualifytheoffer. [Annex1:ExecutiveTechnicalProject].
Egyptian Association for
Energy and Environment (EAEE)
3.1.5Bidsshallbevalidforaperiodof120daysafterBidopeningdateandshall
be delivered by hand to EAEE headquarter: Engineers tower no.3, 28th loor,
Cornish El Maadi, in front of ( ‫)ﺷ ﺮطﺔ اﻟﻤﺴ ﻄﺤﺎت اﻟﻤﺎﺋﯿ ﺔ‬, Cairo, on or before 12:00 noon
localtimeofThursday17th ofFebruary2015.
3.1.6AllPricesshallbeclearandinEgyptianpounds (LE)currency,excludingany
customsfeesandSalestaxesastheprojectisexemptedfrombothofthem.
3.1.7. Electrical engineering and design shall be complied with Industry
Standards, the National Electric Code, IEEE 1547-2003 “IEEE Standard for
Interconnecting Distributed Resources with Electric Power Systems.” and other
applicablecodesandstandards.
3.1.8 It is the Bidder’s responsibility and on his own expenses to visit and
understand the site conditions, environment and all requirements that are
related to the tender or that may affect the offer price. The bidder will be fully
responsibleforverifyinganyinformation,drawingsandmeasurementsthatmay
beavailabletohim.AsitevisitmustbeperformedbyallBidders.
3.1.9 All questions regarding the tender by the bidder will be submitted by emails and are to be sent to ([email protected]) and once answered, will be
circulatedamongallcontractorswhohavesubmittedtheirproposals.
3.1.10Thedeadlineofthequestionsandtheanswersisshownintable(1)below.
Noquestionwillbeconsideredafterthementioneddate.
3.1.11TheTenderwillbeawardedasonelotforthemostsuitabletechnicaland
inancialofferbasedontheevaluationcriteriaexplainedinsection(14).
Egyptian Association for
Energy and Environment (EAEE)
3.1.12 All Permits required to execute the Work are the responsibility of the
Contractor.Thecontractorshallidentify knownPermitrequirements.Thecost of
preparing,filingandobtainingthePermitsshallbeincludedintheoffered Price.
The Contractor shall provide EAEE copies of all approved Permits and
applicationsforPermitsstillinprocessontheeffectivedateofthecontract.
3.1.13 The Bidder shall provide an evidence that the photovoltaic modules
manufacturerhasbeen operatinginthebusinessofSolarpanelsmarket forthe
pastten(10)years.
3.1.14TheContractorshallprovideafreemaintenanceperiodfortwoyearsfrom
the date of the installed system final acceptance, and could be extended for
another3 yearsbasedonthecontractorperformance.The3 yearsmaintenance
offershallbeincludedinthefinancialofferasanoptionalitemwiththevalidityof
oneyear.
3.1.15 A bi- monthly inspection report of the system performance and checkup
shall be provided during the two years free maintenance period relevant to
(maintenanceandoperationalbondsection3.3.3)
3.1.16 A standard Contract of project Design, Delivery, Installation and
Commissioning in accordance with Industry Standards will be signed between
EAEE and the contractor witnessed by the third party consultant to be the
referenceofallprojectphasesexecution.
3.1.17EAEEreservestherighttorejectanytechnicalofferwithoutclarifyingthe
reasons.
Egyptian Association for
Energy and Environment (EAEE)
3.2Tendertimeplan
Table1.Tendertimeplan
Milestone
Date
Time
ReleaseofTenderBook
December 11 th,2014 9.00am
Deadlineforquestions
January1st,2015
2.00pm
Releaseofanswerstoquestions
January8rd,2015
5.00pm
Deadlineforoffers
February 17th ,2015
12.00pm
3.3TenderBond
3.3.1Bidbond
 Abidbondof70000LEshallbeenclosedinthetechnicalofferenvelope.
 The bid bond shall be presented by irrevocable and unconditioned LG and
issuedbyalocalbank.
 The winning Bidder shall consider that this amount will be paid on first
demand if it becomes evident that information given contained false
statements.
 The validity of the bid bond is 180 days from date of offers submission with
theabilitytobeautomaticallyrenewedunlessreleasedbyEAEE.
 The bid bond will be returned after signing the agreement, and the
performancebondhasbeendulyenteredintoexecution.
 If the winning Bidder fails to provide a performance bond within 14 days of
being requested by the EAEE to do so; the full amount of tender bond shall
become payable and might be liquidated by EAEE as compensation for such
failure.
Egyptian Association for
Energy and Environment (EAEE)
3.3.2Performanceguaranteebond
 Performanceguaranteebondof10%ofthecontractpriceshallbedelivered
bytheawardedContractorwithin14daysofbeingnoti iedbyaregistered
letterthathehasbeenawardedthecontractandinanycasepriortosigning
thecontractagreementandtheawardingdecision.
 Performance guarantee bond shall be irrevocable and unconditioned LG,
issued from a local bank and approved by the EAEE in respect of
performance of the contract and will be released after the 2 years
maintenancefreeperiod.
 The Performance Bond shall be in force until a clean final handing over
certificateisissuedbyEAEEforthefoursites.
 Thebondshouldbepaidonfirstdemandwithoutanyobjection.
 Inordertoguaranteetheproposedenergyyieldandperformanceratio(PR)
of the proposed system, the third party consultant will conduct a
systemenergyyieldandperformanceratiocheckafterthefirstandsecond
yearsofsystemoperationinordertoverifytheproposedvalues.
 Thebondguaranteesthetwoyearsoffreemaintenanceandwillbereleased
aftersubmitting the final inspectionreportofthePVsystemand after the
successfulachievementoftheproposedenergyyieldandperformanceratio
valuesduringthebondperiod.
 Theallowedvariationoftheproposedenergyyieldvalueisnotmorethan5%andthePRisnotlessthantheproposedvalueforthe irsttwoyearsof
operation.
 ThecontractorshallrepairormodifytheinstalledPVsystemuponfailureof
achievingtheproposedvalueswithinthebondperiod.
 In caseof not repairing thefailure, therepairshall be done by others and
thecontractorshallbearall theexpenses.
Egyptian Association for
Energy and Environment (EAEE)
3.4DocumentsComprisingtheBid
The Bidder shall prepare two original sets and one copy comprising the Bid
andsupplementaryinformation.Thebidconsistsoftwoenvelopes:
EnvelopeA(TechnicalOffer)
Thetechnicaloffershallinclude:
 StampedTenderDocumentincludingfilledouttablesanddatasheetsforPV
modules, inverters, monitoring, control, scada remote monitoring, LED
screens.
 Thetechnicalspecificationsofthemainsparepartssufficientforthreeyears
operationaftertheguaranteeperiodwithavalueof2%oftheBOSworks.
 Originalcataloguesforallequipments .
 DetaileddrawingsasspecifiedinP2ofAnnex1.
 The proposed detailed training program for the personnel of Matrouh
Governorate,school,hospitalandlibrary .
 The origin of the equipment should be clearly defined taking into account
thatitmustbeEUorigin.
 Sitevisitdeclaration .
 Anyotherequipmentsandmaterialsrequiredtobecompletedandsubmitted
bybidder,all asspecifiedintheExecutiveProject.
 Timescheduleoftheproject asspecifiedintheExecutiveProject .
Only technical envelope will be opened in the presence of the bidders or
theirrepresentativesonFebruary17th,2015atEAEEheadquarterinMaadi.
Egyptian Association for
Energy and Environment (EAEE)
EnvelopeB(financialoffer)
Thefinancialoffershallinclude:
- Lot (1): The total price and an itemized price list for the foreign deliveries
(pricesshallbequotedCIP tosite)excludingcustomduties,andsalestaxeson
importedequipment(LE).
- Lot(2):Thetotalpriceandanitemizedpricelistforsparepartssuf icientfor3
years(LE)
- Lot(2):ThetotalpriceforinstallationandCommissioningofequipment(L.E)
- Lot(2):Thetotalcostofmaintenancefor3yearsafterthefreemaintenance
- Lot(2):Thetotalaswellasman/weekcostfortrainingofMatrouhGovernorate
personnel(LE)
All above items are grouped and included in the Bill of Quantities tables
(Measurments , Lot 1&2) . Infrastructures (Lot1) and Services (Lot2) should be
invoiced separately in order we can justify our budget lines. The Bidder who
merges the offers of Lot (1) and Lot(2) together in one offer will be directly
disqualified.Financialenvelopeshallbeopenedforthetechnicallyacceptedbidsat
adatetobefixedlater.
3.5 BidOpening
EAEEwillopenthebidsintwostages:
 FirstStage
Thetechnicalenvelopeshouldbeaccompaniedbythebidsecurity(Lot1andLot2)
foranamountof70000L.E.Itwillbeopenedatthebidclosingdate.
 SecondStage
Envelope(B)containingthefinancialofferwillbesafeguardedbytheEAEEuntil
completion oftheevaluationofthetechnicaloffer.
EAEEwillinformthebidderswhosetechnicalbidshavebeenacceptedofthedate
ofopeningofEnvelopeB.ThefinancialEnvelopeB,willbeopenedinthepresence
ofthebidder'srepresentativeswhochoosetoattendatthetimeandintheplace
specified by EAEE. The bidders'names, the Bid prices, will be announced at the
sessionofopeningthefinancialenvelopes.
Egyptian Association for
Energy and Environment (EAEE)
 NotificationofAwardandSigningofContract
The bidder whose bid has been accepted will be notified of the award by EAEE
prior to expiration of the bid validity period by email confirmed by registered
letter.
The"LetterofAward"willstatethesumthatEAEEwillpaytotheContractorin
consideration of execution, completion, and maintenance of the works, supply of
equipment&servicesbytheContractorasprescribedbytheContract.
 AdvancedPayment
EAEE will provide an Advanced Payment on the Contract Price according to the
termsofpayment,tobepaidagainstanirrevocablebanklettersofguarenteetothe
same value and currency in favour of EAEE presented within two weeks from
signingtheContract.
Egyptian Association for
Energy and Environment (EAEE)
4.Offerformat
4.1Technicaloffer
The response to this TOR must be in the English language, structured (and
presentedinthesamesequence)asfollows:
Coverletter
The cover letter must be signed by person(s) authorized to submit the proposal
andmustdelineatethecompany’sabilitytofulfilltheproject.
Chapter1:CompanyPro ile
The company profile must include registration certificates, J.V if applicable,
referencesprojectsandC.Vsoftheemployees.
Chapter2:Termsofreference
The bidder shall include the TOR of his company in general, man power of the
companyandthecompatibilitywithDIDSOLITPVprojecttermsofreference.
Chapter3:Technicaldescription
This includes the Solar radiation on the site, site and installation criteria,
boundaries, shade analysis, structural, civil and electrical assessment, and any
relevantinformation.
Chapter4:Componentandequipmentselection
Thischaptershallincludeallselectedmaterialsandcomponentsandtakinginto
considerationtoattachthedatasheetsintheAnnexsection.
Chapter5:TechnicalDesigndescription
The Bidder shall include but not limited to the software design and results,
AutoCAD drawings, 3D drawings and system layout, as well as the mounting
systemcalculationsasshowninAnnex1 .
Egyptian Association for
Energy and Environment (EAEE)
Chapter 6:ApproachandMethodology(Scopeofwork)
The Bidder shall explain the proposed PV system work plan, including the
procurement,installation,commissioning,testingandO&MofthePVsystem.
Chapter7:Timeplan
TheBiddershallproposeatimeplanoftheprojectimplementationphases.
Chapter8:Trainingplan
TheBiddershallproposeatrainingplan.
Chapter9:Testingandcommissioningplan
TheBiddershallproposea commissioningandtestingplan.
Chapter10:Safetyplan
Chapter11:Sparepartlist
Annexes tobeattachedbytheBidder:
TheBiddershallattachthefollowingitemsintheannex
Annex:TechnicalComplianceSheets
Annex:Tenderoffer
Annex:Bidbond
Annex:WarranteeandGuaranteeoftheequipment
Annex:EnvironmentalBenefits
Annex:others
Egyptian Association for
Energy and Environment (EAEE)
4.2Financialoffer
Chapter1:TermsofPayment
TheBiddershallproposethetermsofpaymentasanEPCoffer,excludedCustoms
dutiesandVAT.
Chapter2:PVsystemcostbreakdown
The Bidder shall include a Bill of quantity for all materials and equipment
proposedintheoffer(P3ofannex1).
TheBiddershallsubmitthecostbreakdownoftheproposedPVsystempresented
aboveas“Financialmeasurementssheet”clarifiedinAnnex1.
Chapter3:Maintenance offer
TheBiddershallprovideinthemainofferthecostofthefollowing:
1.Three yearsadditionalmaintenancecontract
2.Spareparts
5. EvaluationCriteria
Theevaluationfortheofferswillgothroughthefollowingthreesteps:
5.1EvaluationStep1:Qualificationsandgeneralrequirements:
CompliancewithTORdocumentswillbeevaluated.Thekeycriteria,whichwillbe
usedtoevaluateresponsestotheTORinclude:
•ExperienceindesigningsimilarSolarPhotovoltaicsystems,specificallyrooftop
Projects;
•Availableresourcestoundertaketheproject;
•Teamqualification/projectmanagerandsiteengineerexperience.
•Qualityofproposaldocumentationreceivedandperceivedunderstandingbythe
firmofproject’srequirements;
•Availabilityoflocalmanpowersupportforthesystems.
Egyptian Association for
Energy and Environment (EAEE)
5.2EvaluationStep2:Technicalevaluation(outof70marks):
The offer must achieve a score of more than 80/100 to be considered as a
technically qualifiedone,thequalifiedoffermarkwillbescaledto70%.
Thefollowingcriteriawillbethebaseofthetechnicalevaluation:
- Companyquali ication:20%
- Designcompliance:35%
- Qualityofproposedproducts:22%,distributedasthefollowing:
•6%forPVmodule.
•6%forinvertersthatcomplywiththetechnicalspecifications.
•6%formountingstructuresthatcomplywiththetechnicalspecifications.
•2%forDCandACcabling
•2%othercomponents
- Warranties,maintenanceandtechnicalsupport:15%
- Methodology,timeplanandtestingplan:3%
- Aestheticview:3%
- Trainingexperience:2%
Table2:Technicalevaluationcriteria
Companyqualification
20
Designcompliance
35
Qualityofproposedproducts
22
Warranties,maintenanceandtechnicalsupport15
Methodology,timeplanandtestingplan
3
Aesthetic
3
Training
2
TOTAL
100
Egyptian Association for
Energy and Environment (EAEE)
5.3Evaluationstep3:Financialevaluation(outof30marks):
Financialevaluationwillbeevaluated(outof30marks).
Table3:Financialevaluationcriteria
Levelisedcost(LE/kWp)
70
Paymentterms
30
TOTAL
100
TheBidderwhoachieves80%inthetechnical evaluationwillbeconsideredinto
the inancial evaluation; The Bidder who does not achieve at least 80% in the
technical evaluation will receive back his financial offer sealed and stamped and
withoutgoingintoanyfurthernegotiationwithEAEEoritsthirdpartyconsultant.
EAEE and its third party consultant will go into negotiation with the best three
offers.
EAEEisfreetochoosethebestoptionfromthethreebestoffers.
6. MethodofPayment(TermofPayment)
 TheBiddershallsubmitaproposedmethodofpaymentsasanEPCoffer.
 Theproposedpaymentmethodshouldconsidertheprojectphases,Billsof
QuantitiesandthepercentageofProjectcompletion
 TheBidderisallowedtoproposefinancingattractiveoptions.
7. Systemoperationperformancetesting
•TheEAEE’sthirdpartyconsultantwillperformanEnergyyieldandPerformance
ratio assessment (called here after performance check) after the first and
secondyearsofsystemoperation.
Egyptian Association for
Energy and Environment (EAEE)
• The performance check is to confirm that the system energy yield shall not be
lessthan5%oftheproposedvaluebytheBidder.
• The performance check is to confirm that the performance ratio(PR) of the
installed PV is not less than the proposed value during the first two years of
operation.
• In case the result of the performance check fails to achieve the mentioned
criteriainthefirstyear,theContractorwillbenotifiedtorepairanyproblemor
systeminconvenience.
• In case the Contractor fails to repairthe PVsystem operation at the end of the
second year, the maintenance and operational guarantee bond will be
liquidated.
•Thesuccessfulnessofperformancecheckresultsreleasingthemaintenanceand
operationalguaranteebond.
8. Penalties
 IfthemainContractorfailstocompletetheworksofanyBuildingwithinthe
timeforcompletion,EAEEhastherighttoapplydelaypenaltiesasfollow:
- 1%of contractpriceforthefirstweek
- 2%ofcontractpriceforthesecondweek
- 3%ofcontractpriceforthethirdweek
- 4%ofcontractpriceforthefourthweek
- 5%ofcontractpriceforeachmonthoranypartofit.
Suchthatitdoesnotexceed15%ofthe inalcontractprice,thepenalty shallbe
appliedwithoutanyneedfornoticeorlegalaction,upondelaytakesplace.
 EAEE has the right to cancel all or part of this penalties, if the main
contractorintroduceanacceptableexcuse forsuchdelay.
 The penalty of the un-successfulness of the performance check in the
secondyearisliquidatingtheperformanceguaranteebond.
9. Annexes
Annex1:ExecutiveProject
Annex2:ProjectTechnicalSpeci ication
Annex3:TenderTechnicalSpeci ication
Annex4:HealthandSafety
Annex5:PVModules DataSheet
Egyptian Association for
Energy and Environment (EAEE)
ANNEX1
BIPVSYSTEM
ExecutiveProject
WW.DIDSOLIT.EU
Egyptian Association for
Energy and Environment (EAEE)
Summary
ReferenceStandards...........................................................................................................................................5
P1.
DescriptionReport ...........................................................................................................................10
1
BuildingIntegratedPhotovoltaic ............................................................................................... 11
1.1
Introduction............................................................................................................................11
1.2
Solarphotovoltaicenergyintegratedinbuildings ...................................................18
1.2.1
Advantagesofthesystem....................................................................................................11
1.2.2
SystemDiagramBlock .........................................................................................................12
1.3
Systemworkingprinciple..................................................................................................12
1.3.1
Self-Consumption ...................................................................................................................12
1.3.2
Self-ConsumptionwithZeroInjectiontotheGrid .......................................................13
1.3.3
Inverters ...................................................................................................................................15
1.3.4. Classification...........................................................................................................................16
1.3.5. Protections(Antiislandingprotection) ........................................................................16
2
SiteDescription..................................................................................................................................17
3
GeneralSystem...................................................................................................................................22
4
System’sComponents ......................................................................................................................23
4.1
Photovoltaicmodule............................................................................................................23
4.1.1
Crystallinesilicontechnology............................................................................................27
4.1.2
GlasslaminatedThinFilmtechnology............................................................................30
4.1.3
LaminatedflexibleThinFilmtechnology.......................................................................35
4.2
Inverterselection..................................................................................................................38
4.2.1
Uniqueorientation ................................................................................................................39
4.3
Lowvoltageinstallation .....................................................................................................49
4.3.1
Generalcables.........................................................................................................................49
4.3.2
DC - MiniatureCircuitBreakers(MCBs) .........................................................................51
4.3.3
DC- SurgeProtectiveDevices(SPDs) ..............................................................................51
4.3.4
DC- CircuitBreakers.............................................................................................................52
4.3.5
AC- Distributionboard ........................................................................................................52
4.3.6
AC- MiniatureCircuitBreakers(MCBs) .........................................................................52
4.3.7
AC- Circuitbreakers .............................................................................................................53
4.3.8
AC- Residual-CurrentDevice(RCD).................................................................................53
Egyptian Association for
Energy and Environment (EAEE)
4.3.9
Interconnectingphotovoltaicinstallation.....................................................................53
4.3.10
Electricaloutletcompanyjunction ..................................................................................54
4.3.11
Electronicdevicesdescriptiondetail ...............................................................................54
4.3.12
Overcurrentprotectionsystems ......................................................................................55
4.3.13
Overvoltageprotectionsystems.......................................................................................55
4.3.14
GeneralProtectionBox ........................................................................................................55
4.3.15
Systemsofdifferentialprotectionforpeople ...............................................................55
4.3.16
Groundingsecuritysystem .................................................................................................56
4.4
Electricaldetailscheme......................................................................................................57
4.4.1
MonitoringandZeroGridInjection .................................................................................62
5
SupportSystemDescription..........................................................................................................64
5.1
Considerationstoanalyze..................................................................................................64
5.1.1
Snowloads ...............................................................................................................................62
5.1.2
Windloads................................................................................................................................64
5.1.3
Maintenanceoverloads........................................................................................................65
5.1.4
Building’scategory................................................................................................................65
5.2
PhotovoltaicSolutions ........................................................................................................65
5.2.1
RoofandSkylight ...................................................................................................................66
5.2.2
Pergola ......................................................................................................................................67
5.3
Constructiondetails.............................................................................................................69
5.3.1
Fixationdetails .......................................................................................................................69
5.3.2
WiringConduction.................................................................................................................70
6
SystemMaintenance.........................................................................................................................71
7
EnergyStudy .......................................................................................................................................70
8
EnvironmentalBalance...................................................................................................................75
9
Bibliography........................................................................................................................................75
AnnexI.
PVSystSimulation..................................................................................................................77
AnnexII.
WorkingPlan...........................................................................................................................79
AnnexIII.
MonitoringSystem................................................................................................................80
1
FeaturesofMonitoringSystem ....................................................................................................82
2
Devicesforthezeroinjection .......................................................................................................84
AnnexIV.
SupportingCalculations.......................................................................................................87
Egyptian Association for
Energy and Environment (EAEE)
1
ElectricalCalculations .....................................................................................................................87
1.1
Voltagedrop............................................................................................................................87
1.2
Wiringsizing...........................................................................................................................88
2
Environmentalimpact.....................................................................................................................89
P2.
DRAWINGSANDSCHEMES .............................................................................................................89
2.1
Location.................................................................................................................................................94
2.2
Site ..........................................................................................................................................................96
2.3
GeneralPlan ........................................................................................................................................97
2.4
Electricalsinglelineschemes .......................................................................................................98
2.5
Electricalscheme..........................................................................................................................100
2.6
Construction details.................................................................................................................... 102
P3.
MEASUREMENTS .............................................................................................................................103
Egyptian Association for
Energy and Environment (EAEE)
ReferenceStandards
Thisprojectfulfilstherecommendationsofthefollowingregulations:
SOLARCELLS
EN50513
EN50461
IEC60891
IEC60904-1
IEC60904-2
IEC60904-3
IEC60904-4
IEC60904-5
IEC60904-7
IEC60904-8
IEC60904-10
ASTME973
ASTME1021
ASTME1040
ASTME1143
ASTME1125
Solar Wafers - Data sheet and product information for crystalline silicon
wafersforsolarcellmanufacturing
Solar cells - Datasheet information and product data for crystalline silicon
solarcells
Procedures for temperature and irradiance corrections to measured I-V
characteristicsofcrystallinesiliconphotovoltaicdevices
Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage
characteristics
Photovoltaicdevices- Part2:Requirementsforreferencesolarcells
Photovoltaic devices - Part 3: Measurement principles for terrestrial
photovoltaic(PV)solardeviceswithreferencespectralirradiancedata
Photovoltaic devices - Part 4: Reference solar devices - Procedures for
establishingcalibrationtraceability
Photovoltaic devices - Part 5: Determination of the equivalent cell
temperature (ECT) of photovoltaic (PV) devices by the open-circuit voltage
method
Photovoltaic devices - Part 7: Computation of spectral mismatch error
introducedinthetestingofaphotovoltaicdevice
Photovoltaic devices - Part 8: Measurement of spectral response of a
photovoltaic(PV)device.
Photovoltaicdevices- Part10:Methodsoflinearitymeasurement
StandardTestMethodforDeterminationoftheSpectralMismatchParameter
BetweenaPhotovoltaicDeviceandaPhotovoltaicReferenceCell
TestMethodsforMeasuringSpectralResponseofPhotovoltaicCells
Standard Specification for Physical Characteristics of Nonconcentrator
TerrestrialPhotovoltaicReferenceCells
Standard TestMethodforDetermining theLinearity ofaPhotovoltaic Device
ParameterwithRespectTo aTestParameter
Standard Test Method for Calibration of Primary Non-Concentrator
TerrestrialPhotovoltaicReferenceCellsUsingaTabularSpectrum
SOLARMODULES
IEC61215
IEC61277
IEC61345
IEC61646
Crystalline silicon terrestrial photovoltaic (PV) modules - Design
qualificationandtypeapproval
Terrestrialphotovoltaic(PV)powergeneratingsystems- Generalandguide
UVtestforphotovoltaic(PV)modules
Thin-film terrestrial photovoltaic (PV) modules - Design qualification and
Egyptian Association for
Energy and Environment (EAEE)
IEC61701
IEC61730-1
IEC61730-2
IEC61829
IEC62108
JRCISPRA503 [1]
IEEE1513
ASTME1038
ASTME1171
ASTME1462
ASTME1596
ASTME1597
ASTME1799
ASTME1802
ASTME1830-09
ASTME2047
ASTME2236
ASTME2481
UL1703
IEC 60364-7-712
IEC61727
IEC61683
IEC62093
IEC62116
IEC62446
typeapproval
Saltmistcorrosiontestingofphotovoltaic(PV)modules
Photovoltaic (PV) module safety qualification - Part 1: Requirements for
construction
Photovoltaic (PV) module safety qualification - Part 1: Requirements for
testing
Crystalline silicon photovoltaic (PV) array - On-site measurement of I-V
characteristics
Concentrator photovoltaic (CPV) modules and assemblies - Design
qualificationandtypeapproval
QualificationTestProceduresforCrystallineSiliconPhotovoltaicModules
Recommended practice for qualification of concentrator photovoltaic
modules
Standard Test Method for Determining Resistance of Photovoltaic Modules
toHailbyImpactwithPropelledIceBalls
Standard Test Method for Photovoltaic Modules in Cyclic Temperature and
HumidityEnvironments
StandardTestMethods forInsulation IntegrityandGroundPathContinuity
ofPhotovoltaicModules
TestMethodsforSolarRadiationWeatheringofPhotovoltaicModules
Standard Test Method for Saltwater Pressure Immersion and Temperature
TestingofPhotovoltaicModulesforMarineEnvironments
StandardPracticeforVisualInspectionsofPhotovoltaicModules
Standard Test Methods for Wet Insulation Integrity Testing of Photovoltaic
Modules
StandardTestMethodsforDeterminingMechanicalIntegrityofPhotovoltaic
Modules
Standard Test Method for Wet Insulation Integrity Testing of Photovoltaic
Arrays
Standard Test Methods for Measurement of Electrical Performance and
Spectral Response of No concentrator Multifunction Photovoltaic Cells and
Modules
Standard Test Method for Hot Spot Protection Testing of Photovoltaic
Modules
StandardforFlat-PlatePhotovoltaicModulesandPanels
Electrical installations of buildings - Part 7-712: Requirements for special
installationsorlocations- Solar photovoltaic(PV)powersupplysystems
Photovoltaic(PV)systems- Characteristicsoftheutilityinterface
Photovoltaic systems - Power conditioners - Procedure for measuring
efficiency
Balance-of-system components for photovoltaic systems - Design
qualificationnaturalenvironments
Test procedure of islanding prevention measures for utility-interconnected
photovoltaicinverters
Grid connected photovoltaic systems - Minimum requirements for system
Egyptian Association for
Energy and Environment (EAEE)
EN50524
IEC62109-1
IEC62109-2
IEC61683
EN50530
UL1741
documentation,commissioningtestsandinspection
Datasheetandnameplateinformationofphotovoltaicinverters
Safety of power converters for use in photovoltaic power systems- Part 1:
Generalrequirements
Safety of power converters for use in photovoltaic power systems- Part 2:
Particularrequirementsforinverters
Photovoltaic systems - Power conditioners - Procedure for measuring
efficiency
Overallefficiencyofgridconnectedphotovoltaicinverters
Standard for Inverters, Converters, and Controllers for Use in Independent
PowerSystems
GLASS
EN410
EN356
EN673
EN572-1
EN572-2
EN572-5
EN572-8
EN572-9
EN1748-1-1
EN1748-2-1
EN1748-1-2
EN1748-2-2
EN13024-1
EN13024-2
EN12600
EN1288-1
Glass in building- Determination of luminous and solar characteristics of
glazing
Glassinbuilding- Securityglazing- Testingandclassificationofresistance
againstmanualattack
Glass in building - Determination of thermal transmittance (U value) Calculationmethod
Glass in building - Basic soda lime silicate glass products - Part 1:
Definitionsand generalphysicalandmechanicalproperties
Glass in Building - Basic soda lime silicate glass products - Part 2: Float
glass
Glass in Building - Basic soda lime silicate glass products - Part 5:
Patternedglass
Glassinbuilding- Basicsodalimesilicateglassproducts- Part8:Supplied
andfinalcutsizes
Glass in building - Basic soda lime silicate glass products - Part 9:
Evaluationofconformity/Productstandard
Glassinbuilding- Specialbasicproducts-Borosilicateglasses
Part1.1:De initionandgeneralphysicalandmechanicalproperties
Glassinbuilding- Specialbasicproducts- Glassceramics
Part2-1De initionsandgeneralphysicalandmechanicalproperties
Glassinbuilding- Specialbasicproducts- Borosilicateglasses
Part1-2:Evaluationofconformity/Productstandard
Glassinbuilding- Specialbasicproducts- Glassceramics
Part2-2:Evaluationofconformity/Productstandard
Glassinbuilding- Thermallytoughenedborosilicatesafetyglass
Part1:De initionanddescription
Glassinbuilding- Thermallytoughenedborosilicatesafetyglass
Part2:Evaluationofconformity/Productstandard
Glass in building - Pendulum test - Impact test method and classification
forflatglass
Glassinbuilding- Determinationofthebendingstrengthofglass
Egyptian Association for
Energy and Environment (EAEE)
EN1288-2
EN1288-3
EN1288-4
EN1288-5
EN14449
ISO3585
ISO16293-1
ISO12543-1
ISO12543-2
ISO12543-3
ISO12543-4
ISO12543-5
ISO12543-6
ASTMC1172
ASTMF1233
Part1:Fundamentalsoftestingglass
Glassinbuilding- Determinationofbendingstrengthofglass
Part 2: Coaxial double ring test on lat specimens with large test surface
areas
Glassinbuilding- Determinationofthebendingstrengthofglass
Part3:Testwithspecimensupportedattwopoints(fourpointbending)
Glassin building- Determinationofthebendingstrengthofglass
Part4:Testingofchannelshapedglass
Glassinbuilding- Determinationofthebendingstrengthofglass
Part 5: Coaxial double ring test on lat specimens with small test surface
areas
Glassinbuilding- Laminatedglassandlaminatedsafetyglass- Evaluation
ofconformity/Productstandard
Borosilicateglass3.3– Properties
Glassinbuilding-- Basicsodalimesilicateglassproducts
Part1:Definitionsandgeneralphysicalandmechanicalproperties
Glassinbuilding-- Laminatedglassandlaminatedsafetyglass
Part1:De initionsanddescriptionofcomponentparts
Glassinbuilding-- Laminatedglassandlaminatedsafetyglass
Part2:Laminatedsafetyglass
Glassinbuilding-- Laminatedglassandlaminatedsafetyglass
Part3:Laminatedglass
Glassinbuilding-- Laminatedglassandlaminatedsafetyglass
Part4:Testmethodsfordurability
Glassinbuilding-- Laminatedglassandlaminatedsafetyglass
Part5:Dimensionsandedge inishing
Glassinbuilding-- Laminatedglassandlaminatedsafetyglass
Part6:Appearance
StandardSpecificationforLaminatedArchitecturalFlatGlass
StandardTestMethodforSecurityGlazingMaterialsAndSystems
STRUCTURE
EN1991-1-2
EN1991-1-3
EN1991-1-4
EN573-1
ISO1461
EN10088-1
EN10088-2
Eurocode1:Actionsonstructures- Part1-2:Generalactions- Actionson
structuresexposedtofire
Eurocode1- Actionsonstructures- Part1-3:Generalactions- Snowloads
Eurocode 1: Actions on structures - Part 1-4: General actions - Wind
actions
Aluminium and aluminium alloys - Chemical composition and form of
wroughtproducts- Part1:Numericaldesignationsystem
Hot dip galvanized coatings on fabricated iron and steel articles Specificationsandtestmethods
Stainlesssteels- Part1:Listofstainlesssteels
Stainlesssteels- Part2:Technicaldeliveryconditions forsheet/plate and
stripofcorrosionresistingsteelsforgeneralpurposes
Egyptian Association for
Energy and Environment (EAEE)
EN10088-3
EN10027-1
EN10027-2
Stainless steels - Part 3: Technical delivery conditions for semi-finished
products, bars, rods, wire, sections and bright products of corrosion
resistingsteelsforgeneralpurposes
Designationsystemsforsteels- Part1:Steelnames
Designationsystemsforsteels- Part2:Numericalsystem
MONITORING
IEC61724
IEC61850-7
IEC60870
Photovoltaic system performance monitoring - Guidelines for
measurement,dataexchangeandanalysis
Communicationnetworksandsystemsforpowerutilityautomation- Part
7-420: Basic communication structure - Distributed energy resources
logicalnodes
Telecontrolequipment andsystems
Egyptian Association for
Energy and Environment (EAEE)
P1. DESCRIPTIONREPORT
Egyptian Association for
Energy and Environment (EAEE)
1.BuildingIntegratedPhotovoltaic
1.1.Introduction
The Egyptian Association for Energy and Environment (EAEE) is implementing a
projectfundedbytheEuropeanUnion-ENPICBCMED-crossbordercooperationat
theMediterranean, titled"DevelopingandImplementingDecentralizedInnovative
Solar Energy Technologies in Public Building (DIDSOLIT-PB) " where as the
projectaimsto:
 Transferup-to-date- solarenergyusestechnologies
 Transform the governorate's public buildings into energy saving buildings
through the installation of developed solar systems that generate energy of
totalcapacityof79.2Kwtobeusedinlightingandair-conditioning
 Providetechnicalsupportandcreatenewexpertiseinthefieldofsolarenergy
technology.
ThegrowingconcernfortheuseofrenewableenergiesandthereductionofCO2
emissions of the society has led the Public Administrations to promote Projects
regardingalternativeenergysources.
Photovoltaic solar energy presents itself as a clean and environmentally friendly
alternative.Inaddition,ithastheadvantage,duetoitsmorphology,ofbeingeasily
integrated in urban environments, where most of the demand and energetic
consumptionisconcentrated.
Thisdocumentintendstostructureaconstructiveguidethatincludestheprincipal
designcriteria,intermsofastandardizedimplementation,andhelpstoimplement
photovoltaic systems in diverse socioeconomic environments, like those situated
intheMediterraneanbasincountries.
1.2Solarphotovoltaicenergyintegratedinbuildings
1.2.1 Advantagesofthesystem
 Aclean,silentandeco-friendlysourceofpower.
 Solarmodulesconvertsunlightintoelectricityandstoreitinbatteries.
 Negligiblemaintenanceastherearenomovingparts.
Egyptian Association for
Energy and Environment (EAEE)
 Longlifespanofsolarmodules.
 Modulardesign.
 Simpleinstallation:canbemountedonrooftopsortheground.
 Canbeinstalledatpoint-ofusetoavoidtransmissionlosses.
1.2.2 SystemDiagramBlock
LowVoltagesystemdiagrambloc:
Figure1 Systemdiagrambloc
1.3.Systemworkingprinciple
1.3.1 Self-Consumption
The rate of self-consumption refers to the share of solar energy that is used
directly in the home or indirectly through intermediate storage. The higher the
self-consumption rate, the better it is for the PV system’s ideal operational
conditions.
Since the feed-in compensation for solar power is clearly less than the typical
householdelectricitytariff,itmakessensetouseasmuchsolarenergyaspossible
foryourselfandfeedaslittleaspossibleintotheutilitygrid.Thismakesyouless
dependent on energy suppliers and rising electricity prices. The intermediate
storage of PV power increases the self-consumption rate by creating a reserve
supplyofsolarpowerforuseintheeveningandatnight.
Egyptian Association for
Energy and Environment (EAEE)
1.3.2.Self-ConsumptionwithZeroInjectiontotheGrid
In certain applications, it is forbidden to feed electrical generation back into the
grid.Thisisusuallyimposedbynationalregulationsandlegislationand,asofthis
writing, it is the situation in Greece and Spain. Additionally, in some other
countriesthereis“feedin”legislationlimitingthepercentageofgeneratedpower
thatcanbefedintothegrid,forexampleinGermany70%oftheinvertersmaximal
power is allowed to be injected in the grid at the coupling point, or 60% of
maximalpowercanbe injectedbytheuseofabattery-supportedsystem.Itismost
likelythatthis“feed-inlimitation”willbeadoptedbyothercountriesaswell.
Marketresearchshowsthatwhile“feed-inlimitation”orinverterpowercontrolis
supported by several inverter manufacturers, like the CIRCUTOR CDP System or
similarsupportszerogridinjection.Thesystemisdepictedinthediagrambelow.
Figure2 CircutorCDPSchemeZeroGridinjection
TheCDPisthemaincontroltopreventelectricalenergyinjectiontothegrid.
CDP is a dynamic power controller that regulates the inverters generation level
based on user consumption. That means it is possible to build a PV system with
zeropowerinjectiontothemains,asitisrequiredinsomecountries.Thissystem
isidealforbuildingswithdaytimeelectricityconsumption.
Toachievezeroinjection,theCDPpermanentlymeasuresthecurrentandvoltage
oftheloadandsendstheFroniusinverterperiodiccommandtolimititspowerin
percentageoftheinvertersnameplatepowertothesamevalue.
Egyptian Association for
Energy and Environment (EAEE)
Circutor offers two different versions of the CDP system: CDP-0 and CDP-G. The
CDP-G model includes load management, while the CDP-0 prevents power
injection.
ThemainfeaturesoftheCDPSarethefollowing:
 CDP-0/CDP- Gisafamilyofcontrollers’powerdynamicdisplacement
workingpointofthesolarfield,whichallowsforregulatingthelevelof
investorgenerationfunctionuserconsumption.
 Oneofthemaincharacteristicsofthisseriesisthepossibilityofmeasuringall
energyflowsinafacility:Energyconsumedbytheuser;theenergygenerated
by the inverter; the energy consumed or fed into the grid; the power of an
auxiliarygeneration.
 Thesedeviceshavetoconfigurepowerinverterandthrough acommunication
channel.
 TheCDPisable to adapt thegenerationofenergyforself-consumption, with
theobjectivethattheinjectiontothegridiszero.
 The CDP generates a database with all the information the power and the
energyofeachpointmeasure.Inaddition,itincludesthepercentageofcontrol
theinverterallowsformonitoringonlineviatheInternet.
Figure3 CDPControlZeroGridInjection&SCADASolutionDatalogger
Tobelowcanseephotovoltaicgridconnectiondevices,withRS485communication
channel.
Egyptian Association for
Energy and Environment (EAEE)
Figure4 ConceptualSchemeofCDPDiagramConnection.
Powerconnection&MBUSConnection
1.3.3.Inverters
Asolarinverter,orPVinverter,convertsthevariabledirectcurrent (DC)outputof
a photovoltaic (PV) solar panel into a utility frequency alternating current (AC)
that can be fed into a commercial electrical grid or used by a local, off-grid
electricalnetwork.Itisacriticalcomponentinaphotovoltaicsystem,giventhatit
allowsforthesolarpanelenergytobeusedbyordinarycommercialappliances.
Solar inverters have special functions adapted for use with photovoltaic arrays,
includingmaximumpowerpointtracking andanti-islanding protection.
It is important for this project that the inverter communicates with the CDP
(Control)orasimilarone,toactivateorde-activatethephotovoltaicstringswith
theaimofzerogridinjection.
Egyptian Association for
Energy and Environment (EAEE)
1.3.4.Classification
Solarinvertersmaybeclassifiedintothreebroadtypes:
 Stand-aloneinverters:theseareusedinisolatedsystemswheretheinverter
drawsitsDCenergyfrombatterieschargedbyphotovoltaicrays.Manystandalone inverters also incorporate integral battery chargers to replenish the
batteryfromanAC source,whenavailable.Normally,thesedonotinterfacein
any way with the utility grid, and as such, are not required to have antiislandingprotection.
 Grid-tieinverters:thesematchphase withautility-suppliedsinewave.Gridtie inverters are designed to shut down automatically upon loss of utility
supply, for safety reasons. They do not provide backup power during utility
outages.
 Batterybackupinverters:thesearespecialinverterswhicharedesignedto
draw energy from a battery; to manage the battery charge via an onboard
charger; and, to export excess energy to the utility grid. These inverters are
capable of supplying AC energy to selected loads during a utility outage, and
arerequiredtohaveanti-islandingprotection.
For this project, the inverter application is the second one, without
photovoltaicgridinjection.
1.3.5.Protections(Antiislandingprotection)
Intheeventofapowerfailureonthegrid,itisgenerallyrequiredthatanygrid-tie
inverters attachedtothegridturnoffforashortperiodoftime.Thispreventsthe
invertersfromcontinuingtofeedpowerintosmallsectionsofthegrid,knownas
"islands".Poweredislandspresentarisktoworkerswhomayexpecttheareatobe
unpowered.Equallyimportantisthefactthatwithoutagridsignaltosynchronize
to, the power output of the inverters may exceed the tolerances required by the
customer’sequipmentconnectedwithintheisland.
Detectingthepresenceorlackofagridsourcewouldappeartobesimple,andin
the case of a single inverter in any given possible physical island (between
disconnects on the distribution lines for instance) the chance that an inverter
wouldfailtonoticethelossofthegridiseffectivelyzero.However,iftherearetwo
inverters in a given island, things become considerably more complex. It is
possiblethatthesignalfromonecanbeinterpretedasagridfeedfromtheother,
andviceversa,sobothunitscontinueoperation.Astheytrackeachother'soutput,
the two can move away from the limits imposed by the grid connections, say in
voltageorfrequency.
Egyptian Association for
Energy and Environment (EAEE)
2.SiteDescription
EAEEhassignedacooperationprotocolwithTheGovernorateofMatrouhwhereit
isagreedthatPVsolarsystemswillbeinstalled on4publicbuildingsinMatrouh
citylocated450kmnorthwestofCairo.ThetotalPVpoweris79.2Kwdistributed
asfollowing:
1.MatrouhGovernoratebuilding,44.2KW,PolyCrystallinepanels
2.M.E.I.L.S.Languageschool,5KW,PolyCrystallinepanels
3.GeneralhospitalofMatrouh:20KW,thin ilmpanels
4.Generallibrary,10KW, lexiblethin ilmpanels
The description of the sites and locations , details and specificationsare given in
details in Part 2 of this document titled "Drawings and Schemes). Below you can
findasummaryofthefourselectedpublicbuildings.
Buildings data
Building1:Matrouh Governorate
•Location:ElCornishStreet,Matrouh
•Ownership:GovernorateofMatrouh
•Use:Offices
•Buildingsurface:3.200m²(approx.)
•Electricityconsumption:525.000kWh(approx.)
Building2:MEILSLanguageSchool
• Location:ElCornishStreet,Matrouh
• Ownership:GovernorateofMatrouh
• Use:Offices,labs
• Buildingsurface:1.240m²(approx.)
• Electricityconsumption:23.623kWh(approx.)
Egyptian Association for
Energy and Environment (EAEE)
Building3:MatrouhGeneralHospital
• Location:AlexandriaStreet,Matrouh
• Ownership:GovernorateofMatrouh
• Use:Healthcarecentre
• Buildingsurface:11.520m²(approx.)
• Electricityconsumption:978.276kWh(approx.)
Building4:MatrouhPublicLibrary
• Location:ElCornishStreet,Matrouh
• Ownership:GovernorateofMatrouh
• Use:Culturecenter
• Buildingsurface:1.300m²(approx.)
• Electricityconsumption:ThelibrarywillbeinauguratedonSep.2014
GeneralDescriptionoftheSystems
The use of photovoltaic solar energy is through the direct and immediate
transformation of the radiation from the sun into electrical energy using the
"photovoltaic effect". This transformation is carried out in the so-called "solar
cells" that are made from semiconductor material, mostly silicon. When sunlight
strikes the cell, photons transmit their energy to electrons of semiconductor
material that jump in the pool, thus generating an electric current capable of
driving an external circuit. Photovoltaic modules are composed of photovoltaic
cellselectricallyjoinedtogether.
PV modules produce DC energy which has to be transformed to AC current, in
orderto be consumed orevacuated to thepublic grid.Themaximum powerthat
cansupplyamoduleinstandardconditionsiscalledpeakpower(Wp).However,
thefinalenergyperformanceratiowillbedeterminedbythePVsystemdesignand
theenvironmentalandlocationoutputs.
Photovoltaic energy is characterized by being clean, long lasting, requiring lowmaintenance,offeringhighreliability,andisenvironmentalfriendly.
Egyptian Association for
Energy and Environment (EAEE)
ThePVinstallationisdividedinfivesub systems:
 Photovoltaic Generator: This is the heart of the installation, where the
conversionofsolarenergyintoelectricalenergytakesplace.Thecampconsists
of photovoltaic interconnection in series and parallel for a number of
photovoltaicmodules.ThegeneratororphotovoltaicplantproducesDC.
 Power Conditioning. Inverters: These are electronic devices that transform
DCpowerfromPVmodulesintoAlternatingCurrent,adaptedtothevoltageand
frequency on the grid. Thus, the photovoltaic system can operate in parallel
with the grid. The plant incorporates a system for management and data
acquisition that allows a remote monitoring by the inverters, in order to
visualize the operation and performance of the installation via a PC, GSM or
landline.Itcanalsodetectanyabnormalitiesinrealtime,givingafastanswer.
 Power Control. Inverters: List of inverter could operate with Circutor CDP
Controlselfconsumption.
 Protections: This part represents and constitutes a configuration of elements
that act as interface connection between the photovoltaic system and grid
security under conditions suitable for both people and for the various
componentsthatcompriseit.Therefore,protectionsarerequiredinaccordance
with the terms of connecting photovoltaic systems following low voltage grid,
ISO&IECnorms.
TheconceptofPhotovoltaicIntegrationreferstothereformulationofarchitectural
elements by replacing conventional constructive materials for energy generator
systems,throughphotovoltaictechnologies.
Thisguideanalysesfourtypesofintegration,takingintoaccountthatthesearethe
mosteffectiveandeasilystandardizabletypes:
Egyptian Association for
Energy and Environment (EAEE)
Figure5 BIPVSelectionoptions
Egyptian Association for
Energy and Environment (EAEE)
Figure6 FlatPergola
Figure7 SowToothPergola
Figure8 Skylight
Figure9 BriseSoleil
Figure10 Façade
Egyptian Association for
Energy and Environment (EAEE)
3. GeneralSystem
Thedesignofthe proposedPVsystemsinstalled on thefourpublic buildings are
detailedintheengineeringattacheddrawingsinP2..
Thegeneralgraphinformationforeachbuildingthatthestudy hastoincludeisthe
following:






Detailed PVsystem
Detailed cablesRoutesAC&DC
Detailed rooffloor
Detailed structure
Detailed PVsimulation(shadowssimulation)
Detailed PVRoom,boxandconnectionlocation(planDrawing)
Figure11ExamplePVRoom
Detaildeviceslocation,boxlocationandconnectionmap
Figure112 ExamplePVRoom
Detaildeviceslocation,boxlocationandconnectionmap
Egyptian Association for
Energy and Environment (EAEE)
4 System’s Components
4.1.Photovoltaicmodule
PV modules convert solar energy into electrical energy. They consists of solar
panels and these, in turn, are composed of several identical interconnected cells
electrically in series and/or in parallel,so that thevoltageandcurrent suppliedby
the panel isincreasedand adjustedtothedesired value.
Most of the solar panels are constructed first by combining cells in series to
achievethe desiredvoltagelevel,andthen bycombining parallel multiple numbers
of cells toachievethe desiredcurrentlevel associations. Inaddition,the panel has
other elements of solar cells, which enable adequate protection set to external
agents for ensuring sufficient rigidity, the clamping to the supporting structures
andthe electricalconnection.
Amongallthepossibletechnologies,DIDSOLIT-PBprojecthasfocuseditsresearch
andimplementationinthreedifferenttechnologiesforbuildingintegration:
 SemitransparentSilicon(approx.35%transparency)
 Semitransparentthinfilm,a-Si(10-20%transparency)
 Flexiblethinfilm,a-Si(opaque)
Table1 Photovoltaictechnologies
EventhoughnowadaystheCrystallinetechnologyisabsolutelydominantinthePV
market, due to its high efficiencies and production costs reductions, thin film
technologies, specifically the integrated ones, have also been taken into
considerationduetotheirintegrationpotential.
Egyptian Association for
Energy and Environment (EAEE)
Thinfilmtechnologiesofferlessperformanceandthereforerequirealmostdouble
surfacetoinstallthesameamountofpower.However,thinfilmsemitransparency
might offer extraordinary integration potential, in terms of visual and light
propertiesoftheenvelope.
Flexiblethinfilmissufferingastronglossofmarketshare,mainlyduetothemore
competitivepricesofcrystallinetechnologiesthatarelowerinefficiencyandlack
providers.
However, this light and flexible application, still presents some advantages
(material with: static loads, cost and environmental impacts) that might be
capitalizedinthefuture,withnewPVtechnologiessuchasorganicorsemi-organic
cells.
Figure2:Examplesofmonocrystallinesolarcells(6’)
Figure3:Exampleofmonocrystallineback-contactcell(6’)
Figure4:Examplesofpolycrystallinesolarcells(6’)
Figure5:Polycrystallineback-contactsolarcell(example)(6’)
Egyptian Association for
Energy and Environment (EAEE)
Figure6:Examplesofthin-filmcells
Table2 Installedpower/m2.
Accordingtechnologies(crystallineandthinfilma-SI)andtransparency.Source:ertexsolar2009
Essentially,BuildingIntegratedPhotovoltaic(BIPV)referstophotovoltaiccellsand
moduleswhichcanbeintegratedintothebuildingenvelopeaspartofthebuilding
structure, and therefore can replace conventional building materials, rather than
Egyptian Association for
Energy and Environment (EAEE)
beinginstalledafterwards.BIPVmodulescanbenaturallyblendedintothedesign
ofthebuildingandformpartofthebuildingenvelope.
The extra costs of Building-integrated PV modules (BIPV) might be compensated
bytheirreplacingotherconventionalproducts(roofing,facadesandcanopies)and
byprovidingsomeofthesameconventionalproperties,suchas:
 Watertightness (façade,roof,skylight,pergola)
Thewatertightness comesnotonlyfromtheglassproperties,butespeciallyfrom
themountingsystemthatintegratesit.
-Semitransparentsurfaces:PVglasslaminatedlayer
-Opaquesurfaces:StandardPVmodules:glasslaminated,glass+tedlar,EFTE.
 Thermalinsulation(façade,roof,skylight)
In most of the climates, building envelope glazing units have to 26ulfil certain
insulation requirements. Glass laminated PV modules can be part of insulated
glazingunitsthatperforminthesamewaythatastandardglazeshould.
 Sun protection (façade, roof, skylight, pergola –roof / ground mounted-car
sherter)
- Semitransparent surface: (glazed surface: semi transparency-solar factor;
shading devices:brise-soleils,canopies,pergolas,etc)
Solar modules can be opaque or semitransparent. In mono- or polycrystalline
modules,thespacingbetweencellsandtotheedgecanbemodifiedsoastoallow
variation of shadowing and transparency. In thin-film modules, additional cuts
perpendicular to the cell strips create a semitransparent effect. Because
semitransparentmodulesabsorblesslight,theyarelessefficientperunitofarea.
Therefore,performancediminisheswithincreasingtranslucency.
Main technical parameters to be checked, depending on the project
requirements:
 Constructionrequirements:thermalinsulation,semi-transparency
 Size
Depending on the project requirements, a certain degree of dimensional
flexibilitymightberequired.Standarddimensionsmightnotbesuitableinsome
cases.
Egyptian Association for
Energy and Environment (EAEE)
Thin film modules production process has strict rules regarding standard
dimensions.
Crystallinelaminatedmoduleshavemuchmoreflexibility.
 Glasscompositionandthickness
The substructure system, its position in the building (façade, roof, etc) and
modulationwilldeterminethestaticloadsandglasscompositionrequirements.
Glasslaminatorand/orPVmoduleprovidershouldadviseforthemostsuitable
solutionineachcase.
PVB lamination foils have been traditionally the only ones accepted for BIPV in
Europe,forsafetyreasons(elasticitycoefficient).
Glassthicknessrangesfrom4+4to6+6,dependingonglassdimensionsandstatic
(snow,maintenance…)anddynamicloads(wind).
 Transparency
Depending on the sun protection and natural lighting requirements, the PV
moduletransparencymightrangefrom10%to40%.Crystallinemodules,dueto
thecell’scomposition,aremuchmoreflexibleintermsoftransparencyoptions.
4.1.1 Crystallinesilicontechnology
Crystallinesiliconcellsaremadefromthinslicescutfromasinglecrystalofsilicon
(mono-crystalline) or from a block of silicon crystals (polycrystalline). Their
ef iciency ranges between 12% and 20%. It is the most common technology,
representingabout90%ofthecurrentmarket.
Twomaintypesofcrystallinecellscanbedistinguished.
 Mono-crystalline(Monoc-Si)
 Polycrystalline(orMulti-crystalline)(multic-Si)
Thestandardsizeis6’(156mm),although5’andperforatedcellsareavailablein
somecases.
Laminatedglassmodules-technicalparameters:
 Constructionrequirements:thermalinsulation,semi-transparency
 Size
Depending on the project requirements, a certain degree of dimensional
flexibilitymightberequired.Standarddimensionsmightnotbesuitableinsome
cases.
Egyptian Association for
Energy and Environment (EAEE)
Crystallinelaminatedmoduleshavemuchmoreflexibility.
Globaldimensionswilldependonthelaminationcapacityoftheproviderandthe
modularity of the cells: Starting from 480 x 1475 mm; 720 x 1600 mm; 850 x
1650 mm; 1200 x 1800 mm, are typical optimized dimensions. However, the
maximum available dimensions will depend on the glass lamination capacity of
themanufacturer:1600x2600mm;2100x3100mm;etc.
 Glasscompositionandthickness
The substructure system, its position in the building (façade, roof, etc) and
modulationwilldeterminethestaticloadsandglasscompositionrequirements.
A glass laminator and/or PV module provider should provide advice about the
mostsuitablesolutionineachcase.
PVB lamination foils have been traditionally the only ones accepted for BIPV in
Europe,forsafetyreasons(elasticitycoefficient).
Glassthicknessrangesfrom4+4to6+6,dependingonglassdimensionsandstatic
(snow,maintenance…)anddynamicloads(wind).
 Transparency
The PV module’s transparency depends on the sun protection and natural
lightingrequirements.
The distance between cells (about 1-2-4-6 cm, depending on the ribbons
direction)willdeterminethePVmoduletransparency(10-40%).
Thestandardtransparency,whichisabout35%,leadstoinstalledpowerratiosof
approximately90-100Wp/m2.
Opaquecrystallinemodulescanincreasesignificantlytheinstalledpowerratios,
till140-180Wp/m2,dependingonthetechnology.
 Junctionbox
Crystalline laminated modules can easily adapt both back and lateral junction
boxes.
Lateral junction box might be a good solution to hide all the cabling and
connections inside the secondary substructure, such as aluminum or steel
profilesandcaps.
Egyptian Association for
Energy and Environment (EAEE)
Glasscompositionandjunctionboxexamples:
Figure12 Lateralandbackjunctionbox(andsecuritydiodes)
GlassLaminatedSemitransparentCrystallineModules
Projectnameandlocation:
NumberofPVmoduleunits
(approx.)
Systemsize(approx.)
Technology
Glass/Glasslaminate
Glasscomposition
Frontpane: Temperedglass(4/5)mm
PVactiveglass: PVBfoils
Rearpane: Temperedglass(4/5)mm
Encapsulant
OptionA:2x0.76 mmPVB(Polyvinylbutyral)
OptionB: 1.8mmEVA(Ethylenevinylacetate)
Totalthickness
9.5mmor11.8mm
Size
1544x709mm
Weight
21- 31kg
Transparency(%)
12- 24%
Moduleefficiency
10- 20%
Typeofcells
Polycrystalline156x156mm
Numberofcells
36
Egyptian Association for
Energy and Environment (EAEE)
DistancebetweenPVcells
Junctionbox
Mounting(frame)
Electricalparameters(STC)1000
W/m2
NominalpowerPnom(approx)
Power/m²
RatedVoltage[VMPP]
ratedCurrent[IMPP]
Opencircuitvoltage[Voc]
Shortcircuitcurrent[ISC]
Max.Systemvoltage
Electricalprotectionclass
QualityandSafety
Testedaccording
Designedandproducedaccording
Certificates
Warranty
Conditions
Packagingandtransportation
costs
Deliverytime
5-10mm
EdgeorBackterminaljunctionbox
2.5mm²or4mm²wiringsection
ConnectorsMC3orMC4
Bypassdiodesforshadowtolerance
ProtectionIP65
Noframe
Polishededges
Tobeintegratedinsubstructuralsystem
140-144Wp
128-132Wp/m²
17.67-18.50V
7.56-8.12A
22.00-22.72V
8.04-8.42A
1.000V
ClassII
EN14449,EN12150,EN12600,EN12543,1-6
EN61215,EN61730
TÜVcertificate
Origencertificate
2yearproductguarantee
10yearonpoweroutputat90%
20yearsonpoweroutputat80%
Estimation
8-10weeks
4.1.2GlasslaminatedThinFilmtechnology
Thin film modules are constructed by depositing extremely thin layers of
photosensitive materials onto a low-cost backing such as glass, stainless steel or
plastic.
ThinFilmmanufacturingprocessesresultinlowerproduction costscomparedto
the more material-intensive crystalline technology, a price advantage which is
counterbalancedbyloweref iciencyrates(from5%to13%).However,thisisan
averagevalueandallThinFilmtechnologiesdonothavethesameefficiency.
Four types of thin film modules (depending on the active material used) are
commerciallyavailableatthemoment:
-
Amorphoussilicon(a-Si)(5-7%)
Egyptian Association for
Energy and Environment (EAEE)
-
Cadmiumtelluride(CdTe)(9-10%)
CopperIndium/galliumDiselenide/disulphide(CIS,CIGS)(10-13%)
Multijunctioncells(a-Si/m-Si)
AlthoughCdTe,CIS,CIGSmodulesmightreachhigherefficiencythana-Siones,
siliconhastheadvantageofbeingeasilyavailableinnature.
Thin film have better temperature coefficient, reduction in power output at
highertemperatures,thancrystallinemodules.
Thin-film materials have better out-put in weak light than silicon modules.
However,theglobalperformancewon’tsolelydependonthematerial,butalso
ontheharmonizationoftherestofthePVmodulecharacteristics.
Laminatedglassmodules-technicalparameters:
 Constructionrequirements:thermalinsulation,semi-transparency
 Size
Depending on the project requirements, a certain degree of dimensional
flexibilitymightberequired.Standarddimensionsmightnotbesuitableinsome
cases.
Thin film modules production process has strict rules regarding standard
dimensions.
Themanufactureprocessofthethinfilmmodulesislinkedtoacertainstandard
dimensions:
RigidCISandCdTestandardmodulesareusually available insetdimensionsof
600 x 1200. A-Si modules have a wider range of possible dimensions, although
600x1200mm;1100x1300mmarethemostcommon.
The combination of these sub-modules and the subsequent lamination process
enlarges the range of possibilities: 600 x 1200mm; 1245 x 635mm; 1242 x
1245mm;2462x635mm;1849x1245mm.
 Glasscompositionandthickness
The substructure system, its position in the building (façade, roof, etc) and
modulationwilldeterminethestaticloadsandglasscompositionrequirements.
Egyptian Association for
Energy and Environment (EAEE)
Aglasslaminatorand/orPVmoduleprovidershouldprovideadviceregardsthe
mostsuitablesolutionineachcase.
PVB lamination foils have been traditionally the only ones accepted for BIPV in
Europe,forsafetyreasons(elasticitycoefficient).
Thin film modules have a particularity that comes from its production process:
thea-Sifilmlayerisdepositedonaglasssub-base(3.2mm loatglass).Inorder
toobtainthesamecharacteristicsofa5+5mmPVBlaminatedglass,dependingon
the dimensions, sometimes it is required a composition of 6T+3.2+6T (T:
temperedglass).
Thismakesglassdimensionalflexibilitymoredifficultandcostly.
 Transparency
The PV module’s transparency depends on the sun protection and natural
lightingrequirements.
Thetransparencyisgivenbythepatterncutmadetotheinitialdeposition.
The resultant “microcells” allow a good visual transparency, even though the
global PV module transparency percentage ranges are quite similar to the
crystallineones(10-30%).
The standard transparency of 10% leads to installed power ratios of
approximately44Wp/m2.
Opaquethinfilmmodulescansignificantlyincreasetheinstalledpowerratios,till
66-110Wp/m2,dependingonthetechnology.
 Junctionbox
Simple laminated thinfilmmodules(not insulated ones)usually integratesmall
junctionboxes(two:oneforeachpole)inordertosimplifythemoduleinternal
electricalinterconnection.
WhenthePVmodulerequiresglasslaminationatbothsides,thelateraljunction
boxisalsoavailable,makingthetechnicalsolutionabitmorecomplexandcostly.
Egyptian Association for
Energy and Environment (EAEE)
Glasscompositionandjunctionboxexamples:
Figure13 Lateralandbackjunctionbox(andsecuritydiodes)
Egyptian Association for
Energy and Environment (EAEE)
GlassLaminatedSemitransparentThinFilmModules
Projectnameandlocation:
NumberofPVmoduleunits
(approx.)
Systemsize(approx.)
Technology
Glass/Glasslaminate
Option1: Temperedglass4mm
Glasscomposition
Floatglass3.2mm
Temperedglass4mm
Option2: Floatglass3.2mm
Floatglass3.2mm
Encapsulant
Totalthickness
Size
Weight
Transparency(%)
Moduleefficiency
Typeofcells
Junctionbox
Mounting(frame)
Electricalparameters(STC)1000
W/m2
NominalpowerPnom(approx)
Power/m²
RatedVoltage[VMPP]
ratedCurrent[IMPP]
Opencircuitvoltage[Voc]
Shortcircuitcurrent[ISC]
Max.Systemvoltage
Electricalprotectionclass
QualityandSafety
Testedaccording
Designedandproducedaccording
Certificates
Warranty
Conditions
Packagingandtransportation
costs
Option1: 3.04mmPVBFoils(Polyvinylbutyral)
Option2: 0.45mmEVAFoils(Ethylenevinylacetate)
7mmor12.72mm
1300x1100mm
24- 40.1kg
10- 20%
10- 20%
a-Sithinfilm
EdgeorBackterminaljunctionbox
2.5mm²or4mm²wiringsection
ConnectorsMC3orMC4
Bypassdiodesforshadowtolerance
ProtectionIP65
Noframe
Polishededges
Tobeintegratedinsubstructuralsystem
68- 90Wp
47.55– 62.94Wp/m²
73.70- 103V
0.90– 0.92A
98.27- 137V
1.02– 1.15A
1.000V
ClassII
EN14449,EN12150,EN12600,EN12543,1-6
EN61215,EN61730
TÜVcertificate
Origencertificate
2yearproductguarantee
10yearonpoweroutputat90%
20yearsonpoweroutputat80%
Estimation
34
Egyptian Association for
Energy and Environment (EAEE)
Deliverytime
8-10
eeks
4.1.3 LaminatedflexibleThinFilmtechnology
Basedonasimilarproductionprocesstothinfilmcells,whentheactivematerialis
deposited in a thin plastic, the cell can be flexible. This opens the range of
applications, especially for Building integration (roofs-tiles) and end-consumer
applications.
Thinfilmcellshavebettertemperaturecoefficientsandofferbetterreductionsin
poweroutputathighertemperaturesthancrystallinemodules.
Thin-film materials have better out-put in weak light than silicon modules.
However,theglobalperformancewon’tsolelydependonthematerial,butalsoon
theharmonizationoftherestofthePVmodulecharacteristics.
For example, the plastic encapsulant roughness might increase the out-put loses
duetothedirtaccumulation.
Thesekindsoffactors,combinedwiththemodulepositioninthebuilding,should
betakenintoaccountwhencarryingoutenergyproductionsimulations.
Flexiblelaminatedmodules-technicalparameters:

Constructionrequirements:

Size
Flexible, ductile a-SI modules on high-grade steel strips, laminated in
syntheticmaterial(EFTE),currentlyhaveawidthof40cmandalengthof
upto6meters,whichcanbeshortenedonrequest.
35
Egyptian Association for
Energy and Environment (EAEE)
Figure14 FlexibleThinFilm
Laminatedflexiblecompositionandjunctionboxexamples:
36
Egyptian Association for
Energy and Environment (EAEE)
Figure15 Lateralandbackjunctionbox
EFTELaminatedFlexibleThinFilm(a-Si)Modules
Projectnameandlocation:
NumberofPVmoduleunits
(approx.)
Systemsize(approx.)
Technology
EFTElaminateflexible/ThinFilm
Laminatedcomposition
PolymeronthefrontsidehighlytransparentandUV
andweatheringresistantEFTE
Encapsulant
DurableEFTEhighlight-transmissivepolymer
Totalthickness
4mm
16mm(includingjunctionbox)
Size
5486x394 mm
Weight
7.7kg
Transparency(%)
0%
Moduleefficiency
5- 10%
Typeofcells
a-Si356x239mm
Numberofcells
22triplejunctionconnectedinseries
Junctionbox
Backterminaljunctionbox
2.5mm²wiringsection
ConnectorsMC3orMC4
Bypassdiodesforshadowtolerance
ProtectionIP65
Mounting(frame)
Noframe
Tobeintegratedinsubstructuralsystem
Electricalparameters(STC)1000
W/m2
NominalpowerPnom(approx)
136Wp
Power/m²
62.96Wp/m²(approx.)
RatedVoltage[VMPP]
33V
ratedCurrent[IMPP]
4.1A
Opencircuitvoltage[Voc]
46.2V
Shortcircuitcurrent[ISC]
5.1A
Max.Systemvoltage
1.000V
Electricalprotectionclass
ClassII
QualityandSafety
Testedaccording
EN14449,EN12150,EN12600,EN12543,1-6
Designedandproducedaccording
EN61215,EN61730
Certificates
TÜVcertificate
Origencertificate
Warranty
2yearproductguarantee
20yearsonpoweroutputat80%
Conditions
Packagingandtransportation
Estimation
costs
Deliverytime
8-10weeks
37
Egyptian Association for
Energy and Environment (EAEE)
4.2 Inverter selection
Asolarinverterconvertsthedirectcurrentgeneratedbythesolarpanelsintothe
gridbyinjectinganalternatingcurrent.Dependingontheinstallationdemandsof
a system (for example a system's installed power or several solar field
orientations),thereisawidevarietyofcommercialinverterssuitableforallkinds
ofeverypossiblescenarios.
There are countless photovoltaic installations worldwide and many companies
developing solar inverters around the world. To limit the options in this study,
two major European companies are selected: SMA Solar Technology AG (SMA)
and Fronius, both global leaders in the development, production and sales of
solarinverters.
Twofactorsaretakenunderconsideration:
- the(sub)system'sinstalledpower(2.5kW,5kW,10kW,15kWand20kW)
- thesolararrayorientation
Important aspects for investors to take into consideration when choosing an
Inverter:
- It must have a high efficiency, as otherwise it will unnecessarily increase the
numberof panelstopower the load
- Itmustbeprotectedagainst shortcircuitsandoverloads
- Addrearmament and automatic disconnection
- Snapshot support higherpower demands 150% of your maximumpower
- It must comply with the requirements laid down in Regulation Low Voltage.
Decline harmonicdistortion
- Lowpowerconsumption
- Insulation
Incontinuation,possibilitiesofsomestandardsimulationswithinverterselections
areshown,includingsystemmeasuresandmonitoring:
• Ina2.5kWsystemwithuniquesolararrayorientation:
SunnyBoy2500TLorFroniusIGPlus 25V-1couldbeinstalled
• Ina5kWsystemwithuniquesolararrayorientation:
FroniusIGTL5.0couldbeinstalled
38
Egyptian Association for
Energy and Environment (EAEE)
• Ina10kWsystemwithuniquesolararrayorientation:
FroniusIGPlus120V-3couldbeinstalled
• Ina15kWsystemwithuniquesolararrayorientation:
SunnyTripower15000TLEconomicExcellencecouldbeinstalled
• Ina20kWsystemwithuniquesolararrayorientation:
SunnyTripower20000TLEconomicExcellencecouldbeinstalled
• Ina2.5kWsystemwithmoresolararrayorientations:
SunnyBoy5000TLcouldbeinstalled
• Ina10kWsystemwithmoresolararrayorientations:
SunnyTripower10000TLcouldbeinstalled
• Ina15kWsystemwithmoresolararrayorientations:
SunnyTripower15000TLcouldbeinstalled
4.2.1Uniqueorientation
4.2.1.12.5kW
Table1 SunnyBoy2500TLSingleTracker,TechnicalData
SUNNYBOY2500TL
INPUT(DC)
Max.DCpower(@cosφ=1)
2650W
Max.inputvoltage
750V
MPPvoltagerangewithalinevoltageof230V/rated
inputvoltage
180– 500V/400V
Min.inputvoltage/startinputvoltage
125V/150V
Max.inputcurrent
15A
Max.inputcurrentperstring
15A
NumberofindependentMPPinputs/stringsperMPP
input
1/2
OUTPUT(AC)
Ratedpower(@230V,50Hz)
2500W
Max.apparentACpower
2500VA
NominalACvoltage
220V/230V/240V
NominalACvoltagerange
180V– 280V
ACpowerfrequency/range
50Hz,60Hz/–5Hz,+5Hz
Ratedpowerfrequency/ratedgridvoltage
50Hz/230V
39
Egyptian Association for
Energy and Environment (EAEE)
Max.outputcurrent
10.9A
Powerfactoratratedpower
1
Displacementpowerfactor,adjustable
0.8overexcited...0.8under-excited
Feed-inphases/connectionphases
1/1
EFFICIENCY
Max.efficiency/Europeanweightedefficiency
97%/96.0%
PROTECTIVEDEVICES
DC-sidedisconnectiondevice
opt.
Groundfaultmonitoring/gridmonitoring
yes/yes
DCreversepolarityprotection/ACshort-circuit
currentcapability/galvanicallyisolated
yes/yes/—
All-pole-sensitiveresidual-currentmonitoringunit
yes
Protectionclass(asperIEC62103)/overvoltage
category
I/III
(asperIEC60664-1)
GENERALDATA
Dimensions(W/H/D)inmm
490/519/185
Weight
23kg/57.3lb
Operatingtemperaturerange
-25°C...+60°C/
–13°F...140°F
Noiseemission(typical)
25dB(A)
Self-consumption(atnight)
1W
Topology/coolingconcept
Transformerless/convection
Degreeofprotection:electronics/connectionarea
IP65/IP54
(perIEC60529)
Climaticcategory(asperIEC60721-3-4)
4K4H
Maximumpermissiblevalueforrelativehumidity
100%
(non-condensing)
FEATURES
DCconnection
SUNCLIX
ACconnection
springclampterminal
Display
chart
Interfaces:RS485/Bluetooth® /Webconnect/
Speedwire
opt./yes/opt./opt.
Warranty:5/10/15/20/25years
yes/opt./opt./opt./opt.
Multi-functionrelay
opt.
Certificatesandapprovals(moreuponrequest)
CE,VDE0126-1-1,VDE-AR-N4105,C10/11,G83/1-1,G59/2
Certificatesandapprovals(planned)
RD1699/2011,PPC,RD661/2007,AS4777,EN50438*,MEA,
PPDS,IEC61727,SI4777,UTEC15-712-1
40
Egyptian Association for
Energy and Environment (EAEE)
Typedesignation
SB2500TLST-21
Table2 FroniusIGPlus 25V-1,TechnicalData
FRONIUSIGPLUS25V-1
INPUT(DC)
DCmax.powerforcosφ=1
2,740 W
Max.arrayshortcircuitcurrent
17.9A
Max.inputcurrent
11.9A
Max.inputvoltage
600V
MPPvoltagerange
230 - 500V
OUTPUT(AC)
ACnominaloutputforcosφ=1
2,600W
Max.outputpower
2,600VA
Max.outputcurrent
11.3 A
Max.efficiency
95.7%
Euro.efficiency
94.6%
MPPadaptationefficiency
>99.9%
Gridconnection
1~NPE230V
Frequency
50Hz/60Hz
Harmonicdistortion
<3%
Powerfactor
0.75- 1ind./cap
Nightconsumption
app.1W
GENERALDATA
Dimensions(heightxwidthxdepth)
673x434x250mm
Weight
23.8kg
Degreeofprotection
IP54
Inverterconcept
HFtransformer
Cooling
Regulatedaircooling
Installation
Indoorandoutdoorinstallation
Ambienttemperaturerange
from-25°Cto+55°C
Permittedhumidity
0%to95%
SAFETYEQUIPMENT
DCinsulationmeasurement
Warning/shutdown(dependingoncountrysetup)atRiso<500kΩ
Overloadbehavior
Operatingpointshift,powerlimiter
DCdisconnect
Integrated
INTERFACES
41
Egyptian Association for
Energy and Environment (EAEE)
OptionalwithFroniusDatamanager
WLAN,Ethernet,ModbusTCP,6digitalinputs,4digitalinputs/outputs,
Datalogger,Webserver
42
Egyptian Association for
Energy and Environment (EAEE)
4.2.1.2 5kWsystem
Table3 FroniusIGTL5.0,TechnicalData
FRONIUSIGTL5.0
INPUT(DC)
DCmaximumpower
5,250W
Max.inputcurrent
14.7 A
Max.inputvoltage
850V
MPPvoltagerange
350- 700V
OUTPUT(AC)
ACnominaloutput
4,600W*/5,000W
Max.outputpower
5,000W
Max.outputcurrent
21.7A
Max.efficiency
97.7%
Europeanefficiency
97.3%
MPPadjustmentefficiency
>99.9%
Mainsconnection
1~NPE230V
Frequency
50Hz/60Hz
Distortionfactor
<3%
Powerfactor
1
Nighttimeconsumption
ca.1W
GENERALDATA
Dimensions(Hx Wx D)
597x413x195mm
Weight
19.1kg
Degreeofprotection
IP55
Inverter
Transformerless
Cooling
Controlledaircooling
Installation
Indoorsandoutdoors
Ambienttemperaturrange
-20°Cto+55°C
Permittedhumidity
0%to95%
PROTECTIVEEQUIPMENT
DCinsulationmeasurement
Universal-current-sensitivefaultmonitoring
Overloadbehaviour
Operatingpointadjustment,powerlimitation
DCdisconnector
Integrated
INTERFACES
USBAsocket
ForUSBsticks**nobiggerthan80x33x20mm(Lx WxH)
Signallingoutput(NOcontact)
2-pinscrewterminal, 12Vmax.300mA
2xRS422(RJ45socket)
FroniusSolarNet,interfaceprotocol
43
Egyptian Association for
Energy and Environment (EAEE)
4.2.1.310kWsystem
Table4 FroniusIGPlus120V-3,TechnicalData
FRONIUSIGPLUS120V-3
INPUT(DC)
DCmaximumpoweratcosφ=1
10,590W
Max.inputcurrent
46.2 A
Max.arrayshortcircuitcurrent
69.3A
Max.inputvoltage
600V
MPPvoltagerange
230- 500V
OUTPUT(AC)
ACnominaloutputatcosφ=1
10,000W
Max.outputpower
10,000VA
Max.outputcurrent
14.5A
Max.efficiency
95.9%
Euro.efficiency
95.4%
MPPadaptionefficiency
>99.9%
Gridconnection
3~NPE400V/230V
Frequency
50Hz/60Hz
Harmonicdistortion
<3%
Powerfactor
0.75- 1ind./cap.
Nightconsumption
app.1W
GENERALDATA
Dimensions(heightxwidthxdepth)
1,263x434x250mm
Weight
49.2 kg
Degreeofprotection
IP54**
Inverterconcept
HFtransformer
Cooling
Regulatedaircooling
Installation
indoorandoutdoorinstallation
Ambienttemperaturerange
From-25°Cto+55°C
Permittedhumidity
0%to95%
SAFETYEQUIPMENT
DCinsulationmeasurement
Warning/shutdown(dependingoncountrysetup)atRiso<500kΩ
Overloadbehavior
Operationpointshift,powerlimiter
DCcircuitbreaker
Integrated
INTERFACES
OptionalwithFroniusDatamanager
WLAN,Ethernet,ModbusTCP,6digitalinputs,4digitalinputs/outputs,
Datalogger,Webserver
44
Egyptian Association for
Energy and Environment (EAEE)
4.2.1.415kWsystem
Table5 SunnyTripower15000TL,TechnicalData
SUNNYTRIPOWER15000TL
INPUT(DC)
Max.DCpower(@cosφ=1)
15260W
Max.inputvoltage
1000V
MPPvoltagerangewithalinevoltageof230V/ratedinput
voltage
580V– 800V/580V
Min.inputvoltage/startinputvoltage
570V/620V
Max.inputcurrent
36A
Max.inputcurrentperstring
36A
NumberofindependentMPPinputs/stringsperMPPinput
1/6
OUTPUT(AC)
Ratedpower(@230V,50Hz)
15000W
Max.apparentACpower
15000VA
NominalACvoltage
3/N/PE;230/400V
NominalACvoltagerange
160V– 280V
ACpowerfrequency/range
50Hz,60Hz/-6Hz...+5Hz
Ratedpowerfrequency/ratedgridvoltage
50Hz/230V
Max.outputcurrent
24A
Powerfactoratratedpower
1
Displacementpowerfactor,adjustable
0.8overexcited...0.8underexcited
Feed-inphases/connectionphases
3/3
EFFICIENCY
Max.efficiency/Europeanweightedefficiency
98,5%/98,3%
PROTECTIVEDEVICES
DC-sidedisconnectiondevice
opt.
Groundfaultmonitoring/gridmonitoring
yes/yes
DCsurgearrester(typeII),canbeintegrated
—
DCreversepolarityprotection/ACshort-circuitcurrent
capability/galvanicallyisolated
yes/yes/—
45
Egyptian Association for
Energy and Environment (EAEE)
All-pole-sensitiveresidual-currentmonitoringunit
yes
Protectionclass(asperIEC62103)/overvoltagecategory
(asperIEC60664-1)
I/III
GENERALDATA
Dimensions(W/H/D)
665/680/265mm(26,2/26,8/10,4inch)
Weight
45kg/99,2lb
Operatingtemperaturerange
-25°C...+60°C/-13°F...140°F
Noiseemission(typical)
51dB(A)
Self-consumption(atnight)
1W
Topology/coolingconcept
Transformerless/OptiCool
Degreeofprotection(perIEC60529)
IP65
Climaticcategory(asperIEC60721-3-4)
4K4H
Maximumpermissiblevalueforrelativehumidity
100%
(non-condensing)
FEATURES
DCterminal
SUNCLIX
ACconnection
springclampterminal
display
chart
Interfaces:RS485/Bluetooth /Webconnect/Speedwire
opt./yes/opt./opt.
Warranty:5/10/15/20/25years
yes/opt./opt./opt./opt.
Multi-functionrelay/PowerControlModule
opt./opt.
Certificatesandapprovals(moreavailableonrequest)
CE,VDE0126-1-1,VDE-AR-N4105,PPC,RD661/2007,UTE
C15-712-1,EN50438**,PPDS,RD1699,AS4777*,BDEW
2008*,C10/11,CEI0-21*,G59/2,IEC61727*
Typedesignation
STP15000TLEE-10
46
Egyptian Association for
Energy and Environment (EAEE)
4.2.1.5.20kWsystem
Table6 SunnyTripower20000TL,TechnicalData
SUNNYTRIPOWER20000TL
INPUT(DC)
Max.DCpower(@cosφ=1)
20450W
Max.inputvoltage
1000V
MPPvoltagerangewithalinevoltageof230V/ratedinput
voltage
580V– 800V/580V
Min.inputvoltage/startinputvoltage
570V/620V
Max.inputcurrent
36A
Max.inputcurrentperstring
36A
NumberofindependentMPPinputs/stringsperMPPinput
1/6
OUTPUT(AC)
Ratedpower(@230V,50Hz)
20000W
Max.apparentACpower
20000VA
NominalACvoltage
3/N/PE;230/400V
NominalACvoltagerange
160V– 280V
ACpowerfrequency/range
50Hz,60Hz/-6Hz...+5Hz
Ratedpowerfrequency/ratedgridvoltage
50Hz/230V
Max.outputcurrent
29A
Powerfactoratratedpower
1
Displacementpowerfactor,adjustable
0.8overexcited...0.8underexcited
Feed-inphases/connectionphases
3/3
EFFICIENCY
Max.efficiency/Europeanweightedefficiency
98,5%/98,2%
PROTECTIVEDEVICES
DC-sidedisconnectiondevice
opt.
Groundfaultmonitoring/gridmonitoring
yes/yes
DCsurgearrester(typeII),canbeintegrated
—
DCreversepolarityprotection/ACshort-circuitcurrent
capability/galvanicallyisolated
yes/yes/—
47
Egyptian Association for
Energy and Environment (EAEE)
All-pole-sensitiveresidual-currentmonitoringunit
yes
Protectionclass(asperIEC62103)/overvoltagecategory
(asperIEC60664-1)
I/III
GENERALDATA
Dimensions(W/H/D)
665/680/265mm(26,2/26,8/10,4inch)
Weight
45kg/99,2lb
Operatingtemperaturerange
-25°C...+60°C/-13°F...140°F
Noiseemission(typical)
51dB(A)
Self-consumption(atnight)
1W
Topology/coolingconcept
Transformerless/OptiCool
Degreeofprotection(perIEC60529)
IP65
Climaticcategory(asperIEC60721-3-4)
4K4H
Maximumpermissiblevalueforrelativehumidity(noncondensing)
100%
FEATURES
DCterminal
SUNCLIX
ACconnection
springclampterminal
display
chart
Interfaces:RS485/Bluetooth /Webconnect/Speedwire
opt./yes/opt./opt.
Warranty:5/10/15/20/25years
yes/opt./opt./opt./opt.
Multi-functionrelay/PowerControlModule
opt./opt.
Certificatesand approvals(moreavailableonrequest)
CE,VDE0126-1-1,VDE-AR-N4105,PPC,RD661/2007,UTE
C15-712-1,EN50438**,PPDS,RD1699,AS4777*,BDEW
2008*,C10/11,CEI0-21*,G59/2,IEC61727*
Typedesignation
STP20000TLEE-10
48
Egyptian Association for
Energy and Environment (EAEE)
4.3Lowvoltageinstallation
4.3.1Generalcables
Thecables usedshallbeof notlessthan ratedvoltage 0.6/1kV for powercircuits and 450/750V for
controlcircuits.
The minimum outside diameter of the pipe, based onthe name and the section of theconductors
driving, will be obtained from the tables shown in the local standard reference, and have the
minimumcharacteristicsdependingonyour installation.
Fortheexecutionof thepipelines under protectivetubes,thefollowinggeneralrequirementsshall
betakenintoaccount:
-
The layout of the pipes will be along vertical and horizontal parallel lines or the edges of the
wallsadjacenttothelocationwhereyouareinstalling.
-
The tubes are joined together by suitable accessories to ensure continuity of the protection
afforded tocables.
-
Thebendablerigidinsulatinghotpipescanbeassembledtogetherbycoatingthetrunkingwith
special gluewhenasealisrequired.
-
The minimum bend radius for each class of conduction shall be as specified by the
manufacturer.
-
Foreasyinsertionandremovalofthewiresinthetubesafterplaceandsecuredthemandtheir
accessoriessuppliedforthiscombinerboxtobeconsideredconvenient,itwillnotbeinstraight
sectionsspaced15meters
-
Thenumberofcurvesbetweentwoconsecutivecombinerboxeswillnotbegreaterthan3.
-
Thecablesareusuallyaccommodatedinthetubesafterplacingthem.
-
The combiner boxes may be intended solely to facilitate the introduction and withdrawal of
tubesorwiresserveasbothboxestrunkingorreferral.
-
Connections between conductors are carried boxes inside appropriate material insulating or
flameretardant.
-
Iftheconnections aremetal,theywillbeprotectedagainstcorrosion. Thedimensions ofthese
boxeswillbesuchtocomfortablyaccommodateallcablesneeded.Itsdepthisatleastequalto
thediameterofthelargerwireplus50%thereof,withaminimumof40mm.Orminimuminner
diametersideis60mm.Whenyouwanttomakewatertighttubesentriesinjunctionboxesshall
cableglandsused.
-
In metal protection pipes for the wires without internal insulation, will take into account the
possibility that will produce condensation of water inside , which is why they conveniently
choose the layout of the installation, preventing evacuation and establishing a ventilation
49
Egyptian Association for
Energy and Environment (EAEE)
appropriate inside the tubes by suitable system, as may be, for example , the use of a "T" of
whichoneofthearmsisnotused.
-
Thetubesare fixedto the wallorceiling usingcableties or clamps protected againstcorrosion
and fastened solidly. The distance between these is a maximum of 0.50 meters. Fixings of the
one and the other party to address changes should be provided in the junctions and in the
immediatevicinity of theentries inboxesor appliances.
-
The tubes are placed on the surfaces adapted to be installed which, curving or using the
necessaryaccessories. - In straightalignments,deviationsfromthetubeaxis totheline joining
thepoints ends shallnotexceed 2%.
-
There should tubes, whenever possible, to a minimum height of 2.5 meters on the ground, in
ordertoprotectthem frompossible mechanicaldamage.
SolarDC/ACinvertershavedcinput(dcside)andacoutput(acside).Thus,thereareoneormore
dccircuitsincludingpvarrays,protectiondevices,solardccablesandpvconnectors.Attheoutput
oftheinverter,theaccircuitincludesmostlyaccablesandprotectiondevices.
-
Electricalinstallation
-
DCside
-
DCCablesandPVConnectors
Olflex-Solar XLS DC cables are used to connect solar modules to each other and as an extension
cablebetweeneachpvarrayandtheinverter'sdcinputterminals(incaseswherethepanelcableis
notlongenough).Solarcablesarechoseninordertolimitpowerlossesonthecablesandvoltage
drop across the cables. Typically, the conductor's cross section is from 4 to 6mm2. In addition,
cables have to be uv and -if necessary- humidity resistant. Core insulation usually has the same
colorastheoutersheath:black/blackforbothpositiveandnegativepolarity;however,inorderto
distinguishstring'spolaritymoreeasily,coreinsulationcancomeinadifferentcolorfromtheouter
sheath:red/blackforpositivepolarityandblack/blackfornegativepolarity.
Figure16 CableImageExample
Toconnect the cable with the rest ofthedccircuit,PV connectors have to beused. Ingeneral, pv
connectorscomeinbothmaleandfemaletypeswhicharedesignedtofitsecurelytogetherbothfor
conductivityandsafetyreasons.
EachtypeofPV moduleiscompatiblewithonetypeofPV connectors.ThetypeofPV connectoris
followed byacertain cross-sectional size ofsolar dccable. The most common solarPV connector
typesareMC4,MC3,TYCOandRADOXbyHUBER-SUHNER.
50
Egyptian Association for
Energy and Environment (EAEE)
Figure17 PairofMC4PVconnectors
Figure18 PairofMC3PVconnectors
Figure19 PairofTYCOPVconnectors
Figure20 PairofRADOXPVconnectors
4.3.2DC- MiniatureCircuitBreakers(MCBs)
MCBs are designed to protect the cable downstream of the device against overloads and short
circuits,preventing damagetocablesandequipment.InaPV systemonthedcside,MCBsprotect
stringsagainstdcreversecurrents.
Figure21 MCB’sdevices
4.3.3DC- SurgeProtectiveDevices(SPDs)
SPDs protect inverters, arrays, measurement and control equipment, and communication systems
from being affected by current surges caused by lightening. SPDs also protect consumers from
generatedtransients. SPDs shouldbeappliedtoboththeDCsideandACside oftheinverter. The
key location of SPDs helps to protect against damage caused by lightening by either shorting or
clampingthevoltage,therebyminimizingthetransientvoltagethatwouldotherwisebepresentat
theequipmentterminals.
51
Egyptian Association for
Energy and Environment (EAEE)
Someinvertermanufacturersalsosupplysuchdeviceseitherasoptionalorstandardequipment.
Figure22 SPD’sdevices
4.3.4DC- CircuitBreakers
DC circuit breakers are used for coupling or uncoupling of a circuit under load. They are easy to
handlewhenmaintenanceworkneedstobedoneonthedcsideoftheinverter.
Figure23 DCCircuitBreakersdevices
4.3.5AC- Distributionboard
The overall enclosure is responsible for safeguarding the entire electrical installation of a short
circuit or tip intensity which affectsall connectedcomponents network.Thisgeneral enclosure may
beworn asa thermalprotection fuse.
4.3.6AC- MiniatureCircuitBreakers(MCBs)
MCBsprotectstringsfromacback-feedcausedbyadefectiveinverter.
Figure24 ACMCB’s
52
Egyptian Association for
Energy and Environment (EAEE)
4.3.7AC- Circuitbreakers
ACcircuitbreakersarealsousedforcoupling oruncouplingofacircuitunderload.Theyareeasyto
handlewhenmaintenanceworkneedstobedone.
Figure25 ACCircuitBreakers
4.3.8AC- Residual-CurrentDevice(RCD)
ARCDisanelectricalwiringdevicethatdisconnectsacircuitwheneveritdetectsthattheelectric
current is not balanced between the energized conductors and the neutral conductor. Such an
imbalance may indicate current leakage through the body of a person who is grounded and
accidentallytouchingtheenergizedpartofthecircuit.RCDsprotectpeoplefromelectricshockand
the installation from fire. They do not provide protection against overload or allshort-circuit
conditions.SuchdevicesmaybeintegratedininvertersbutspecialattentionhastobepaidtoRCD
current-timetrippingsensitivity.
Figure26 ACCircuitBreakers
4.3.9Interconnectingphotovoltaicinstallation
It is responsible for connecting the various solar panels with interconnecting boxes and other
instrumentation.Thesewiringpanelsaremadewithhighqualitymaterialstoensuredurabilityand
reliabilityofthesystemoutdoors.
The wiring must comply with the technical regulations of low voltage. Connections, cables,
equipmentandotheritemswillhavetohavethedegreeofprotectionIP535conceptde inedinthe
referenceStandards.
53
Egyptian Association for
Energy and Environment (EAEE)
The cables used will have a final layer of protection with a material resistant to weather and
moisture,sotheydonot affectyouinternallyagentsatmospheric.
Among the electrical connections between panels will use always terminal. The terminals of the
panels can be terminal in the rear of the panel or be located in a terminal box to the back of the
same box. In the first case we will have rubber caps to protect the terminals against officers
atmospheric.
The terminal box is a good solution if it meets IP535 degree of protection. In installations where
panelsarefittedinseriesandthevoltageisequaltoorgreaterthan24Vinstallbypassdiodes.
The section of the cable must not exceed 6mm. It is also necessary care systems pass the cables
through walls andceilings toprevent entry of waterinside.The technique forfixing andlaying of
cables mustbethe usual in a conventionalinstallation.The driver may be under theair tube,inthe
first case can be embedded or not. The clamping flanges shall be by subject, trying not subject to
excessive bending radii.The Splicesare made with fittings forthatpurpose,using taps provided as
possible.
4.3.10Electricaloutletcompanyjunction
This is part of the installation of a distribution network, which feeds the overall enclosure or its
equivalent functional unit (ELECTRICAL COMPANY OUTLET BOX). Cables will be copper or
aluminium,withtheline regulatedbylocallowvoltagestandardreference.
Considering itslayout,thesystem installation and gridcharacteristics,thecableswillbeinsulated,
havingaratedvoltageof0.6/lKV.Itisstressedthattheconnectionbepartoftheinstallationofthe
CompanySuppliersothatthedesignandlayoutisbasedonthesameparticularrules.
The processing centre that will connect the facility is subject to a project fully differentiated and
which will conform to the highest standards of service offered by the Commercial Electrical
Company.
4.3.11Electronicdevicesdescriptiondetail
Figure27:CDPControl“Zero”GridInjection
Figure28:DataElectricalAnalyzer.
TocontroltheselfConsumption
54
Egyptian Association for
Energy and Environment (EAEE)
Figure29:MCcurrenttransformer
Figure30:LicenseLocalSCADA DataLogger
4.3.12Overcurrentprotection systems
All circuits shall be protected against the effects of currents can submit the said same to this
disruption of this circuit will be performed at a time convenient or be dimensioned for about
intensitiespredictableTheaboveintensitiesmaybecausedby:
-
Overloadduetoappliancesuseorinsulationdefectsofgreatimpedance
Short-circuits
Atmosphericelectricaldischarges
4.3.13Overvoltageprotectionsystems
For overloadandshortcircuit protection,fusesand general (overvoltagefuses) is installed witha
MCB calibrated.
They also have other disconnectors elements to separate parts of the facility to perform
maintenance or repairs.
4.3.14GeneralProtectionBox
Theoverall enclosure isresponsiblefor safeguarding theentireelectricalinstallation froma short
circuit or tip intensity, which wouldaffectall connected components inthenetwork.Thisgeneral
enclosuremaybewornasathermalprotectionfuse.
4.3.15Systems of differentialprotection forpeople
Thegeneralcontrolandprotectiondevicesshallbelocatedasclosetothepointofindividualinput
derivation. He placed a box for switch power control immediately before the other devices in
separatesealablecompartment.
Thisboxcanbeplacedinthe sameboxwheregeneraldevicesareplacedcommandandprotection.
55
Egyptian Association for
Energy and Environment (EAEE)
Theinstaller willset permanently on theswitchboard plate,printedindelible, whichestablishes in
his name or trademark, date of completion of the installation and the rated current of the circuit
breakerswitch,protectionagainstindirect contacts ofallcircuits.
-
Ra isthesum oftheresistances of thegrounding and protectiveconductors mass.
Ia is the current that ensures operation of the protective device (current residual
assigned)
U isthe conventionallimit contact voltage.(50Vand24V inadry inwetrooms)
4.3.16Grounding securitysystem
The grounding of the installation is very important as it defines the voltage can I presented at a
given mass of metal components currently ensuring performance protection and eliminating the
risk posed by the malfunction or breakdown of any of the teams. Grounded outlets are primarily
established tolimit thevoltage thattheycanpresent atanygiven time themetalframes,toensure
the performance of protection and eliminate or reduce the risk posed by a fault in the electrical
equipment used.
56
Egyptian Association for
Energy and Environment (EAEE)
4.4Electricaldetailscheme
Attached single line scheme connected to the low voltage grid photovoltaic system and not
contemplates interfacewith switchboardsof domesticconsumption.
Figure31 Electricalscheme– FeedinTariffs
The feedintariffsinstallation, the maindifferencebetweenaselfconsumption installation isthat
forthefirstone,themeasureandprotectionisaloneinstallationwithadedicateelectricalexportto
the external grid, and the self consumption installation use the low voltage building installation
withtheexistinglowvoltageprotections.
Itisimportanttheantiislandingprotectiontopushthatnoelectricreturnwhenthebuildingisout
oftheexternalgridandthesystemneedtoincorporateanewprotectionsandcontrolsbecausethe
newPVinstallationcan'taffecttheelectricalbuildingsystem.
This is necessary to adapt the electric scheme to a self consumption installation with the low
voltagerules.Themodificationwillbelikethenextimage:
57
Egyptian Association for
Energy and Environment (EAEE)
Figure32 Electricalscheme– Self-Consumption
58
Egyptian Association for
Energy and Environment (EAEE)
Lowvoltageconnectionscheme
Figure33 Electricalconnectionscheme
Theelectricalschemehastoidentify:

NameofthePVfield

PVpowerpercircuit

Energyproductionpercircuit

Nameofthestringcircuit

NameDCCircuit

NameoftheACcircuit

DimensionoftheACcircuit

DetailElectricalevacuationcircuitandbuildingtrace(way)

DetailofPVroomwiththedeviceslocationandfixation

Identifytheinverter(dimension,modelandposition)

IdentifythejunctionBox

Identifytheconnectors

IdentifyDCsolarcablemax 6mm2

IdentifyGroundcable16mm2
59
Egyptian Association for
Energy and Environment (EAEE)

Inverterextensioncabledimesionandlocationinthedraw

Photovoltaicmodulecabledimension

Returnloopcabledimensionandlocation

Theextensioncablesdimensionandlocation

ElectricalCalculuspercircuit

Thearchitectureofconnections
Attached example of the architecture connections with the name of the loop/circuit, electrical
dimensionperloop/circuit,invertermodelperlooporcircuit,referencePVcircuit.
Figure34 Exampleofthearchitectureconnections
AboutthePVroom,attachedexampleimageforthedrawordimension scheme:
Figure35 PVroomdetails
Figure36 PVroomdetails
Theengineerhastorepresent:
60
Egyptian Association for
Energy and Environment (EAEE)

PVRoombuildinglocation

ThePVdeviceslocationinsidetheroom

THPVBoxlocationanddimension

Theinverterlocationandconnections
AllthePVroomdevices,connections,circuits,electricalevacuationcircuithastoberepresentedin
adrawwiththischapter.
61
Egyptian Association for
Energy and Environment (EAEE)
CommunicationMbusConnection
The RS 485 Mbus communication, the engineer has to detail the connections and the periferic
named devices. It is important to draw the RS 485 communication between the device and the
control.
Figure37 RS485Connectionscheme
Theelectricalconnectionschemehastorepresent:

A(+)Circuit24V

B(-)Circuit0V

GNDCircuit
The maximum length for the communication is 300 meters. If the distance is more projected the
systemneedstoinstalla24Voltageampli ier.
4.4.1MonitoringandZeroGridInjection
Thedevicestoinstalltocontroldezeroinjectiontothegridarelistedatfollowing:




CDP
CVMMini
CurrentClamps
EDS(localdataServerforSCADA)
Atthefollowingsomeimagesaboutthemonitoringdevices:
62
Egyptian Association for
Energy and Environment (EAEE)
TheelectricalSchemetoconnectthesedevices:
Figure38:DetailschemeRS485communicationandelectricalconnectionstotheCDPdevice
Theelectricalschemehastodetail:

Lowvoltagepindeviceconnection

VoltageACPinPowerConnection

Griddisconnectionpinrelaycontrol

PincurrentMeasureconnectionPVproduction(Voltageandcurrent)

Pincurrentmeasureconnection(selfconsumption)

Pincurrentmeasureforthegridelectricalconsumption

Outputsignalsforthemanagement

Relaysotutputfortheinverter
63
Egyptian Association for
Energy and Environment (EAEE)
5. SUPPORTSYSTEMDESCRIPTION
The support system solution is part of the architectural design, fulfilling the technical and the
aesthetics requirements. All three integrations follow the same principle: substitute one kind of
material necessary for construction with another that is not only capable of achieving the same
conditionsastheoriginalone,butcanalsoproduceenergy.
Theframe isincharge ofholdingthe solarpanel.Itoften willcomeina kit,inmodules,forproper
assembly and installation. In case no kit is provided, the installation must be done in accordance
withexistingregulations,whiletakinginto account the windstrength amongotherfactors.
The structuremust withstand one windspeedsofatleastupto150km/h.Thisstructure is tobe
determinedby theinclinationofthe solarpanels.
5.1
Considerationstoanalyze
5.1.1Snowloads
As a reference for the dimensioning of the systems, we have considered different criteria actions
fromtheEuroCode1(ActionsinStructures),whichcontemplatesobjectivevaluesforthecountries
inthe European Mediterranean Basin. These values can beextrapolated, atleast, tothoseAfrican
countrieswithEuropeantradition(Morocco,Algeria,TunisiaandLibya).
To be able to generate an applicable design in any of the above-mentioned zones, the average
valuesfromtheavailablereferencesofthecoastzoneshavebeenconsidered.
Theexecutionoftheseactionsandtheapplicabilityofloadshavebeenimplementedfollowingthe
sameregulation.InthecaseofTurkey,datahasbeencounteredwiththelocalregulation,TS498.
WhentalkingaboutJordan,datahasbeenmeasuredagainstwith thelocalregulationofactionsin
buildings.
Theminimumloadstoanalyzearethefollowing:
-
Weightload(0.15 KN/m2)
-
Windload(0.5 KN/m2)
5.1.2Windloads
Considering that the buildings beenanalyzed in the studio are public, an urban environment and
mediumtohighheighthavebeenassumed.Thewindfactorsconsideredarethefollowing:
-
Roughnessoftheenvironment:Urbanarea
-
Heightoverhighestlevel:35m
64
Egyptian Association for
Energy and Environment (EAEE)
-
Windbasicspeed:35m/s
Thesameaswiththe snowload,windspeedisdifferentallovertheMediterraneanareas.
Forexample,intheMediterraneanareasofFrance,thevalueisapproximately28-30m/s;inSpain,
26-28m/s;inItaly,25-31m/s;inGreece,30-36m/s;inJordan,approximately 35m/s;andmoreor
less28-36m/sinTurkeyandSyria.
IntheparticularcaseofPatrasorChania(Greece),thewindspeedisof36m/s.
ForAlexandria, MarsaMathrouh(Egypt)andAl-SaltIIrbid(Jordan),thestandardvalueof35m/s
canbeused.
5.1.3Maintenanceoverloads
This value is considered in the chases of pergola and skylights, and a value of 1,0KN applied as a
locatedloadinthemostunfavourable pointoftheprimarystructureisconsidered.
5.1.4Building’scategory
Depending on the classification of the building, calculations must be made about climatic zones,
involving multiple numeric simulations, sothatispossibletoassesstheimpactofthevariationof
theactionsinthesupportstructureforintegratedphotovoltaicsystems.
Thenumericaldiscretizationobtainedhasbeensynthesized intotwobasicbuildingtypologiesthat
will allow theinstallers to apply the results of the calculations in the evaluation of the structural
actions.Therisksareshownbelow:
-
B.1- Buildings3-5 loors,with16mmaximum height
B.2- Buildings6-9 loors,with35mmaximumheight
5.2PhotovoltaicSolutions
The layout of the modules on the cover has to be performed in order to maximize annual energy
production.Themainparametersthataffecttheperformanceofasolarinstallationare:
-
Orientation
Tilt- ShadowsonPVmodules
Electricallosses(duetocablelengthandsection;electricalconfiguration)
Ventilationofphotovoltaicmodules.
65
Egyptian Association for
Energy and Environment (EAEE)
Figure39 BIPVSelectionoptions
5.2.1RoofandSkylight
Asanexternalrooforcanopy,itsmainfunctionistoprovideawater-tightandsun-protectedarea.
It is analuminium curtain wall system, which integrates the laminated glass, with the PV cells in
between.
Figure40 OnRoofSolution
66
Egyptian Association for
Energy and Environment (EAEE)
Theskylightlightstheentrancehallandpartoftheoffices,whichiswhyitisabsolutelynecessary
tobewatertightbutalsocapableoffilteringandcontrollingthesunrays.0
Forapplications ofbigger sizes, like atriums orinterior yards,itwould benecessary todevelop a
specificstudio,asstaticintegrationwouldbeanimportantconditioningvalue.
ImageSolution
Costjustification
Figure41 Skylight
5.2.2Pergola
A pergola is an architectural and structural element, formed by a runner flanked by vertical
columns (called pillars)supportinglongitudinal beams (dormant)connecting thecolumnsofeach
side,andothercross-supportedonesabove(rafter)forsupportinganopenlatticedroof(Ichanged
stuff).Thepergolacanstandaloneorbeattachedtoabuildingorotherstructureinwhichcasethe
pillarsareoftenremovedandsecuredtotheback sideofthe existing structure.
Their mostcommonuse istoprotect gardenwalkways, buttheycan alsobepart ofabuilding and
givepartialsheltertopedestrianareas.
67
Egyptian Association for
Energy and Environment (EAEE)
ImagesSolutions
Costjustification
Figure42 Pergola
68
Egyptian Association for
Energy and Environment (EAEE)
5.3Construction details
5.3.1Fixationdetails
PergolaFixation: WithFrameforunsealedPergola
Figure4543 FixationPergolaDetails
PergolaFixation: WithoutFrameforunsealedPergola
Figure46 FixationPergolaDetails
69
Egyptian Association for
Energy and Environment (EAEE)
Figure47 FixationPergolaDetails
5.3.2WiringConduction
The optimum solution in terms of wiring integration is the curtain wall with crystalline modules,
wheretheconnectionboxisfixatedtoaside.
Figure48 Wiringconduction
The space between the modules and the structure can be over-dimensioned so as to be able to
conductthewiring.
For all other construction applications, it will be necessary to minimize the visual impact of the
wiringconduction,eitherbycanalizationsoverlappedintheloadingstructureorbyusingthesame
structuretoconductthewires.
70
Egyptian Association for
Energy and Environment (EAEE)
Figure49 Examplewiringconductionsminimized
6. SYSTEMMAINTENANCE
Maintaining a photovoltaic installation is scarce. This is practically reduced to
cleaning modules,reviewconnections and securityfeatures. In somesituationsit
may benecessary todisconnect thenetwork,whichwouldtherefore resultinsmall
losses.
Toensurehigh productivityoftheplantitis essentially reduced downtimes caused
by a system failure or malfunction. For this reason,a good supervision system is
neededbytheuser,offeringgood ServiceAssistance.
Standardmaintenanceoperation
Periodiccleaningofthemodulesshouldbedoneonceayear.Payattentiontotheinverter
(Leds,status indicators and alarms) indifferent sunlightconditions, as thisis oneof the
least reliable parts of the system’s equipment. Maintain control of the electrical
connectionsandwiringmodules.Carryoutvisualinspectionofthemodulestoverifyglass
breakage,moisturepenetrationinsidethemodule,andconnectionfailuresintheeventof
breakdown.
Other issues of operational maintenance include background checking electrical
protectionelementsforpersonalsafetyandtheoperationofthefacility.Ingeneral,revise
allequipment,wiring,connectionsandsupportstructures.
71
Egyptian Association for
Energy and Environment (EAEE)
The objective of maintenance is to prolong the life of the system, and to ensure good
performanceandproductivityoftheplant,especiallywhereinstallationsconnectedtothe
gridofferbackfinancialrewardsofenergyproduction.
Planningstandardmaintenanceoperation
I.
USE AND SPECIFICATIONS
-
Shouldbekeptwithinacceptablelimitsoperatingconditions,performance,
protectionanddurabilityoftheinstallation.
-
Should be replaced with items worn by use, to ensure the system works
properlyduringtheirlifetime.
-
Should be observed main operating parameters (voltage and power) to
verifythecorrectoperationoftheinstallation.
II.
MAINTENANCEBYQUALIFIEDPROFESSIONAL
-
Everysixmonths:
-
Checkingelectricalprotection
-
Checking the status of modules, checking the situation with respect to the
originalprojectandverifyingthestatusofconnections
-
Checkingthestatusoftheinverter,itsoperation,lightsandalarmsignaling
-
Checking the status of mechanical cables, terminals, plates, transformers,
fans,pumps,unions andcleaning.
7. ENERGY STUDY
To estimate power generation as realistically as possible in the simulation, it is
necessarytoscheduleandusesunlighttointegrateallsystemlosses.Forthis,we
usethesoftwareversionPVSyst,developedbytheUniversityofGeneva.This one
ofthemostrecognizedsoftwareinthefieldandtakesintoaccountthemethodof
calculationdescribedabove(seecalculationdetailsinannexes).
Forthe study, we carriedout a simulation usingPVSyst,whichtook into account
sizeanddataanalysis forthecompletePVsystem,andwasreproducedinsimilar
conditionsastheprojects.
72
Egyptian Association for
Energy and Environment (EAEE)
To carry out an estimation of energy production, it is necessary - apart from the
characteristics of photovoltaic glazing - to take into consideration the following
information:
 Orientation: corresponding to the orientation of the photovoltaic surface
respecttotheSouth.
 Inclination: angle that corresponds to the surface of the module and
photovoltaicglassandthehorizontalplane.
 Shadows: shadow effects felt by the orientation of the facade, where the
valueisrepresentedin%.
 Installed power: real power is installed, calculated from the maximum
outputofpeakpowerofthesumofallthesolarpanelsthatcomposeit.
 System loses: includes all the components, with special attention to the
cablevoltagedrop.
Theconceptsdefinedintheenergyestimationarethese:
 PVpowermodules:thesumtotalofindividualpowermodulesizinginthe
proposal.
 Power Inverter: the inverter rated power necessary to optimize the
performanceoftheinstallation.Thispowerratingisusuallybetween8and
14%lessthanthePVpowermodules.
 Annual energy produced: the result of expected annual energy obtained
fromtheinstallationlocationconditions,slope,orientation,powercapacity
andsystemefficiencyestimates.
 RatiokWh/kWp:representsthetotalnumberofhoursofplantoperation
underratedpowerinayear.
 Ratio kWh/m2 or kWh / ml: represents the energy production per square
meter of front panel in the case of integrated, or energy production per
meterinthecaseofBrieSoleil.
 Performanceratio(PR):definedastherelationshipenterstheenergythata
PVsystemactuallysoldtothegrid,andwouldsellahypotheticalPVsystem
ideal, defined as one whose solar cells always work at reference
temperature(25°C)andthatotherwiseisfreeoflosses.
 AnnexreportPVSYST program
Theresultsobtainedareshowninthefollowingchapter:
73
Egyptian Association for
Energy and Environment (EAEE)
74
Egyptian Association for
Energy and Environment (EAEE)
8. ENVIRONMENTALBALANCE
Notallenergysourcespollutethesameorcausethesameemissions.Forexample,
coal is more polluting than diesel, which in turn produces more emissions than
naturalgas.
Photovoltaicenergyhelpsreduceemissionsofpollutantsintotheenvironmentof
themaingreenhousegasesareCO2,SO2,and NOX.
To calculate the savings in emissions, we used the value of emissions involved
generatingone.
Thebenchmarksareshown:
GAS
CO2
SO2
NOx
ELECTRICITY
0.503Kg/kWh
0.00023Kg/kWh
0.00047Kg/kWh
Withtotalproductionoftheproposedfacilityisasavingof
ANNUALPRODUCTIONESTIMATED(kWh/year):
EMISSIONSSAVINGS
CO2(Kg.)
SO2(Kg.)
NOx(Kg.)
135438
68.938
31.150
63.655
9. BIBLIOGRAPHY
[1] A.T.KEARNEYandESTELA.“SolarThermalElectricity2025”.June2010.
[2] Greenpeace International, SolarPACES and ESTELA. “Solar Power Global
Outlook09”,2009.
[3] http://www.ripassoenergy.com/images/pressrelease/Ripasso_Energy_Rele
ase_15Jan_2013.pdf(RipassoEnergy)checkedinJuly2013
[4] Kalagirou,S.A.“SolarEnergyEngineering”ProcessesandSystems.Chapter
ten– SolarThermalPowerSystems.Elsevier,2009.
75
Egyptian Association for
Energy and Environment (EAEE)
[5] http://www.window.state.tx.us/specialrpt/energy/renewable/solar.php
(WindowonStateGovernment)checkedbyJuly2013.
[6] http://www.unitedsunsystems.com/ (United Sun Systems) checked in July
2013
[7] http://electricidad-viatger.blogspot.com.es/2008/07/interruptoresautomticos-magnetotrmicos.htmlcheckedinDecember2013
[8] Ministerio de Ciencia y Tecnología “Reglamento Electrotécnico de Baja
Tensió n”Setiembre2002
[9] http://www.engineeringtoolbox.com/propylene-glycol-d_363.html
The
EngineeringToolboxcheckedinDecember2013.
[10]
http://www.circutor.es. Documents Photovoltaic solutions sellf
consumtion
[11]
http://www.Fronius.com.SelfConsumption-Ivertersolutions
[12]
http://www.SMA.com Photovoltaic products & self consumption
solutions
[13]
http://www.IDAE.es GuíadelautoconsumoFotovoltaico
[14]
http://www.albasolar.es
[15]
CIRCUTOR.cat_autoconsumo_GB.pdf
[16]
CIRCUTOR.CDPselfconsumption
[17]
CIRCUTOR.Guíatécnicaparaelautoconsumo
[18]
CIRCUTOR.Certificadodegarantíaparalainyeccióncero.
[19]
ALbaSolar.E-Catalogo_Albasolar_2014.pdf
[20]
CIRCUTOR. revista_2012_02_gb.pdf. Revista de soluciones
energéticaseficientesyautoconsumo.
[21]
CIRCUTOR.Softwareparalagestiónenergéticayautoconsumo.
[22]
www.solratys.org ClústerdelaEnergíaSolarespañola
[23]
www.suelosolar.com Asociación industria solar española. Estado de
lanormativalegislaciónenautoconsumo.
[24]
PLF.Plataformalegalproductoresfotovoltaicos.
76
Egyptian Association for
Energy and Environment (EAEE)
ANNEXI
PV SYSTSIMULATION
Energyproductionwillbesimulatedbyusinginternationallyapprovedsoftware (suchas
PVSyst), taking into account all the system technical inputs and the environmental
parameters,includingthenearbyshadows.
All the potential of PV energy production is expected to be consumed either by the
buildingorthegrid.
77
Egyptian Association for
Energy and Environment (EAEE)
78
Egyptian Association for
Energy and Environment (EAEE)
ANNEX II
WORKINGPLAN
79
4
4
4
2
2
2
3
3
3
2
2
2
2
2
3
2
1
2 Mechanical assembly - Skylight
2.1 Pre-assembly structure
2.2 Installation of PV modules
2.3 Encapsulated of structure
2.4 Sealing
2.5 Assembly - wiring cover
2.6 Review of paint
3 Mechanical assembly - Roof
3.1 Installation of studs
3.2 Laying the first row
3.3 Laying the second row
4 Mounting electrical installation
4.1 Connection of PV modules
4.2 Wiring installation
4.3 Inverters installation
4.4 General Protection Box installation
4.5 Connection to supply connection
5 Commissioning and Legalization
5.1 Checking
5.2 Commissioning
5.3 As-Built Project
5.4 Legalization
22
5
3
1
50
4
8
5
5
3
15
1
1
3
108
9
10
4
4
2
2
4
2
1 Preparation of structure and welding
Days
4
Staff
0 Administrative Process
Description of the tasks
Week 1
Month 1
Week 2
Week 3
Week 4
WORKING PLAN
Week 5
Month 2
Week 6
Week 7
Week 8
Week 9
Month 3
Week 10 Week 11
Week 12
Energy and Environment (EAEE)
Egyptian Association for
80
Egyptian Association for
Energy and Environment (EAEE)
ANNEXIII
MONITORINGSYSTEM
TheMonitoringsystemforPVinstallationshould readtheparameters;PVproductionof
three different fields: Façade, Roof and Skylight; CO2 avoided; energy consumption of
electrical loadconnected; power qualitysupplied to the load; grid power quality; export
importcapacity;and,thetotalenergyconsumptiononthebuilding.
Theparameterscanbeshownviainternetanditisrequiredthedatacanbedisplayedto
thepublicbyascreen,too.Itshouldincludeallnecessarymaterialsforinstallation(RS485
wire,software,computer,protections,etc.).
Twocomputersareneededfortheconnection,oneforthelocalconnectionandtheother
for theSCADAcentraldatabase.
Both computers have to be connected to the same grid, and have connection to the
internet. The entire system works with web pages, so the information can be retrieved
fromanycomputerhavinganInternetorintranetconnection.
Thedifferentsituationswehavetohandlearethefollowing:
1. Internalconnection
Internal connection of the "second screen" and clients on the LAN to handle this, we
havetoconfigureastaticIPaddressforthemonitoringsystem,anduseitontheclients,
oruseDHCPandbesurethatthemachinenamewillbecorrectlyupdatedontheDNS,
sowecanusethenameforaccessing.
2. Externalaccess
Onceagain,wehavetwochoices:FixatingastaticIPaddressandopeninganincoming
port (80 if possible), and having a ixed IP address or a DynDNS name for the WAN
connection,or,wecanusetheremoteviewsystemofCircutor,toputthesystemonline,
for this purpose, we'll need the outgoing connections to port 22 to be granted on or
firewall,ifany.
Becarefulaboutthesecondoption:CircutorserverislocatedinGermany,sothedata
wouldhavetogofromIndiatoGermanyandbackagain,slowingdownthesystem.A
thirdoptionwouldbehavinganexternalservercloser.
3. Remoteaccess
Themonitoringneedsremoteaccesstobothcomputersinordertoconfigurethem,do
the tests and for maintenance. For that the system use VNC, and once again we can
redirect some ports to the VNC of the computers, or use the remote view system. A
static IPaddress canconnect to global datacenter with a route for each photovoltaic
installation.
81
Egyptian Association for
Energy and Environment (EAEE)
A detailed layout of each site with suitable scale spacing between all monitoring and
control equipment shall be given by the tendrer. At the end of the project, the
ContractorshallsupplytwoCD'sloadedwithallPLCprogramsofallequipmentofthe4
buildings.
1.FEATURESOFMONITORINGSYSTEM
Remoteparameterizationofequipment
This allows parameterization of all on-line connected equipment, thus facilitating all
settingsfromthePCorservercontrol.Itallowsforviewingtheparametersinrealtime;
thereal-timedisplayofallequipment;knowingatalltimestheperformanceofthefacility;
and,thestateofelectricaldistributionlinesandthermalinstallation.
MultiSoftware(EmbeddedWebServer)
Through the internal web server, any user connected to the corporate network of the
company (LAN) or from any connected Internet point (if set in the router, Check the
company,factory,etc..TheratioofpublicIPtoprivateIP)
Youcanviewhistoricaldataorrealtimedata,whichisupdatedconstantly.
IntegratedXMLServer
Thishasspecializedtoolsoftrade,dynamicdata,inordertointegrateenergymonitoring
system overall control; containing servers communication for XML integration
(delocalizedintegration).
Inachargedistribution(orremoteinstallations),thesystemallowscontrolofindividual
consumptioneachofthefacilitiesandcentralizeinasingleEXTRUDEDcoreapplication,in
ordertoperformfullcontrolofconsumptionand/orcomparisonsimilarfacilities.
- Controltheconsumptionoftheirremotelocationsefficient,easyandsimple
- Reportsenergyareasorsitesconsumption
- Remote alarms about consumption and incidents in the mains of different areas of
consumption
- Possibilitytocomparetheconsumptionofdifferentsites.
Energymanagementsystem:Accumulationsystem
Photovoltaicsystemsinterconnectedtothenetworkarenotthebestchoiceforhousehold
consumers whose consumption depends on hours with little or no sunlight. This solar
system isintelligent,itknowswhenandwhennottoinjectenergytothebuildingbutthe
accumulationinthiscaseisnotcontemplatedintheprojectDIDSOLIT-PB.
Energymanagementsystem:InstantaneousSelfConsumptionwith zero injection
82
Egyptian Association for
Energy and Environment (EAEE)
This is ideal for those buildings with electricity consumption in daylight hours. The
equipment, the CDP family (Dynamic Power Control), adjusts the power output of
photovoltaic inverters to what is being consumed at all times. In this way, we ensure a
zeroinjectionnetwork.
Features: Zero injection to the network without energy dissipation or electromechanical
switching of dynamic power control of solar Photovoltaic modules investors by shifting
theworkingpointofthemodules.
-
Monitoringofenergyflowssystems
Datarecordingsystemoperation
Availableforbothsinglephaseandthreephase
Controllabilityofdifferentinverters
Controlrelayoffredundantnetwork
ControluptothreecircuitsinversionCDP- G(withdemandmanagement).
Dataloggingandmonitoring
 DataloggingandessentialhardwareandsoftwaresupportedwithBluetoothand
internetconnection.
 Abilitytobeconnectedwithtemperatureandsolarirradiationsensors.
SolarRadiationandTemperatureSensor
SolarIrradianceSensor
 Measuringrange0- 1500W/m2
 Sensor:isthermoelementorphotocell
 Solarspectrum:250– 2800nm
 Nonlinearity:<0.2%at0-1000W/m2
AmbientandPVmoduletemperaturesensors
 Measuringrange-20to+90°C
 Accuracy:<0.1°Cthroughthewholerange
 Resolution:atleast0.1°C
DisplayScreen
 FiveIndoorandfive outdoordisplayscreensandfourdigitalIPcameras.
 Displayscreenshallindicatethekeysystemmeasurementssuchas;Solarirradiation,
ambientandmoduletemperature,producedelectricity,savedCO2Emissions,etc..
83
Egyptian Association for
Energy and Environment (EAEE)
CDPDataloggerSCADA visionanconceptualconnectiondevices
2.DEVICESFORTHEZERO INJECTION
Thedevicestoinstalltocontroldezeroinjectiontothegridarelistedatfollowing:
 CDP(DynamicActiveControlPower&SCADAdataloggersolution)
 CVMMini(Netanalyzer)
 CurrentClamps
Thefollowingaresomeimagesaboutthemonitoringdevices:
CDPControl
NetAnalyzerControl
84
Egyptian Association for
Energy and Environment (EAEE)
ConceptualSchemeconnectionintwoWays.Powerconnectionandcommunicationconnection
CVMNetAnalyzerPowerconnection
RS485connection
85
Egyptian Association for
Energy and Environment (EAEE)
CDPControldetailconnection
86
Egyptian Association for
Energy and Environment (EAEE)
ANNEXIV
SUPPORTINGCALCULATIONS
1 ELECTRICALCALCULATIONS
1.1.Voltagedrop
Levels of electrical installation sections of conductors were calculated for currents and
voltage drops are within voltage drop of no more than 3%. After making an initial
estimateofthesectionwewillcalculatetheresultingvoltagedrop.
Wewilluse thefollowingexpressions:
Threefasesvoltage
(A)
Singlefasevoltage:
Where:
Pc= Power Calculation in Watts
L = length inmeters calculation
e= voltage drop inVolts
87
Egyptian Association for
Energy and Environment (EAEE)
K = conductivity.Copper 56.Aluminum 35
I= CurrentinAmps
U= voltage in volts (threephaseor singlephase)
S = conductorcrosssection in mm2
Cos θ = cosine ofthe powerfactor
R = Performance
N = Numberof conductorsperphase
Xu = reactance perunitlength
Wewilluse thefollowingexpressions:
Current:
Dropvoltage:
Where:
P:Activepower[W]
U:voltage[V]
I:current[A]
Cosθ:Powerfactor(value1)
AU:VoltageDropI:LengthofLine
S:Conductor[mm2]
λ:conductivityoftheconductor(copperinthiscase=56)
1.2.Wiring sizing
Sameaspreviouschapter.
88
Egyptian Association for
Energy and Environment (EAEE)
2.ENVIRONMENTALIMPACT
Notallenergysourcespollutethesameorcausethesameemissions.Forexample,coalis
morepollutingthandiesel,whichinturnproducesmoreemissionsthannaturalgas.
Photovoltaicenergyhelpsreduceemissionsofpollutantsintotheenvironmentofthemain
greenhousegasesareCO2,SO2 andNOX.
As explained in Sec. 7&.8 of Annex 1, the Bidder has to fulfil the below table of
environmentalbenefitsforeachPVsystemofthefourselectedbuildings.
Table1.Environmentalbene itsofPVsystem
REsystem- Environmentalbenefits
Annualenergysavings,electrical[kWhe]
X,XXX.XXkWh
Lifetimeenergysavings,electrical[kWhe]
25years(1%annualperformancedecrease)
X,XXX.XXkWh
CO2 emissionsavings[kgCO2/kWh]- Lifetime
X,XXX,XXkgCO2/kWh
SO2 emissionsavings[kgSO2/kWh]– Lifetim e
X,XXX,XXSO2/kWh
NOx emissionsavings[kgNOx/kWh]– Lifetime
X,XXX,XXkgNOx/kWh
89
Egyptian Association for
Energy and Environment (EAEE)
PART 2
DRAWINGSANDSCHEMS
90
Egyptian Association for
Energy and Environment (EAEE)
FOURSITES DESCRIPTION
DIDSOLIT- PB project includes the installation of 79.2 Kw of solar PV in 4 public
buildings in Matrouh city located 450 km north west of Cairo. these 4 buildings
are:
1.MatrouhGovernoratebuilding
2.M.E.I.L.S.Languageschool
3.GeneralhospitalofMatrouh
4.Public library ofMatrouh
Thedescriptionofthesitesandlocations,detailsandspecificationsgivinginthe
followingparts,representthegeneralrequirementsthatshouldbesatisfiedbythe
Bidderforeachsite.
Belowyoucanfindanon-scaledmapthatidentifiesthesite,thelocationandthe
layoutofthe4buildings.
Buildingdata
Building1: Matrouh Governorate
Building2:M.E.I.L.SSchool
•Location:ElCornishStreet,Matrouh
•Ownership:GovernorateofMatrouh
•Use:Offices
•Buildingsurface:3.200m²(approx.)
•Electricityconsumption:525.000kWh
(approx.)
•Location:ElCornishStreet,Matrouh
•Ownership:GovernorateofMatrouh
•Use:Offices,labs
•Buildingsurface:1.240m²(approx.)
•Electricityconsumption:23.623kWh
(approx.)
Building3:GeneralHospital
Building4:Public Library
•Location:AlexandriaStreet,Matrouh
•Ownership:GovernorateofMatrouh
•Use:Healthcarecentre
•Buildingsurface:11.520m²(approx.)
•Electricityconsumption:978.276kWh
(approx.)
•Location:ElCornishStreet,Matrouh
•Ownership:GovernorateofMatrouh
•Use:Culturecenter
•Buildingsurface:1.300m²(approx.)
•Electricityconsumption:Thelibrarywillbe
inauguratedonSep.2014
91
Egyptian Association for
Energy and Environment (EAEE)
SOLARENERGYSYSTEM:
Building1:Governorate
• Systemapplication:BIPVintegration,
Pergola
• PVmoduletechnology:semi-transparent
glass-laminatedcrystallinemodules
• Installedpower:44.2kWp
• Electricityproduction:40.193kWh/year
(approx.)??
Building2:School
•Systemapplication:BIPVintegration,Pergola
•PVmoduletechnology:semi-transparent
glass-laminated crystallinemodules
•Installedpower:5kWp
•Electricityproduction:8.393kWh/year
(approx.)
•Estimatedsurface:64.86m²
• Estimatedsurface:303?? m²
Building3:Hospital
Building4:Library
•Systemapplication:BIPVintegration,Pergola
•Systemapplication:BIPVintegration,Pergola
•PVmoduletechnology:semi-transparent
glass- laminateda-Sithinfilmmodules
•PVmoduletechnology:ETFElaminated
flexiblethin film(a-Si)modules
•Installedpower:20kWp
•Installedpower:10kWp
•Electricityproduction:49.760kWh/year
(approx.)
•Electricityproduction:33.173kWh/year
(approx.)
•Estimatedsurface:516??? m²
•Estimatedsurface:445.8?? m²
92
Egyptian Association for
Energy and Environment (EAEE)
Objectives&Opportunities
Building1:Governorate
•PVcoolingin16of icesofthethird loor wherenoA\Cunitsexists.ImplementingPVcoolingwill
bethefirstSolarapplicationintheregion.
•The building has an excellent visibility in the city. Local SMEs active in the field ofRES will get
experience from the operation of these innovative solar technologies and will be able to support
theminthefuture.
Building2:School
•Theoperation ofthesystemwillgivetheopportunity tostudentstoincreasetheirawarenessof
theimportanceofsolarenergy.
•Theinstallationandoperationofthesystemswillgivetheopportunitytopostgraduatestudents
todoresearchandwritedissertationsaboutthesetechnologies.
•Variouslocalschoolsandstakeholderswillbeinformedthroughseminarsandnewslettersabout
theseinnovativesolartechnologiesandtheirpossiblefutureuses
Building3:Hospital
•InstalledPVsystemgenerateselectricityandcooling.
•Theroofsurfaceandorientationaresuitableandaprimarysubstructureaspergolas,isrequired
where MORTHAN 200 PVunits ofthin ilm modules will beinstalled over 12pergolas having 2.8
meterheighteach.
Building4:Library
•ThebuildingpermanentloadsstillnotidentifiedasthelibrarywasofficiallyinauguratedonJuly
2014.
• The roof surface and orientation are suitable and a primary substructure as steel sheet is
requiredwhichwillbecoveredby147unitsof lexible thin ilmmodules(5.4x0.4m).
•Local SMEs active inthefield ofRES will getexperience from theoperation ofthese innovative
solartechnologiesandwillbeabletosupporttheminthefuture.
93
BIPV – Executive Project
BUILDING 1
BUILDING 2
BUILDING 3
BUILDING 4
MATROUH
LIBRARY
MATROUH
HOSPITAL
prepared : MAHMOUD
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
LOCATION OF 4 BUILDINGS
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D1
Sheet No.:
1 / 2
BUILDING 1
BUILDING 2
BUILDING 3
BUILDING 4
prepared : MAHMOUD
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
LOCATION OF 4 BUILDINGS
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D1
Sheet No.: 2 / 2
BUILDING 1
BUILDING 2
BUILDING 3
BUILDING 4
prepared : MAHMOUD
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
SITE OF 4 BUILDINGS
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D2
Sheet No.: 1 / 1
BUILDING 1
BUILDING 2
N
BUILDING 3
BUILDING 4
N
N
prepared : MAHMOUD
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
GENERAL PLAN (PV MODULES LAYOUT )
OF 4 BUILDINGS
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D3
Sheet No.:
1 / 1
BUILDING 1
BUILDING 2
prepared : Hany Fekry
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
WIRING DIAGRAMS OF 4 BUILDINGS
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D4
Sheet No.: 1 / 2
BUILDING 3
BUILDING 4
prepared : Hany Fekry
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
WIRING DIAGRAMS OF 4 BUILDINGS
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D4
Sheet No.: 2 / 2
BUILDING 1
BUILDING 2
prepared : Hany Fekry
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
ELECTRICAL SINGLE LINE SCHEME
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D5
Sheet No.: 1 / 2
BUILDING 3
BUILDING 4
prepared : Hany Fekry
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
ELECTRICAL SINGLE LINE SCHEME
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D5
Sheet No.: 2 / 2
BUILDING 2
BUILDING 1
1- Module
1- Module
2- Fixingbolt
2- Fixingbolt
3- Supportingangle
3- Supportingangle
4- Pergolabeam
4- Pergolabe
BUILDING 4
BUILDING 3
1- Module
1- Module
2- Fixingbolt
2- Adhesivefor
3- Supportingangle
installation
4- Pergolabeam
3- Roof
5- Gasket
prepared : MAHMOUD
Project :
EAEE
EORE
Title :
Aproved :
Development & Implementation of
Decentralized Solar Energy-Innovative
Technologies for Public Buildings
CONSTRUCTION DETAILS
Scale :
Material :
DATE: 10/11/2014
Dwg No.: D5
Sheet No.: 1 / 1
Egyptian Association for
Energy and Environment
PART 3
MEASUREMENTS
Egyptian Association for
Energy and Environment (EAEE)
3. MEASUREMENT
IntheBudgetChapter,theitemshouldbegroupedasfollows:
3.1.LOT1:Infrastructure
BOS1
Chapter
BOS1,1
Item
BOS1,2
Item
PhotovoltaicMainBoSGeneration
Ut Three-phaseinverterforgridconnection,Froniusmodel
1,000
10000,10000Worsimilar,maximumpowerinput,
maximuminputvoltage600VDC,nominaloutput10100W
maximumpoweroutputVA10160,maximumefficiency
97%.
Supplyandinstallationofthree-phaseinverterforgridconnection,
Froniusmodel10000orsimilarsystemapplicabletocontrol
injectionzeronetworkcontrollerCDPCIRCUTOR,10000W
maximumpowerinput,inputvoltageMaximum600VDC,nominal
output10100WmaximumpoweroutputVA10160,maximum
ef iciency97%input,voltagerangeof100to550Vdc,dimensions
545x290x185mm,withaluminumcasingforinstallationindooror
outdoorinstallation,switchdc,graphicLCD,RS-485andEthernet
controllerdigitalsinusoidalcurrent,readyforinstallationrail.
Includesaccessoriesrequiredforproperinstallation.Fully
assembled,connectedandtested.
Includesmounting,fixingandlevelingandconnections.
Projectmeasurementcriteria:unitdesignedaccordingtothe
graphicdocumentationoftheprojectandthetechnicaldatasheet.
Executionmeasurementcriteria:Wemeasuredthenumberofunits
actuallyexecutedaccordingtoprojectspecifications.
ut Supplyandinstallationofphotovoltaicglasslaminatedsolarmodule
forarchitecturalintegrationintofaçadeorroof.With
polycrystalline/monocrystallinesiliconcellsandglobal
transparencyover30-40%.
Moduleparameters,accordingtoprojectdatasheetrequirements.
VidursolarVS37C54P213,orsimilar,maximumpower(Wp)230
W,maximumpowervoltage(VMP)29Vintensityatmaximum
power(Imp)7.7a,short-circuitstrength(CSI)8.3a,opencircuit
voltage(Voc)35.6V,ef iciency14%,40cells,5mmtempered
glassouterdimensions1850x1200,weight60kg,withjunctionbox,
mountinghooks.
Includes execution of electrical wiring and equipment. Fully
assembled, connected and tested. Includes junction boxes, cabling
andMC3connectors.
Project measurement criteria: Area measured by graphic
documentation of project, without duplicating corners or joints,
minusallthegaps.
Execution measurement criteria: We measured the surface actually
executed according to project specifications, without duplicating
cornersorjoints,minusallthegaps.
TotalofLOT(1)
Unit
Total
price
price
Egyptian Association for
Energy and Environment (EAEE)
3.2. Measurementslist
LOT2:Services
BOS2
BOS 2.1
Chapter
Item
SecondaryStructure
m
Rigidgroundwirecable,bare,twisted16mm²section.
Supplyandinstallationofgroundconductorcableconsistingofrigid
baretwistedcableof16mm²section.Alsow/wweldedjointsmade
"afumex"bondingclampsandterminals.Completelyassembledand
testedwithestablishedconnections.
Includes:redesigningtheroute,groundconductor,wiringterminals
throughthegroundconductorjunction.
Projectmeasurementcriteria:graphicdocumentationaccordingto
specificationsoftheproject.
Executionmeasurementcriteria:Wemeasuredthecablelengththat
wasactuallyexecutedaccordingtoprojectspecifications.
BOS3
Chapter
BOS 3.1
Item
GeneralBOX
Ut
GeneralSafetyprotectionbox,withconnectionterminals,unipolar
baseswithfusescapableofmaximumintensityof160A.
Supplyandinstallationofgeneralprotectionboxinsidewallniche,
withconnectionterminalsandunipolarbaseswithfusescapableof
maximumintensityof160Atoprotectthegeneralsupplylineofd,
protectedwithenvelopeinsulation,sealedandself-ventilated.Degree
offlammabilityasindicatedinlow voltageregulations.Degreeof
protectionIP43IK08accordingtolowvoltageregulations,with
closeddoormetalprotectionhavingdegreeofprotectionIK10
accordingtolowvoltageregulationsandprotectedagainstcorrosion,
withlockorpadlock.Normalizedbythesupplierandpreparedfor
undergroundserviceconnection.Includesfastenersandconnection
withtheconductofburiedgrounding.Fullyassembled,testedand
connected.
Includes:Stakesituationductsandanchorsthebox.Fixingtheframe.
Placingthedoor.Placementoftubesandspecialpieces.Connections.
Projectmeasurementcriteria:unitdesignedaccordingtographic
documentationoftheproject.
Executionmeasurementcriteria:Wemeasuredthenumberofunits
actuallyexecutedaccordingtoprojectspecifications.
BOS 3.2
Item
Ut
SafetymeasurementwithcurrenttransformerCMT-300E,upto300A.
intensityforphase1meter,installedinsidewallnicheinfamilyhouse
orpremises.
Supplyandinstallationinsidewallniche– neworexistent-ofcurrent
transformermeasurebox,CMT- 300E,upto300Ainintensityby1
meterphase,withenvelopeinsulation,sealed,andself-ventilated
withpeepholescoveredbytransparentmaterial resistanttothe
Unit
Total
price
price
Egyptian Association for
Energy and Environment (EAEE)
actionofultravioletrays.Includescompletemeasuringequipment,
terminals,fusesandcircuitbreakerrulesforprotection.Authorizedby
thesupplierandpreparedforundergroundserviceconnection.Fully
assembled,testedandconnected.
Includes:Stakesituationductsandanchors.Fixation.Placementof
tubesandspecialpieces.Connections.
Projectmeasurementcriteria:unitdesignedaccordingtographic
documentationoftheproject.
Executionmeasurementcriteria:Wemeasuredthenumberofunits
actuallyexecutedaccordingtoprojectspecifications.
BOS4
Chapter
BOS4.1
Item
SimpleelectricalPVevacuation
m
Single-phaseshuntfixedsurfaceforgeneralservices,consistingof
unipolarcableswithcopperconductors,RZ1-K(AS)5G6mm²,andits
assignedvoltageof0.6/1kVPVCwithchannelprotectorof30x60
mm
Supplyandinstallationofsingle-phaseshuntfixedforgeneralservice
areaboundedbetweenthemeterandthecentralizationofprotection
andsafetymeasuresanddashboardandprotectionofeachuser,
comprisingunipolarcableswithcopperconductors,RZ1-K(AS)5G6
mm²,anditsassignedvoltage0.6/1kVPVCwithchannelprotectors
of30x60mm.Includesw/waccessories,fastenersandthreadcontrol
forexchangerate.Fullyassembled,testedandconnected.
Includes:Stakeandlayoutoftheline.Layingandfixingchannel.Cable
laying.Connections.
Projectmeasurementcriteria:graphicdocumentationasmeasured
accordingtolengthoftheproject.Executionmeasurementcriteria:We
measuredthelengthactuallyexecutedaccordingtoproject
specifications.
BOS5
Chapter
BOS5.1
Item
BOS-BOX.InverterandElectricalProtections
Ut
Generalboxcontrolandprotectionforphotovoltaicsystem
Supplyandinstallationofcontrolandoverallpictureprotectionfor
photovoltaicsystem.Includes2MCB’sdevicesanddifferential
protectioncircuitry
Includes:Stake.Assemblyofallcomponents.
Criteriaformeasuringproject:unitdesignedaccording tographic
documentationoftheproject.
Criterionmeasureofwork:Wemeasuredthenumberofunitsactually
executedaccordingtoprojectspecifications.
BOS5.2
Item
Ut
Electricaldistributionnetworkforphotovoltaicinstallationupto60
m²,withinteriorwiringcircuitsunderprotectivetubeorflexible
channelprotectors(PVCplastic).
Egyptian Association for
Energy and Environment (EAEE)
Supplyandinstallationofelectricaldistributionnetworkfor
photovoltaicpanelsof.
Includes:protectivetubeofflexiblePVCorcorrugatedpipeforlaying
surfacecablesinside,junctionboxeswithcoversandstripconnection
boxes,andrecessedscrewsandseveralaccessoriesnecessaryfor
properinstallation.Fullyassembled,testedandconnected.
Includes:Stakeandtracing.Layingandfixingpipes. Layingcableand
cableconnections.Placingmechanisms.
Criteriaformeasuringproject:unitdesignedaccordingtographic
documentationoftheproject.
Criterionmeasureofwork:Wemeasuredthenumberofunitsactually
executedaccordingtoprojectspecifications.
BOS6
Chapter
BOS6.1
Item
Structure
m²
Secondaryself-supportingmetallicstructure.
Supplyandinstallationofmetalframecoveredwithself-supporting
secondarystructure,comprisedofsteelprofiles,hotrolledandcold
formedgalvanizedsectionsCand“omegaU”.Alsow/wofanchor
elements.Fullyexecuted.
Includes:Stakeandmarkedaxes.Fixingandpresentationofthe
structurebycrane.Plumb.
Resolutionunions.Set-piecesandthefinaladjustmentofthejoints
betweenthedifferentcomponentsofthestructure(pairs,belts,straps,
etc.)..
Criteriaformeasuringproject:unitareameasuredaccordingto
graphicdocumentationoftheproject.
Criterionmeasureofwork:Wemeasuredtheareainrealsize
accordingtoprojectspecifications.
BOS6.2
Item
m²
Self-supportingsteelstructure,inprimarystructureordeck.
MetalstructuremadeofrolledsteelS275JR,L<10mseparationof4m
betweenframes
BOS7
Chapter
BOS.
ut
BOS8
Chapter
BOS8.1
Item
BOS9
Chapter
Air-Conditioners
Supplyandinstallationof30unitsA/C5kWcoolingeachtogether
withinteriorsplitfancoil,cables,protection,gascharge,electrical
box,etc...
Labour
ut
IncludedinBOS1,2andBOS7
Transport
Egyptian Association for
Energy and Environment (EAEE)
BOS9.1
Item
MON
Chapter
MON1
Item
ut
TransportofPVmaterials
Monitoring
Ut
ControlunittypeCDPCircutororsimilar.·Includes2sets lexclamps
andnetworkanalyzerCVMhairtype,indoorandoutdoordisplay
screens,digitalcamera.
SupplyandinstallationofcentralcontrolCDPtypeCircutorcontrol
systemsforselfconsumptionandgridconnected.Fullyassembledand
testedwiring. Includes:Stake.Layingandfixingelements.Established
connectionswiththemains. Thesystemwillallowtheintegration
includedinthisofferlicensedsoftwaresettoaSCADAsystem.
ThissystemshouldintegrateCDPperipheralcontrolanddisplayrealtimepowerandenergyvariablesandthenumberofcircuitsactivated.
The programming software must be on SCADA screens Create
Combining Different parameters from CIRCUTOR or similar
communications equipment connected to the network, and simulate
energybills. Thesoftware mustgenerate reportsfor theallocation of
energetic costs, and manage and control events using programmed
ALARMSbyuseofautomatedprocesses.Everyinstallation,nomatter
whereitis,mustusean IP connectionforthesystemtobeintegrated
inacentralSCADA.
Thesystemmustincludethefollowing:
3 phaseinverterE1336Eorsimilar
DynamicPowerControllerE51001CDP-0orsimilar
EnergyManagerM61010EDS,orsimilar
PowerAnalyzerM52081CVM,orsimilar
CurrentTransformersM73122MC-125,orsimilar
CurrentTransformerM73121MC-63,orsimilar
CurrentTransformer M73123MC-250,orsimilar
InDoorScreen
OutDoorScreen
- Camera
BOS10
Chapter
Training
BOS11
Chapter
2yearsmaintenanceduringtheGuarenteeperiod
BOS12
Chapter
Recommendedsparepartsfor3yearsofoperatioonafterthe
guarenteeperiod
BOS13
Chapter
Transport
PRO
Chapter
Project&legalization
PRO1
Item
TotalofLOT(2)
Ut
4visitstotheprojectsites,locatedatMatrouhcity,duringthe
installation,commissioningandwarrantyperiod. Includesthetravel
tothefacility.Criteriaformeasuringproject:Estimationbasedonthe
sizeofthework.
Egyptian Association for
Energy and Environment (EAEE)
ANNEX2
BIPV-PROJECTTECHNICALSPECIFICATIONS
ExecutiveProjectcontent
WWW.DIDSOLIT.EU
SUMMARY
1
Object ....................................................................................................................................................... 1
2
Generalities ........................................................................................................................................... 1
3
Definitions.............................................................................................................................................. 1
3.1
3.2
3.3
3.4
Generics .................................................................................................................................................. 1
Installation............................................................................................................................................. 1
Modules................................................................................................................................................... 2
Architectonicintegration ................................................................................................................. 3
4
Design ...................................................................................................................................................... 4
4.1
4.2
4.3
Photovoltaicgenerator ..................................................................................................................... 4
Monitoringsystem .............................................................................................................................. 4
Architectonicintegration ................................................................................................................. 5
5
Componentsandmaterials.............................................................................................................. 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
Generalities ........................................................................................................................................... 5
Photovoltaicgenerators ................................................................................................................... 6
Supportstructure................................................................................................................................ 7
Inverters ................................................................................................................................................. 8
Cables....................................................................................................................................................... 9
Connectiontogrid.............................................................................................................................10
Groundingsystem .............................................................................................................................10
HarmonicsandElectromagneticcompatibility .....................................................................11
6
Receptionandtests ..........................................................................................................................11
7
Technicalrequierementsofmaintenancecontract .............................................................12
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
Generalities .........................................................................................................................................12
MaintenanceProgram .....................................................................................................................12
Guarantees...........................................................................................................................................14
Generalscope..................................................................................................................................................14
Terms..................................................................................................................................................................14
EconomicConditions...................................................................................................................................14
Annulmentofguarantee ............................................................................................................................15
PlaceandTimeofService..........................................................................................................................15
1.OBJECT
To establish the minimum technical conditions to be met by solar photovoltaic solar installations
connectedtothegrid.
This document is intended to serve as a guide for manufacturers and installers of equipment,
defining the minimum specifications to be met by the installation to ensure its quality, for the
benefit of the user's own development of this technology. Compliance with this Technical
Specification is subject to the criteria determined by the technical director of the work or by the
projectmanagementfollowingthespecificsoftheinstallation.
Itassessesthefinalqualityoftheintermsofperformance,productionandintegration.
The scope of this Project Technical Specification (in what follows, PTS) covers all mechanical,
electricalandelectronicpartsoftheinstallations.
In certain cases for the projects, these may adopt, due to the very nature or by technological
development,differentsolutionstothoserequiredinthisPTS,providedthattheneedissufficiently
justifiedandthatitdoesnotinvolveareductionintheminimumrequirementsofqualityspecified
herein.
2 GENERALITIES
ThisTechnicalSpecificationdescribestheintegratedapplicationofallthephotovoltaicinstallations
directed for the production of electricity for sale in its entirety to the distribution grid or local
consumption.
3 DEFINITIONS
3.1 Generics
Solarradiation
Energycomingfromthesunintheformofelectromagnetwaves.
Irradiance
Power density incident on a surface or the energy incident on a surface per unit time and
unitareameasuredinkW/m2.
Irradiation
Energy incident on a surface per unit area and over a certain period of time measuredin
kWh/m2.
3.2 Installation
Photovoltaicinstallations
1
Those provisions of photovoltaic modules that convert sunlight directly into electricity
withoutanyintermediatestep.
Interconnectedphotovoltaicinstallations
Thosethatusuallyworkinparallelwiththedistributorcompany.
Connectionlineandpoint,andmeasurement
Theconnectinglineisthelinethroughwhichelectricityisconnectedformthephotovoltaic
installations to a grid point from the distribution company or with the connection of the
user, calledconnectionpointandmeasure.
AutomaticSwitchoftheInterconnection
Automaticswitchdeviceonwhichtheprotectionsforinterconnectionact
GeneralSwitch
Safety and manoeuvre device that allows separating the photovoltaic installation from the
localgridorthedistributor.
PhotovoltaicGenerator
Parallelassociationofphotovoltaicbranches.
PhotovoltaicBranches
Subset of interconnected modules in series or in parallel-series associations, with voltage
equaltothevoltageofthegenerator.
Inverters
Converterofvoltageandcurrentalternatingcurrentandvoltage.
Nominalpowerofthegeneratororpeakpower
Sumofthemaximumpowerofthephotovoltaicmodules.
Powerofphotovoltaicinstallationornominalpower
Sumofthenominalpowerofinverters(specifiedbythemanufacturer)involvedinthethree
phasesoftheinstallationatnominaloperatingconditions.
3.3 Modules
Solarorphotovoltaiccells
Devicethattransformssolarradiationintoelectricalenergy.
Technologyequivalentcells
Independent solar encapsulated cell, the technology of which the manufacturing and
packagingisidenticaltothatofphotovoltaicmodulesthatcomprisetheinstallation.
2
Photovoltaicmoduleopanel
Setofsolarcellsdirectlyinterconnectedandencapsulatedasa singleblock,amongmaterials
thatprotectitfromtheeffectsofweather.
StandardMeasurementConditions(STC)
Termsofirradianceandtemperatureinthesolarcell,universallyusedtocharacterizecells,
modulesandsolargeneratorsanddefinedasfollows:



Solarirradiance:1000W/m2
Spectraldistribution:AM1,5G
Celltemperature:25°C.
PeakPower
MaximumpowerofthephotovoltaicpanelinSTC.
NOTC(NominalOperatingTemperatureoftheCell)
Nominal Operating Temperature ofthe Cell, defined asthetemperature that the solar cells
reachwhentheyaresubjectedtotoirradianceof800 W/m2 withspectraldistribution AM
1,5G,ambienttemperatureof45°Candwindspeedof1m/s.
3.4 Architectonicintegration
Accordingtothecasesinvolved,thefollowingapplicationswillbeapplied:
Architectonicintegrationofthephotovoltaicmodules
WhenPVmodulesfulfilladualfunction,energyandarchitecture(siding,fencingor shading)
and,inaddition,replaceconventionalbuildingelements.
Siding
WhenPVmodulesarepartoftheenvelopeofarchitecturalconstruction.
Closure
Whenthemodulesaretherooforthefacadeofthebuilding’sarchitecture,havingtoensure
propersealingandinsulation.
Elementsthatcauseshades
When the photovoltaic modules protect the architectural construction from thermal
overloadcausedbythesun'srays,providingshadeontherooforinfrontofit.
Theplacement ofparallelphotovoltaic modulesinthe envelopeofthebuildingwithoutthe
dualfunctionality defined willbecalledoverlayandwillnot beconsideredasarchitectural
integration.Horizontalmoduleswithintheconceptofoverlappingwillnotbeaccepted.
3
4 DESIGN
4.1 Photovoltaicgenerator
Thephotovoltaicmoduleselectedwillmeetthespeci icationsinsection5.2.
All modules that integrate the installation will be of the same model, or in the case of different
models,thedesignmustensurefullcompatibility betweenthemandtheabsenceofnegativeeffects
ontheinstallationduetothisreason.
Intheparticularcaseofaninstallationconsistingoftwotypesofmodules,eachmoduleshouldbe
thesameinside.
Inthoserarecaseswherenon-qualifiedmodulesareused,thismustbedulyjustified;information
about the tests and trials that have been submitted must be presented. Inany event, any product
that does not meet any of the above specifications must have the express approval of Project
Management(PM).Inallcases,currentmandatorystandardsmustbefollowed.
4.2 Monitoringsystem

Monitoring System must fulfill the following requirements and the ones detailed at the
“ExecutiveProject“(EP)andthe“ProjectTechnicalSpecifications”(PTS).

Themonitoringsystemshouldenabletoreadthefollowingparameters:
- PVproductionofthedifferentPVfields
-EnergyconsumptionoftheelectricalloadconnectedtothePVfield
-Totalenergyconsumptionofthebuilding
-CO2avoided
-Powerqualitysuppliedtotheload
-Gridpowerquality
-Export-importcapacity;and,thetotalenergyconsumptiononthebuilding.




TheparameterscanbedisplayedviatheInternetwiththedatarequiredtobedisplayedona
screen for the public. All the necessary materials for installation should be included (rs485
cable,software,computer,protections,camera,etc.).
Abilitytocommunicatewithvariousbrandsofinverters,andrecordthereadingsofperipheral
equipmentthatisanalyzed.
All monitoring system works with the central websites, so that the information can be
retrieved from any computer with an Internet connection via an intranet. All inverters will
have XML programming, in order they can operate in the central server of the DIDSOLIT
project.
Thesystemmustbeabletolinkwitheachlocalwebserverandprogramaglobalenvironment
withallthefacilities.
4



Every installation will have a data logger to connect with de central DIDSOLIT server. The
dataloggerandthecontrollershouldhavethecapabilitytoworkwithdifferentinvertersand
opensystems.
At the end of the project, the Contractor shall supply hard and soft copies of the monitoring
principlesandPLCprogramsofthe4 buildings.
Invertersmustfulfilltherequirementsdetailedinthe “ExecutiveProject“(EP)andthe“Project
TechnicalSpecifications”(PTS).
4.3 Architectonicintegration
Inthecasefortryingtoperformanintegratedinstallationfromthearchitecturalpointofview.
The conditions of construction refers to the study of urban characteristics, implications for the
design,constructionperformance,theneedforrenovationorexpansion,structuralinspections,etc.
that, from the point of view of a competent professional in construction, requires his/her
intervention.
The terms of the installation refer to the visual impact, modifications in the conditions of the
building, the need to enable new areas or expand the volume of construction, effects on the
structure,etc.
Inanycase,thePMmayrequireareportonarchitecturalintegrationwiththecorrectivemeasures
tobetaken.Theownershipofthebuildingitselforbydelegation,certifyandreportoncompliance
withtherequirements.
When necessary and following the PM’s criteria, the report on architectural integration that
specifiestheurbanandarchitectoniccharacteristics,theconditionsconsideredforinclusioninthe
integration,andthecorrectivemeasurestobeincludedintheproject’sstructurewillbeattachedto
theDesignorProjectReport.
5
COMPONENTSANDMATERIALS
5.1 Generalities
As a general principle, it will be necessary to ensure at least a basic Class 1 degree of electrical
insulationregardsbothequipments(modulesandinverters)andmaterials(conductors,boxesand
connectionboxes)exceptingthecontinuouswiring,whichwillbeofdoubleinsulation.
The installation will include all the elements and features necessary to ensure the quality of
electricitysupplyatalltimes
Theperformanceofphotovoltaicinstallationshallnotleadtogridfailures,reductionsinsecurityor
alterationssuperiortothatwhichtherelevantregulationsadmit.
In addition, the operation of these installations shall not give rise to hazardous work conditions
eitherto themaintenancestaffortothestaffinvolvedintheexploitationofthedistributiongrid.
5
Thematerialsexposedtotheweatherwillbeprotectedagainstenvironmentalagents,particularly
againsttheeffectsofsunlightandmoisture.
Allthenecessaryelementsforsecurityandprotectionofthepersonsandphotovoltaicinstallations
willbeincluded,ensuringprotectionagainstdirectandindirectcontacts,shortcircuits,overloads,
aswellasotherelementsandprotectionscalledforintheapplicationofexistinglaws.
AnychangesthatoccurwithrespecttheApplication,andthemotivesforthese,willbehighlighted
intheDesignorProjectReport.Furthermore,photocopiesofthetechnicalspecificationsprovided
bythemanufacturerofallcomponentswillbeincluded.
For security purposes and operation of equipment, the indicators, labels, etc. will be in English
languageattheinstallationsite.
5.2 Photovoltaicgenerators
AllmodulesmustmeettheUNE-EN61215speci icationsforCrystallineSiliconModulesorUNE-EN
61646 for Thin Film Photovoltaic Modules, aswell asbecerti ied byarecognized laboratory (for
example,NewandRenewableEnergyAgency,NREA, etc.),whichwillgiveitsaccreditationbyway
ofpresentingtherelevantofficialcertificate.
The photovoltaic module will make clearly visible and indelible the model and manufacturer's
name or logo, as well as the individual identification or serial number traceable to the date of
manufacture.
Modules that conform to the technical specifications described below will be used. For any
deviations from these characteristics, in exceptional cases, these must be presented in the
Application,togetherwiththejustification,andmustgetapprovalbythePM.
Flashtestsofallthemodulesmust besenttothePMsothatthePMcandeterminethegroupstobe
formed so as to avoid mixing modules with large dispersion of the technical characteristics
(especiallytheshort-circuitcurrent).TheinstallerwillrespectallthegroupsspecifiedbythePM.
Themodulesshouldcarrythebypassdiodestopreventpossibledamagetothestemcellsandtheir
circuitsforpartialshadingandhaveadegreeofprotectionIP65.
Thesideframes,ifanyexist,shallbemadeofaluminiumorstainlesssteel.
For a module to be acceptable, its maximum power and short circuit conditions relating to real
standardshould becomprisedhavingthe marginof±5%ofnominalvaluesinthecorresponding
catalogue (othermarginscanbeacceptedunderspecificcircumstances).
Anymodulethatshowsmanufacturingdefectssuchascracksorstainsonanyofitselementsora
lackofalignmentinthecellorbubblesintheencapsulantwillberejected.
Highefficiencycellswillbepositivelyvalued.
6
Thestructureofthegeneratorisconnectedtothegrounding.
For security reasons and to facilitate the maintenance and repair of the generator, the necessary
elements (fuses, switches, etc.) will be installed for disconnection - independently and in both
terminals- fromeachoneofthebranchesintherestofthegenerator.
5.3 Supportstructure
Supportstructuresmustcomplywiththespecificationsofthissection.
Otherwise,ajustification ofthepointsofnon-compliancemustbeincludedintheApplicationand
intheDesignorProjectReport.AcceptanceofthesemustgetexpressedapprovalbythePM.
Thesupportstructuremustbeabletowithstand,withthemodulesinstalled,overloadingcausedby
windandsnow,inaccordancewithTechnicalCodeofBuildings(TCB).
Thedesignandconstructionofthestructureandthefixingofthemoduleswillallowthenecessary
thermal expansion without transmitting loads that may affect the integrity of the modules,
followingthemanufacturer'sinstructions.
Themountingpointsforthephotovoltaic modulewillbesufficientinnumber,takingintoaccount
the area of support and relative position, so there is no bending in the modules beyond that
permittedbythemanufacturerandbycertifiedapprovedmethodsforthemodelofthemodule.
Thedesignofthe structurewillbemadefortheorientationandangleofinclinationspecifiedbythe
photovoltaic generator, taking into account ease of assembly and disassembly, and the possible
needforreplacementitems
Thesurfacestructureisprotectedagainsttheactionofenvironmentalagents.
Drillinginthestructurewillbemadepriortoassembly,ifnecessary,inviewofthegalvanizationor
protectionofthestructure.
Thescrewsshallbemadeofstainlesssteel,complying withtheEgyptianstandard MV-106.In the
case of a galvanized structure, galvanized screws can be allowed, except when the modules are
subjectedtothesamestructure,wherestainlesssteelscrewswillbeused.
Thebufferclampingmodulesandthestructureitselfdoesnotcastshadeoverthe modules.
Inthecaseofindoorinstallationsthatalsoprovidecovertothebuilding,thedesignofthestructure
and water tightness between modules will conform to the requirements of the Technical Code of
Buildings. Inthesameway,theremustbeaguaranteetoensurenocondensation ontheinsideof
theglassisproducedduringnormaloperationwhereitislocated.
The necessary support structures for mounting the modules will exist, both for the flat surface
(terrace)andforthoseintegratedontheroof.Allaccessoriesandbenchesand/oranchorswillbe
included.
The support structure is calculated according to the TCB standard MV-103 to withstand extreme
loadsduetoadverseclimaticfactorssuchaswind,snow,etc.
7
Ifitisconstructedusingcoldformedrolledsteel,itmustmeettheTCBandthestandardMV-102to
ensureallitsmechanicalpropertiesandchemicalcomposition.
If the support type is galvanized, it must be a minimum thickness of 80 microns to eliminate
maintenancerequirementsand prolongitslife.
5.4 Inverters
Thesewillbeatypesufficientforconnectingtothegrid,havingavariableinputpowerthatenables
themtobeabletoextractthemaximumpowerthephotovoltaicgeneratorcanprovideeachdayat
alltime.
Thebasiccharacteristicsoftheinvertersarethefollowing:




Principleofoperation:currentsource
Self-commutated
Automaticmonitoringfrommaximumpowerpointofthegenerator
Antiislandingorinaisolatedway
TheinverterswillcomplywithEUdirectivesonElectricalSafetyandElectromagneticCompatibility
(bothwillbecertifiedbythemanufacturer),incorporatingprotectionsagainst:





Shortcircuitsinalternates
Mainsvoltageoutofrange
Gridfrequencyoutofrange
Surgeinvaristorsorsimilar
Disturbances present in the grid such as mini-shorts, pulses, cycle defects, absence and
returntothegrid,etc.
Eachinverterwillhavethenecessaryindicationsorsignsforproperoperationandwillincorporate
theautomaticcontrolsnecessarytoensureitsproperuseandsupervision.
Eachinverterwillincludeatleastthefollowingmanualcontrols:


Generalonandoffoftheinverter.
Connection and disconnection of the inverter interface AC. This can be external to the
inverter.
Theelectricalcharacteristicsoftheinvertersareasfollows:




Inverters should be a recognized brand and carry identification of origin, meeting the
standard"RuleofOrigin"andhavingtheECtrademarkoftheEuropeanCommunity.
Rangeofpowersbetween1kWe30kWe
DCinputvoltageupto1,000V
Theinverter willdeliverpowertothegridcontinuously intermsofsolarirradiance10%
higherthantheSTC.Also,itwillwithstand spikes ofmagnitude higherthanthe30%STC
forperiodsofupto10seconds.
8











Maximum ef iciencynotlessthan:88%(inverterslessthan5kW),95%(invertersover5
kW).
The power factor of the power generated will be greater than 0.95, between 25% and
100%ofthenominalpower.
Theinvertersconsumptioninnightmodeshouldbelessthan0.5%ofitsnominalcapacity.
Protection against: short-circuit, reverse input polarity, overload, overheating, over
frequency,underfrequency,overvoltageandundervoltage,residualcurrentprotection.
The inverters will have a minimum IP20 of protection in the interior of buildings to
inaccessiblesites,andanIP30intheinteriorofbuildingstoaccessiblesites,andIP65for
invertersinstalledoutdoors.Inanycase,theyallmustcomplywithcurrentlegislation
MustmeettherequirementsoftheLowVoltageRegulation.
Musthaverejectionor ilteringofharmonicdistortion,accordingEN61000-3-12
Protectionagainstbadweather
OpenCommunicationMBusandConnectwithacontroldeviceabletoblocktheinjectionto
theGrid,accordingtotheProjectspecifications.
Datalogger possibilitieswithEthernetcapabilities.
Monitoringsystem:
-Thesystemshallcontinuouslycollectsallthedatafromtheinvertersonthesystemside
andkeepsinformationofthesystem'sstatusatanygiventime.
-Thesystemshouldhaveenergy-efficientdatalogger,archivingandprocessingdataand
securityregulationsinnetworks.
-Invertershallhaveremotemonitoring,diagnosisandconfigurationofthesolarpower
plantfromanywherethroughwebbasedapplication.





Capabilitytobeconnectedtoexternalsensorsformonitoringenvironmentalconditions.
Guaranteed to operate from 0º to 50ºC temperature and between 0% and 85% relative
humidity.
PowerFactorAdjustable
THD<3%nominalapparentpower
Invertershallensureeasylocalizationofinternalinverterfailures,warningsandalarm
shallbeforwardedtothecontrolandmonitoringsystem.Suppliershallsubmitalistof
proposedsettingsaswarningoralarmforfailuresforapproval
5.5 CablingandConnectionboxes

Thepositivesandnegativesofeachgroupofmoduleswillbeledinseparatecables(unipolar
cables) and protected according to the legislation. The positive and negative will be lead
together as much as possible making sure these do not to create magnetic fields that can
attractlightning.

AllACandDClengthsofcablewillbeincluded.Thesemustbeofthenecessarylengthtoavoid
generating efforts by the different elements and exclude the possibility of interfering with
peopleduringnormalpedestriantraffic.
9
Allcontinuouswiringshallhavedoubleinsulationand besuitableforoutdooruse,intheopen
airorunderground.
 The connection boxes operate in both two technologies (thin film and crystalline), into low
voltage,(AC&DC)current.Inordertofulfillthelegallowvoltagerequirements,thefollowing
materialanddeviceshavetobeincluded:
ACField:
 GeneralACbreaker(maximumcurrentforeachcasetostudy)
 Differentialswitchcircuitbreaker300mA
 VPClassIIOvervoltagetransientprotection
 ACcircuitbreakerinverterprotection
 ACcircuitbreaker4Aforhandlingcurrentdevices
 ACIP65Box(metallicorplastic)
 Dataloggerincludedwiththeelectricalwiring(5modulesspaceminimumnecessary)
 Dataanalyzer(2units)withtheelectricalwiring(6modulesspaceminimumnecessary)
DCField:
 DCVPClassIIOvervoltagetransientprotectionperinvertercircuit(string)
 Differentialswitchcircuitbreaker30mApergeneralinvertercircuits
 DCswichdisconnectorperinverter circuit(String)
 ProtectionFussesperinvertercircuit(string)
 Inverserelaycurrentperinverter(includedallinvertercircuits)
 DCIP65Box(metallicorPlastic)
5.6 Connectiontogrid
Isolationswitch
 Thesystemmustcontaintwoisolationswitch(DC/ACswitches)whichcanisolatethePV
systemfromthebuildingelectricalnetwork.
 Theisolationswitchesshallbemountednearthebuildingelectricgridconnectionpoint.
 TheDCisolatingswitchesshallbe1000VDC.
5.7 ProtectionandGroundingsystem

Inthree-phaseconnectionstothegrid,theprotectionsfortheinterconnectionsateachphase
will be maximum and minimum frequency (51 Hz and 49 respectively) and maximum and
minimumvoltage(1.1umand0.85umrespectively).

Groundingrequirements

Earthing systemdesignshouldbeasperthestandardpractices.
10

PVarray,DCequipment,inverter,ACequipmentanddistributionwiringshallbeearthingas
required.

EquipmentEarthingshallconnectallnon-currentcarryingmetalreceptacles,electrical
boxes,applianceframes,chassis,andPVpanelmountingstructuresinonelongrun.The
earthingwireshouldnotbeswitchedfusedorinterrupted.

Earthingsystemshallbeelectricallyconnectedtoprovidereturntoearthfromall
equipmentindependentofmechanicalconnection.

Systemearthingnetworkshellbeconnectedtobuildingnetworkafterdoingtheneeded
teats

When the galvanic isolation between the low voltage distribution grid and the photovoltaic
generator is not performed by an isolation transformer, the items used to ensure this
conditionwillbeexplainedtheDesignorProjectReport.

Allmassesofthephotovoltaicinstallation,boththecontinuoussectionandthealternates,will
be connected to a single grounding. This grounding will be independent of the Distribution
Company,inaccordancewiththeLowVoltageRegulation.
5.8 Harmonicsandelectromagneticcompatibility

Griddisturbancelimitation

DCinjection<20mA.

LimitofharmonicsaccordingEN61000-3-12.
6 Receptionandtests
The installer will give the user a document-delivery note indicating the supply of components,
materials and the user manuals for the installation and its maintenance. This document will be
signedinduplicatebybothparties,eachretainingacopy.Themanualswillbedeliveredtotheuser
inEnglishlanguagetofacilitateproperinterpretation
Before the commissioning of all major elements (modules, inverters, meters), these shall have
passedtheperformancetestsatthefactory.Therecordofthesetests willbeattachedtothequality
certificates.
Theteststobecarriedoutbytheinstaller,regardlessofanyindicatedpreviouslyinthesePTS,will
coveratminimumthefollowing:



Operationandcommissioningofallsystems.
Testsforstartingandstoppingatdifferentmomentsofoperation.
Testing of components and protective measures, security and alarm, as well as their
performance, with the exception of the tests relating to the automatic switch-off
mechanism.
11
Upon completing the testing and implementation phase, the work will enter the Provisional
Acceptance stage. However, the Provisional Acceptance Certificate will not be signed until all
systemsandelementshave beenchecked- thatallpartsoftheinstallation have workedcorrectly
for a minimum of 240 hours straight with no interruptions or shutdowns caused by failures or
breakdownsinthesystem,whilealsohavingmetthefollowingrequirements:



DeliveryofalldocumentationrequiredintheseSpecifications.
Removalofexcessmaterialfromtheworksite.
Cleantheoccupiedareas,withtransportationofallwastetolandfill.
During this period, the supplier shall be solely responsible for the operation of the systems
supplied,andwilltraintheoperatingpersonnel.
All items supplied, as well as the installation as a whole, are protected against defects in
manufacture, installation or design in a one year guarantee, except for the photovoltaic modules
andinverters,forwhichtherewillbeaguaranteeof2yearscountingfromthedateofsignatureof
on the Provisional Acceptance Certi icate. The modules will be guaranteed for 90% of nominal
powerto10yearsand80%to25years.
The installer will, however, be obligated to repair the malfunctions that may occur when it is
determined that these come from hidden defects in design, construction, assembly or materials,
pledgingtoresolvetheseatnocharge.
7 Technicalrequirementsofmaintenancecontract
7.1 Generalities
Acontractofpreventiveandcorrectivemaintenanceforatleastthree yearswillbeestablished.
Themaintenancecontractoftheinstallationincludesalltheelementsoftheinstallation,including
thepreventivemaintenanceasrecommendedbythedifferentmanufacturers.
7.2 MaintenanceProgram
Thepurposeofthissectionistodefinethegeneralminimumconditionsthatmustbefollowedfor
thepropermaintenanceofsolarenergyphotovoltaicinstallationsconnectedtothegrid.
Two action steps are defined that include all the necessary operations during the lifetime of the
installationtoensureitsoperation,increaseitsproductionandprolongitsfunctioningstate:


Preventivemaintenance
Correctivemaintenance
The plan for preventive maintenance: these include visual inspections, verifications, and other
actions, which when applied to the installation should enable it to keep within the limits of
acceptableoperatingconditions,performance,protectionanddurability.
12
The plan for corrective maintenance: All replacement operations needed to ensure the system
worksproperlyduringitslifetime.Itincludes:



Avisittotheinstallationwhenevertheuserrequiresduetoseriousdamagetoit.
The analysis and elaboration of the budgets for repair work and necessary replacements
fortheproperoperationoftheinstallation.
Theeconomiccostsofcorrectivemaintenance,totheextentindicated,arepartoftheprice
of the annual maintenance contract. Manpower or the replacement of the equipment
necessarybeyondtheperiodofguaranteemaynotbeincluded.
Maintenance must be performed by qualified service personnel under the responsibility of the
installationcompany.
Preventive maintenance of the installation will include at least one annual visit in which the
followingactivitieswillbeundertaken:








-
Checkingofelectricalprotection.
Checking the status of the module: checking the situation with respect to the original
projectandverifyingthestateofconnections.
Checkingthestatusoftheinverter:itsoperation,signallights,alarms,etc.
Checking the mechanical state of cables and terminals (including grounding cables and
readjustments to terminals), plates, transformers, fans / pumps, unions, adjustments,
cleaning.
AcleartroubleshootingwayandcontactinformationthatEAEETechnicalteamcanusein
caseofemergencies.
Adetailedmaintenanceplanincludingamaintenancechecklistandtechnicalsupport.
AdetailedcleaningmechanismforthePVsystem.
ThecontractormustshowhisCommitmentandnotlimitedtoprovidethefollowing:
Responsetimeforproblemsolving.
Responsetimeforsolvingsoftwareorconfigurationsupport.
Responsetimefor(hardware/software)failureofthesystemorAnyother
componentsrelated.
- Actionsthatwillbetakenduringfailure.
- Responsetimeforfailedequipment oranyothercomponentsReplacements
A technical report for each of the visits will be prepared, which will indicate the state of the
installationsanddescribeanyincidences.
The record of maintenance operations carried out will be kept in a maintenance log, which
indicatestheidentificationofthemaintenancepersonnel(name,qualificationandauthorizationof
thecompany).
13
7.3 Guarantees
7.3.1 Generalscope
Notwithstandinganypossibleclaimsbythirdparties,theinstallationwillberepairedinaccordance
withthesetermsandconditionsinthecaseofabreakdownorduetofaultyassemblyordefectin
anyofthecomponents,providedithasbeenproperlyhandledinaccordancewiththeprovisionsof
theinstructionmanual.
Theguaranteeisgrantedonbehalfofthebuyeroftheinstallation,whichmustbedulyjustifiedin
the certificate of guarantee showing the date on which the certification of guarantee of the
installationisaccredited.
7.3.2 Terms
The supplier shall guarantee the installation for a minimum period of one year for all materials
used and the procedure undertaken in its assembly. For the photovoltaic modules and inverters,
theminimumguaranteeis 5years.
Ifthereisaninterruptiontotheexecutionofsupplyduetocausesthataretheresponsibilityofthe
supplier, orif there arerepairs that thesupplier must perform tocomply with the stipulations of
theguarantee,theperiodwillbeextendedforthetotaldurationoftheseinterruptions.
7.3.3 EconomicConditions
Theguaranteecoversrepairstoandreplacementsof,ifnecessary,componentsandpartsthatmay
bedefective, aswell asthelabor used inthe repair orreplacement during the valid periodofthe
guarantee.
All other expenses, such as travel time, transportation, depreciation of vehicles and equipment,
required means and the collection and return of equipment to the manufacturer’s workshop are
expresslyincluded.
In addition, the guarantee must include the labor and materials needed to make any timely
adjustmentsfortheoperationoftheinstallation.
If in a reasonable time period, the supplier is unable to fulfill the obligations contained in the
guarantee, the buyer of the installation may, upon previously written notification, set a final date
forsaidsuppliertofulfilltheseobligations.Ifthesupplierdoesnotfulfillitsobligationsinthistime
period,thebuyermay,ontheaccountandriskofthesupplier,carryoutthenecessaryreparations,
or hire a third party for carrying out these repairs, without prejudice of a possible complaint for
damagesincurredbythesupplier.
14
7.3.4 Annulmentofguarantee
Theguaranteemaybecancelledwhentheinstallationhasbeenrepaired,modifiedordisassembled,
evenifonlyinpart,bypeoplenotexpresslyauthorizedbythesupplier– whentheseareforeignto
thesupplieroroutsidethemanufacturer’stechnicalassistanceservice.
7.3.5 PlaceandTimeofService
When the user detects a defect in the operation of the installation, he or she will duly notify the
supplier. When the supplier considers that itisamanufacturing defect ofsome component, heor
shewilldulycontactthemanufacturer.
Thesupplierwilldealwithanyincidentwithinamaximumperiodofoneweekandtheresolution
oft hedamagedoneinamaximumof15days,exceptforadulyjusti iedforcemajeure.
Thefailureoftheinstallationswillberepairedbythesupplieronsite.Ifthecomponentcannotbe
repaired on site, the component will be sent to the official workshop designated by the
manufactureratthesupplier’scharge.
The supplier will carry out repairs or replacements of parts as soon as possible after receiving
noticeoffailure,butwillnotberesponsiblefordamagescausedbythedelayintheserepairswhen
handledinlessthan15calendardays.
15
ANNEX3
TENDER,TECHNICALSPECIFICATIONS
BIPVSystem
WWW.DIDSOLIT.EU
1
SUMMARY
1
Objectofcontract ................................................................................................................................ 3
2
DescriptionofWorkstobeCarriedOut...................................................................................... 5
2.1
Lot1(Supplyofequipment):Supplyofphotovoltaicmodules .......................................... 5
3
Technicalspecificationsandrequirementsofthecomponents ........................................ 5
3.1
3.2
3.2.1
3.2.2
Descriptionoftheprincipalpartsoftheproject ..................................................................... 5
TechnicalRequirements................................................................................................................... 5
Photovoltaicmodules(Lot1) .................................................................................................. 5
Characteristicsofmaterialstotender ................................................................................. 6
4
Obligationstofulfillinexecutingthecontracts ....................................................................... 7
4.1
4.2
4.2.1
4.2.2
4.2.3
Generalcriteria .................................................................................................................................... 7
Lot1(SupplyofEquipments) ......................................................................................................... 8
GeneralObligations .................................................................................................................... 8
Acquisitionofmaterial .............................................................................................................. 8
Deliveryofmaterial .................................................................................................................... 8
5
Calendarofexecutionofthecontracts ......................................................................................11
5.1
5.1.1
Deadlinesforexecutionofthecontracts ..................................................................................11
ClausesandClarifications....................................................................................................111
2
1.OBJECTOFCONTRACT
Contracting manufacturers and / or suppliers of equipment and photovoltaic
companies specializing in the installation of integrated photovoltaic systems into
buildings.
The contracting will be done through the Egyptian Association for Energy and
Environment (EAEE) , as part of the European project DIDSOLIT-PB (CBCMED
ProgrammeENPI).
The DIDSOLIT-PB’s main objective is the promotion of decentralized solar
technologiesforelectricitygenerationinpublicbuildings.
Theinvolvementofgovernmentagencies,bothregulatorsaspotentialdevelopers
and users of these technologies, as well as technology transfer between
MediterraneanregionsandthepromotionofSMEsinthesectorareotherelements
ofparticularimportance.
The previous research conducted in the project has led to the Technical Team’s
selectionoffourpublicbuildingsforcarryingoutthePVinstallation,asdescribed
intheattachedExecutiveProject.
The uncertainty of the regulatory framework in the photovoltaic field, especially
regards consumption, lead us to a zero injection to the Grid solution, despite it
being designedto be able to interact with theGridinthefuture iftheregulatory
frameworkbecomesfavourable.
The object of the contract to be performed, as defined in this Technical
Specification,isthefollowing:
LOT 1) The supply of PV modules for architectonic integration (different
technologies), which are necessary to execute the four photovoltaic installations
detailedherein.
LOT 2) The execution, installation, commissioning and legalization of four
projectswithintegratedphotovoltaicsystemsforselfconsumptionandinjectionto
theGrid.
Regards the integrated photovoltaic technologies (BIPV), the Technical Team of
the DIDSOLIT-PB project has already developed a "benchmark" of the main
components (PV modules and inverters), which has helped them to develop the
technicalandglobaleconomicproposal,aswellasthebindingExecutiveProjects
scheduleandTechnicalSpecifications.
3
These studies will be made available to the company or companies that are
awardedthetendercontract(s).
Public buildings have been previously selected and the corresponding Executive
Projects have been defined, which determine with precision the systems to be
executed.
TheseExecutiveProjects,alongwiththeTechnicalSpecifications oftheHealthand
SafetyStudy,comprisethecoreofthebindingcontract.
TheCallforTenderisstructuredin2lotsforContracting.
Lot1(Supplyofequipment):Supplyofphotovoltaicmodules
Thebidder’soffer hastocomplywiththeTender TechnicalSpecificationsandthe
ones included at: Executive Project (EP) (PV module datasheet) and Project
TechnicalSpecifications(PTS)(generalrequirements).
The bidder has to prove previous experience in PV applications supply. It is
necessary to prove a minimum supplied (installed and properly performing)
powerofabout100kWpofsimilarphotovoltaictechnology.
Lot2(ServicesandExecution):SupplyofSmallEquipment,Implementation,
Commissioning,startupandLegalization.
The bidder has to prove previous experience in PV applications installation. It’s
necessarytoproveaminimuminstalledpowerofabout50kWpofphotovoltaic
systems,includingrooftopandBIPVapplications.
Theserviceandexecutioncontractincludesallsmallsupplies,workexecution,and
the necessary monitoring and authentication to deliver the photovoltaic
installationinafullyoperationalmode.
Thebidder’soffer hastocomplywith thepresentTenderTechnicalSpecifications
andtheonesincludedat:ExecutiveProject(EP)(PVmoduledatasheet),Project
TechnicalSpecifications(PTS)(generalrequirements)andHealth&Safety(HS).
4
2.DESCRIPTIONOFWORKS TOBECARRIEDOUT
2.1Lot1 (Supplyofequipment):Supplyofphotovoltaicmodules
TheaimofthisLot istosupplymodulesforeachofthefour photovoltaicinstallations.Respecting
thespecificationsincludedintherespectiveconstructionprojects.
3. TECHNICAL SPECIFICATIONS AND REQUIREMENTS OF THE
COMPONENTS
3.1Descriptionoftheprincipalpartsoftheproject
Theprincipalandcommonpartsoftheinstallationsrequireclose-uptreatmentandstrictcontrol
overtheexecutionofthefollowing:
PhotovoltaicModulesuptake(Lot1)
Inverters(Lot2)
MonitoringSystem(Lot2)
SoftwareSelf-consumptionregimewithinjectiontotheGrid(Lot2)
Primaryandsecondarystructures(Lot2)
Lowvoltageboxes(Lot2)
Smallelectricalcomponents(Lot2)
Air-Conditioningunits(Lot2)
3.2TechnicalRequirements
(seePoint5."ComponentsandMaterials"Project TechnicalSpecificationsannex)
3.2.1Photovoltaicmodules(Lot1)
Generalaspects
Technologiesselected:
Among the possible technologies available today in the market, project DIDSOLIT-PB has focused
itsresearchanddevelopmentofarchitecturalintegrationprojectsonthefollowingtechnologies:
CrystallineSiliconLens.Modulelaminatedglass,semi-transparent(approx.15-40%transparency)
AmorphousSilicon.Modulelaminatedglass,semi-transparent(approx.10-20%transparency)
AmorphousSilicon.Flexiblemodule,withouttransparency,laminatedwithETFE
TheExecutiveProjectincludesthenumberofunits andtypeofmoduleforeachproject.
5
Themanufacturerorsuppliershallprovideatechnicalfileonthemoduleinquestion,detailingthe
technicalspecificationsandbindingittothecertificateofmanufactureandproduct.
Generic certificates will not be accepted on similar modules unless they belong to a recognized
certificateforafamilyofproducts.
The bidder must provide information and recommendations that allow validation of the
compositionandmechanicalcompatibilityofthelaminatedglassmodules,theeffectsofstaticand
dynamicloads,andofthefixingsystemsforeseen.
Allmodulesareframelessanditisexpectedthattheyareintegratedintheconstructionelementsof
thebuildingorinadjoiningstructures,bywayofauxiliaryfasteners,whilerespectingtheintegrity
ofthebuilding.
3.2.2Characteristicsofmaterialstotender
Semitransparentglass-laminatedPVmodules
GENERALREQUIREMENTS:
Mechanicalandconstructiveparameters:
The type of cells will be crystalline, 156 x 156 mm (both monocrystalline and crystalline are
accepted,providedtheyfulfiltherequestedelectricalparameters).
ThePVmodulewillbeglasslaminated.
The glass thickness indicated is a minimum value that has to be respected. However, providers,
contractors havetotaketheresponsibilityontheappropriateglassthicknessforeachapplicationproject(personalsafety,staticanddynamicloads,etc).
For crystalline modules: from 4 mm + laminations foils +cells + 4 mm, up to 6 mm, when the
integrationconditionsrequires.
PVBwillbeacceptedaslaminationlayer.IncaseEVAisproposed,themanufacturerhastodetailits
mechanicalpropertiesanddemonstrateitssuitabilityforbuildingintegrationrequirements.
The glass dimensions requested at the Projecttechnical datasheet have to be respected, unless a
deviationmarginisexplicitlyaccepted.
Manufacturersstandarddimensionsmightbenotsuitableinsomeprojects.
Manufacturersandprovidersmustcertifyeachofthecustomizedsolutions.
Depending on lighting, shadow requirements, technology and glass dimensions, the PV module
transparencymightvaryfrom10to40%.Inanycase,a minimum10%oftransparencyisrequired.
Unlessanothertransparencyisrequested
Semitransparentthin ilm:10-20%
Semitransparentcrystalline:10-40%
Alltheproviders mustinclude polishededges intheirfinaloffersinorder tominimizethe riskof
glasscracking.
PVmoduleswillinclude:
Edgeor backterminaljunctionbox(accordingtoeachtechnicaldatasheet includedintheProject).
2.5or4mm2wiringsection
ConnectorsMC3orMC4
Bypassdiodesforshadowtolerance
ProtectionIP65
Allmoduleswillbeframeless.Theyaregoingtobeintegratedintothebuildingsubstructureusing
specificfixations.
6
ThespecificparameterswillbeincludedintotheExecutiveProjectPVmoduledatasheet.
Electricalparameters:
ThespecificparameterstobefulfilledaredetailedintotheExecutiveProjectPVmoduledatasheet:
Nominalpower,ratedvoltage,ratedcurrent,opencircuitvoltage,shortcircuitcurrent,max.system
voltage,electricalprotectionclass(ClassII).
Seethe"PVmoduledatasheet"includeinExecutiveProject(EP)
Flexiblethinfilmmodules:
Generalrequirements:
Mechanicalandconstructiveparameters:
Thetypeofcellswilla-Si(amorphoussilicon).
ThePVmodulewillbeflexibleandlaminatedwithEFTE.
TheencapsulanthastobeEFTE,highlight-transmissivepolymer.
Thetotalthicknesswillbe4mm.
ThemoduledimensionsrequestedattheProjecttechnicaldatasheethavetoberespected,unlessa
deviationmarginisexplicitlyaccepted.
Themoduledoesn’thaveanytransparency.
All the providers must suggest and detail the suitable ixation systems: adhesive (3M or similar)
and/ormechanical.
PVmoduleswillinclude:
-backterminaljunctionbox(accordingtoeachtechnicaldatasheetincludedintheProject).
-2.5or4mm2wiringsection
-ConnectorsMC3orMC4
-Bypassdiodesforshadowtolerance
-ProtectionIP65
Thespecificparameterswillbe includedintotheExecutiveProjectPVmoduledatasheet
Electricalparameters:
ThespecificparameterstobefulfilledaredetailedintotheExecutiveProjectPVmoduledatasheet:
Nominalpower,ratedvoltage,ratedcurrent,opencircuitvoltage,shortcircuitcurrent,max.system
voltage,electricalprotectionclass(ClassII).
Seethe"PVmoduledatasheet"includeinExecutiveProject(EP)
4.OBLIGATIONSTOFULFILLINEXECUTINGTHECONTRACTS
4.1Generalcriteria
BiddersforLot1andLot2havetocomplywiththetechnicalrequirementsincludedintheTender
documents:
7
Executive Project for the Tender: Description report, Work Plan, Measurements, Drawings and
schemes
ProjectTechnicalSpecifications
HealthandSecurityStudy
4.2Lot1(SupplyofEquipments)
4.2.1GeneralObligations
The bidder of each contracting block will have sufficient staff in number and qualifications to
developtheappropriateservice,guaranteeingtheperformance.
Thebiddermustbeamanufacturer,andparticipateintheprocessofdevelopingthemoduleorbe
the direct distributor of it. It must offer maximum guarantees of manufacturing and post-sales
service.
The bidder must provide information and recommendations that allow for validating the
compositionandmechanicalcompatibilityofthelaminatedglassmodules,theeffectsofstaticand
dynamicloads,andofthefixingsystemsforeseen.
The bidder must ensure that the packaging allows the safe transport and integrity of equipment,
dependingontherequirementsofthe project.
Thebidderwillberesponsibleofthematerialintegrityfromthefabricationcentertothebuilding
site.Aninsurancewillberequired.
Thebidderhastocoordinate,controlandcertificatethematerialincoordinationwiththeinstaller
company(Lot2).
ThedefinitivedimensionsofthePVmoduleswillrequirethevalidationofthecompanycontracted
toexecutetheinstallation(Lot2).
Allthetransportationcostsandtaxesareincludedinthebidderoffer.Unlessitisexplicitlyagreed
withthecontractor.
4.2.2Acquisitionofmaterial
The bidder will present the details of the Technical Specifications and the manufacturer selected
priortotheawardingprocessofthecontract(AdministrativeClauses)Forscoring.
The bidder has to fulfillthe present Technical Specifications and the ones included at: Executive
Project(EP)(PVmoduledatasheet),ProjectTechnicalSpecifications(PTS)(generalrequirements)
.
4.2.3Deliveryofmaterial
Thematerialwillbedeliveredtothe4Buildingssites,fulfillingtheagreedmaximumtermagreedin
thecontractwiththecompanyresponsiblefortheinstallationofthesystem(Lot2),incaseofthis
companynotbethesameoneawardedbothcontracts.
In any case, the delivery time must not exceed three months after signing the contract with the
installercompany(Lot2).
8
AdministrativeNorms
GeneralresponsibilitiesandobligationsofTHECONTRACTEDENTITY
ThewinningbidderisobligatedtofulfiltheTechnicalSpecificationsandAdministrativeClauses as
presentedinthisCallforTender.
Documentation
ThewinningbidderwillprovidetheContractorthefollowingdocumentsandcertificates:
MaintenanceUserManualoftheproduct.
PVmoduletechnicaldatasheetandcertifications,includingthecertificationoforigin.
RuleofOrigin:
Thetenderermuststatetheoriginofsupplies.Theterm"origin"isde inedinarticles23and24of
Council Regulation (EEC) No 2913/92 of 12 October 1992 establishing the Community Customs
CodeandotherCommunitylegislationgoverningnon-preferentialorigin.
Thecertificateoforiginmustbemadeoutbythecompetentauthoritiesofthecountryoforiginof
thesuppliesandmustcomplywiththeruleslaiddownbytherelevantCommunitylegislation.
EUMemberStates:
Portugal, Spain, France, Italy, Malta, Greece, Cyprus, Bulgaria, Romania, Poland, Czech Republic,
Slovakia,Hungary,Slovenia,Austria,Germany,Lithuania,Latvia,Estonia,Finland,Sweden,Denmark,
TheNetherlands,Belgium,Luxemburg,UnitedKingdomand Ireland
ENPIPartnerCountries
Russia, Belarus, Ukraine, Moldova, Georgia, Armenia, Azerbaijan, Algeria, Egypt, Israel, Jordan,
Lebanon,Morocco,OccupiedPalestinianTerritories,SyriaandTunisia,
IPACountries
Croatia,Turkey,Albania,Bosnia,Montenegro,Serbia,KosovoandFYROM
EEA
Norway,IcelandandLiechtenstein
WHATISMEANTBYTHETERMORIGIN
For the purpose of Annex IV, the term ‘origin’ is de ined by Council Regulation34 as the economic
nationalityofgoodsininternationaltrade:
Goodsoriginatinginacountryshallbethosewhollyobtainedorproducedinthatcountry(Article23)
Goodswhoseproductioninvolvedmorethanonecountryshallbedeemedtooriginateinthecountry
where they underwent their last, substantial, economically justified processing or working in an
undertaking equipped for that purpose and resulting in the manufacture of a new product or
representinganimportantstageofmanufacture(Article24)
Suppliesandmaterialsaffectedbytheruleoforigin:
9
Includethematerials tobeusedinconstruction
DonotincludetheContractor’sownequipment(machines,tools,etc.)tobeusedduringconstruction.
COUNCIL REGULATION (EEC) No 2913/92 of 12 October 1992 establishing the Community Customs
CodeandotherCommunitylegislation governingnon-preferentialorigin.
Fabricationcertificates:
Testedaccordingto: EN14449,EN12150,EN12600,EN12543,1-6
Designedandproducedaccordingto:EN61215(Crystalline),UNE-EN61646(thin ilm),EN61730safetyclassII
Compulsorycertificates:CertificateofOrigin
Additionalcertificates:TÜVcertificate,CEcertificate
InspectionandReceptionoftheWorks
ThesupplierandinstallermustprovidetheFinalAcceptanceTest(FAT)report.
Thecontractorisresponsibletorestorethe siteinthesameoriginalconditions.
Guarantees
The supplier and installer install will guarantee for a minimum period of two years of all the
materialsusedandoftheprocedureusedinassembly(preventive/correctiveguaranteeperiod).
(seepoint6."Receptionand Tests"and7."Technical Requirements ofthemaintenance contract”for
theProjectTechnicalSpecificationsattached)
CrystallineandThinFilmsemitransparentPVmodules
2yearsproductguarantee
yearsonpoweroutputat90%
20yearsonpoweroutputat80%
ThinfilmsemitransparentPVmodules
2yearsproductguarantee
20yearsonpoweroutputat80%
FlexibleThinfilmPVmodules
2yearsproductguarantee
20yearsonpoweroutputat80%
10
5.CALENDAROFEXECUTIONOFTHECONTRACTS
5.1Deadlinesforexecutionofthecontracts
Lot1(Supplyofequipments):
The deadline for completion of supply of equipment will be 14 weeks after formally signing the
contract.
The material will be delivered to the destination defined by the contractor, fulfilling the agreed
maximum term agreed in the contract with the company responsible for the installation of the
system(Lot2),shouldthiscompanynotbethesameoneawardedbothcontracts.
Inanycase,thedeliverytimemustnotexceed12weeksafterthevalidationofthedimensionsby
theinstallercompany(Lot2).
The contractor of Lot 2 has two weeks to validate the dimensions, after the signature of the
contract.
5.1.1ClausesandClarifications
ThedelayinthedeliveryvalidationofthedimensionsbythecontractorofLot2,maybeaccepted
asgroundsforextensionofthecontract.
11
General statement on the European Union
The European Union is made up of 27 Member States who have decided to gradually link together their knowhow, resources and destinies. Together, during a period of enlargement of 50 years, they have built a zone of
stability, democracy and sustainable development whilst maintaining cultural diversity, tolerance and individual
freedoms. The European Union is committed to sharing its achievements and its values with countries and
peoples beyond its borders.
‫ﺑﯾﺎن ﻋﺎم ﻋن اﻻﺗﺣﺎد اﻷوروﺑﻲ‬
‫ ﺗم ﺑﻧﺎء ﻣﻧطﻘﺔ‬،‫ ﻋﺎﻣﺎ ً ﻣن اﻟﺗوﺳﻊ‬٥٠ ‫ وﺧﻼل ﻓﺗرة‬،ً ‫ ﻣﻌﺎ‬.‫ اﻟدول اﻷﻋﺿﺎء اﻟذﯾن ﻗرروا ﻣﻌﺎ ً رﺑط ﺧﺑراﺗﮭم واﻟﻣوارد وﻣﺻﺎﺋرھﺎ‬٢٧ ‫ﯾﺗﻛوّ ن اﻹﺗﺣﺎد اﻻوروﺑﻲ ﻣن ال‬
‫ ﯾﻠﺗزم اﻹﺗﺣﺎد اﻷوروﺑﻲ ﻓﻲ ﺗﻘﺎﺳم إﻧﺟﺎزاﺗﮫ وﻗﯾﻣﮫ ﻣﻊ‬.‫ اﻟﺗﺳﺎﻣﺢ واﻟﺣرﯾﺎت اﻟﻔردﯾﺔ‬،‫ اﻟدﯾﻣﻘراطﯾﺔ واﻟﺗﻧﻣﯾﺔ اﻟﻣﺳﺗداﻣﺔ ﻣﻊ اﻟﺣﻔﺎظ ﻋﻠﻰ اﻟﺗﻧوع اﻟﺛﻘﺎﻓﻲ‬،‫ﻣن اﻹﺳﺗﻘرار‬
.‫اﻟدول واﻟﺷﻌوب ﺧﺎرج ﺣدوده‬
General statement on the European Union (Greek)
Η Ευρωπαϊκή Ένωση αποτελείται από 27 ΚράτηΜέλη πουέχουν αποφασίσει να συνδέσουνσταδιακά
τηντεχνογνωσία, τους πόρους και τομέλλοντους. Κατάτηδιάρκεια μιας περιόδουδιεύρυνσης 50 ετών,
έχουνδημιουργήσει μαζίμια ζώνησταθερότητας, δημοκρατίας και αειφόρου ανάπτυξης διατηρώντας παράλληλα
την πολιτιστική πολυμορφία, τηδιαφορετικότητα και τις ατομικέςτουςελευθερίες. Η Ευρωπαϊκή
Ένωσηέχειδεσμευθεί να μοιράζεται τα επιτεύγματα και τις αξίεςτηςμεχώρες και λαούς που βρίσκονται
εκτόςτωνσυνόρωντης.
Statement about the Programmers
The 2007-2013 ENPI CBC Mediterranean Sea Basin Programme is a multilateral Cross-Border Cooperation
initiative funded by the European Neighbourhood and Partnership Instrument (ENPI). The Programme objective
is to promote the sustainable and harmonious cooperation process at the Mediterranean Basin level by dealing
with the common challenges and enhancing its endogenous potential. It finances cooperation projects as a
contribution to the economic, social, environmental and cultural development of the Mediterranean region. The
following 14 countries participate in the Programme: Cyprus, Egypt, France, Greece, Israel, Italy, Jordan,
Lebanon, Malta, Palestinian Authority, Portugal, Spain, Syria, Tunisia. The Joint Managing Authority (JMA) is
the Autonomous Region of Sardinia (Italy). Official Programme languages are Arabic, English and French.
‫ﺑﯾﺎن ﺣول اﻟﺑرﻧﺎﻣﺞ‬
‫إن ﺑرﻧﺎﻣﺞ‬NPI CBC MedE 2007 – 2013 ‫ ھو ﺟزء ﻣن ﺳﯾﺎﺳﺔ اﻟﺟوار‬،‫ھو ﺑرﻧﺎﻣﺞ ﻟﻠﺗﻌﺎون اﻟﻣﺷﺗرك ﻋﺑر اﻟﺣدود ﻟﺣوض اﻟﺑﺣر اﻷﺑﯾض اﻟﻣﺗوﺳط‬
‫ ﯾﮭدف ھذا اﻟﺑرﻧﺎﻣﺞ إﻟﻰ ﺗﻌزﯾز ودﻋم ﻋﻣﻠﯾﺔ اﻟﺗﻌﺎون اﻟﻣﺳﺗدام واﻟﻣﻧﺳﺟم ﻋﻠﻰ ﻣﺳﺗوى ﺣوض اﻟﺑﺣر اﻷﺑﯾض اﻟﻣﺗوﺳط‬.‫واﻟﺷراﻛﺔ اﻷوروﺑﯾﺔ وﻣن آﻟﯾﺎﺗﮭﺎ اﻟﺗﻣوﯾﻠﯾﺔ‬
‫ اﻟﺑﯾﺋﯾﺔ‬،‫ اﻹﺟﺗﻣﺎﻋﯾﺔ‬،‫ ﯾﻣوّ ل اﻟﺑرﻧﺎﻣﺞ ﻣﺷﺎرﯾﻊ اﻟﺗﻌﺎون ﻛﻣﺳﺎھﻣﺔ ﻓﻲ اﻟﺗﻧﻣﯾﺔ اﻹﻗﺗﺻﺎدﯾﺔ‬.‫وذﻟك ﻣن ﺧﻼل ﻣﻌﺎﻟﺟﺔ اﻟﺗﺣدﯾﺎت اﻟﻣﺷﺗرﻛﺔ وﺗﻌزﯾز اﻹﻣﻛﺎﻧﺎت اﻟذاﺗﯾﺔ‬
،‫ اﻷردن‬،‫ إﯾطﺎﻟﯾﺎ‬،‫ إﺳراﺋﯾل‬،‫ اﻟﯾوﻧﺎن‬،‫ ﻓرﻧﺳﺎ‬،‫ ﻣﺻر‬،‫ ﻗﺑرص‬:‫ اﻟﺗﺎﻟﯾﺔ ھﻲ اﻟدول اﻟﻣﺷﺎرﻛﺔ ﻓﻲ اﻟﺑرﻧﺎﻣﺞ‬١٤ ‫ إن اﻟدول ال‬.‫واﻟﺛﻘﺎﻓﯾﺔ ﻟﻣﻧطﻘﺔ اﻟﺑﺣر اﻷﺑﯾض اﻟﻣﺗوﺳط‬
‫ إن ﺳﻠطﺔ اﻹدارة اﻟﻣﺷﺗرﻛﺔ‬.‫ ﺗوﻧس‬،‫ ﺳورﯾّﺎ‬،‫ إﺳﺑﺎﻧﯾﺎ‬،‫ اﻟﺑرﺗﻐﺎل‬،‫ اﻟﺳﻠطﺔ اﻟﻔﻠﺳطﯾﻧﯾﺔ‬،‫ ﻣﺎﻟطﺎ‬،‫ﻟﺑﻧﺎن‬JMA ‫ إن‬.(‫ھﻲ ﻣﻧطﻘﺔ اﻟﺣﻛم اﻟذاﺗﻲ ﻟﻣﻘﺎطﻌﺔ ﺳردﯾﻧﯾﺎ ) إﯾطﺎﻟﯾﺎ‬
.‫ اﻹﻧﺟﻠﯾزﯾﺔ واﻟﻔرﻧﺳﯾﺔ‬، ‫ اﻟﻌرﺑﯾﺔ‬: ‫اﻟﻠﻐﺎت اﻟرﺳﻣﯾﺔ ﻟﻠﺑرﻧﺎﻣﺞ ھﻲ‬
Statement about the Programme
ΤοΠρόγραμμα Διασυνοριακής Συνεργασίας Μεσογειακής Λεκάνης (ENPI CBC Mediterranean Sea Basin) 20072013 είναι μια πολυμερής πρωτοβουλία Διασυνοριακής Συνεργασίας η οποία χρηματοδοτείται από
τοΕυρωπαϊκό ΜέσοΓειτονίας και Εταιρικής Σχέσης (ENPI).ΤοΠρόγραμμα έχει σαν στόχο να συμβάλει στην
προώθησητης βιώσιμης και αρμονικήςσυνεργασίας στην περιοχήτηςΜεσογειακής Λεκάνης αξιοποιώντας
πλήρωςτιςενδογενείςδυνατότητες της περιοχής και αντιμετωπίζοντας τιςκοινές προκλήσεις.Χρηματοδοτεί έργα
συνεργασίας τα οποία συμβάλλουν στηνοικονομική, κοινωνική, περιβαλλοντική και πολιτιστική ανάπτυξης
τηςΜεσογείου. ΣτοΠρόγραμμα συμμετέχουνοι ακόλουθες 14 χώρες: Κύπρος, Αίγυπτος, Γαλλία, Ελλάδα, Ισραήλ,
Ιταλία, Ιορδανία, Λίβανος, Μάλτα, Παλαιστινιακή Αρχή, Πορτογαλία, Ισπανία, Συρία, Τυνησία. Η
ΚοινήΔιαχειριστική Αρχή (ΚΔΑ) τουΠρογράμματος, είναι η ΑυτόνομηΠεριφέρεια της Σαρδηνίας (Ιταλία).
ΕπίσημεςγλώσσεςτουΠρογράμματος είναι τα Αραβικά, Αγγλικά και Γαλλικά.
12
The project DIDSOLIT-PB is implemented under the ENPI CBC Mediterranean Sea Basin Programme
(www.enpicbcmed.eu). Its total budget is 4,3 million Euro, and it is financed, for an amount of 4,1 million Euro,
by the European Union through the EuropeanNeighbourhood and Partnership Instrument. The ENPI CBC Med
Programme aims at reinforcing cooperation between the European Union and partner countries regions placed
along theshores of the Mediterranean Sea.”
Disclaimer
This publication has been produced with the financial assistance of the European Union under the ENPI CBC
Mediterranean Sea Basin Programme. The contents of this document are the sole responsibility of <BEGDIDSOLIT-PB> and can under no circumstances be regarded as reflecting the position of the European Union
or of the Programme’s management structures.
‫ﺗﻧﺑﯾﮫ‬
‫" ﻟﻘد ﺗم إﻋداد ھذه اﻟﻧﺷرة ﺑﻣﺳﺎﻋدة ﻣﺎﻟﯾﺔ ﻣن اﻹﺗﺣﺎد اﻷوروﺑﻲ ﻓﻲ إطﺎر ﺑرﻧﺎﻣﺞ اﻟﺗﻌﺎون اﻟﻣﺷﺗرك ﻋﺑر اﻟﺣدود ﻟﺣوض اﻟﺑﺣر اﻷﺑﯾض اﻟﻣﺗوﺳط‬ENPI CBC
Med" .‫ وﻻ ﺗﻌﻛس ﺗﺣت أي ظرف ﻣن اﻟظروف رأي اﻹﺗﺣﺎد اﻷوروﺑﻲ أو اﻟﮭﯾﺎﻛل اﻟداﺧﻠﯾﺔ ﻟﻠﺑرﻧﺎﻣﺞ‬--------------- ‫ إن ﻣﺣﺗوﯾﺎت ھذه اﻟوﺛﯾﻘﺔ ﻣن ﻣﺳؤوﻟﯾﺔ‬.
Disclaimer
Το παρόν έγγραφο έχει εκδοθεί με τη χρηματική συνεισφορά της Ευρωπαϊκής Ένωσης στο πλαίσιο του
Προγράμματος Διασυνοριακής Συνεργασίας Μεσογειακής Λεκάνης ENPI Med. Το περιεχόμενο αυτού του
εγγράφου είναι αποκλειστικά ευθύνη του <BEG-DIDSOLIT-PB> και δεν μπορεί σε καμιά περίπτωση να
θεωρηθεί ότι αντικατοπτρίζει τη θέση της Ευρωπαϊκής Ένωσης ή των δομών διαχείρισης του Προγράμματος.
13
EuropeanUnionweblinks
http://ec.europa.eu/world/.
EuropeAidDevelopmentandCooperationOfficehttp://ec.europa.eu/europeaid/index_en.htm
ENPICBCMedProgrammehttp://www.enpicbcmed.eu
ThispublicationhasbeenproducedwiththeassistanceoftheEuropeanUnion.
Thecontentsofthispublicationarethesoleresponsibilityoftheauthorofthis
document and can in no way be taken to reflect the views of the European
Union.”
Disclaimer– This document has been prepared solely forinformation purposes fortheuse ofthe
recipient and without any commitment or responsibility on our part. DIDSOLIT-PB(Including all
project partners) accepts no liability for any direct orconsequential loss arising from the
transmission of this information to third parties. This report is current at the date ofwriting only
andwewillnotberesponsibleforinformingyouofanyfuturechangesincircumstanceswhichmay
affecttheaccuracyoftheinformationcontainedinthisreport.
This document and the information contained herein is provided on an “As Is” basis and the
DIDSOLIT-PBdisclaimsallwarranties,expressorimplied,includingbutnotlimitedtoanywarranty
that the use of the information herein will not infringe any rights or any implied warranties of
merchantabilityorfitnessforaparticularpurpose.”
DIDSOLIT-PB is a project financed by European Union programs known as ENPI CBCMED and
regulatedbySpanishlaws.
DIDSOLIT–PBisbasedinEdificiEureka.UniversitatAutò nomadeBarcelonaCampus.08193
Bellaterra(CerdanyoladelVallés)Barcelona.Spain
14
ANNEX4
Health&SafetyStudyBIPVSystem
1
SUMMARY
1Health&SafetyStudy…………………………………………………………………………………………..……5
1.1Objectofthestudy………………………………………………………………………………………………….5
1.2Preliminaryconsiderations………………………………………………………………………………..……5
1.2.1Introduction……………………………………………………………………………………………….…..……5
1.2.2Healthandsafety…………………………………………………………………………..………………..……5
1.3Reportguide-lines………………………………………………………………….………..………………..……6
1.3.1Generalinformation…………………………………………………………………………..…………………6
1.3.2Descriptionandsummaryofhazard ……………………………………………………………………..6
1.3.3Speci ichealth&safetyinstructions…………………………………………………………………..…. 6
1.3.4Legalspeci ications…………………………………………………………………………………………….. 10
2
1HEALTH&SAFETYSTUDY
1.1Objectofthestudy
The present Health and Safety Study aims to define the necessary technical
systems for the building construction in the most adequate Health and Safety
conditions in the workplace, following the described recommendations and
articles.It willalsobeinpermanentdisposition fortheSocialSecurityand Work
Inspection and for the Technicians of the Health and Safety Technical Provincial
Departmentstoenablethemtocarry ontheirduties.
TheaimoftheHealthandSafetyStudyisto:
•Preservetheintegrityoftheworkersandsurroundingpeople
•Setupaworkorganizationthatminimizesrisks
•DeterminetherequiredfacilitiesandequipmentfortheCollectiveandIndividual
Protectionofalltheworkersinvolved
•DefinetheHygieneandtheWell-beingfacilitiesfortheworkers
•EstablishtheuseregulationsoftheSafetyElements
•Providetheworkerswiththenecessary knowledgeforthecorrectandsafeuseof
the equipmentandmachinerythattheyareentrustedwith
•ProvideforFirstAidandevacuationoftheinjured
•EstablishactionsoftheHealthandSafetyCommittees.
1.2Preliminaryconsiderations
1.2.1Introduction
PriortocommencementofinstallationorworkingwithsolarPVsystem
componentsensurethat:
•Allpersonnelinvolvedwiththeinstallation/usageofsolarPVSystem/product
has to read carefully the manuals of the equipment in these designs and be
thoroughly familiar with the health and safety aspects of solar PV systems
products.
•Preservethesemanualsandstorethemataneasilyaccessibleplace.
• All products conform to the specifications. The installer and the owner are
requested to use the product in accordance with the user Manual and under
normalconditions.
3
1.2.2Healthandsafety
Solar Electric systems contain hazardous materials and voltages. For the
protectionofyourself andotherspleasereadtheseinstructionscarefully.
•Makesurethateverybodyworkingwithyoursystemreadsandunderstandsthe
safety requirements.
•Removeallmetallicornamentslikewristwatch,jewelery,etc.,useinsulatedtools,
wear PPE'sforrelevantInstallations.
•FollowtheconnectionanddisconnectionSequenceofCables,interconnectingthe
Chargecontroller,solararray,BatteryBank,Load,voltageRegulatoretc.
•Don'tshorttheoutputterminalsofthesolarPVcomponents.
1.3Reportguide-lines
Inthenecessarycasesitcontainsandjustifiesthe Safetymeasurestopreventthe
varietyof risksthatmayariseduringthebuilding'sconstruction.
1.3.1Generalinformation
•Buildingdata- Location- Surroundings
•Contractorcompany
•AuthoroftheStudy,SiteManagerandSafetyManager
•Nearesthealthcentre- injuredevacuation
•Budget,executionplanningandmaximumnumberofworkers
•Descriptionofthebuilding:layout
•Workprocedure
•Buildingconstructionplanning
•Auxiliaryinstallations
•Availableauxiliarymeasuresatthebuildingsite.
4
1.3.2Descriptionandsummaryofhazard
Cautionsymbolsthatarenormallyusedandtheirrespectiveexplanations.
1.3.3Specifichealth&safetyinstructions
1.3.3.1Solarmodules
A photovoltaic module exposed to daylight produces electricity. It is always
necessaryto considerthePVelements(modules,moduleseries,branches)under
power,eveniftheDCand ACswitchesareopen.
The Solar Modules generate DC electricity whenever sunlight shines on the solar
cells.
•Solarmodulesshouldbemountedfirmlyontothestructure
•Potentiallylethalvoltagescanbedevelopedfromarrays.Therefore,theModules
should beshadedfromsunbyopaquesheeting,beforeanyelectricalconnections
aremadeto themodules
Whileworkingonthefacade,disconnectthemodulesfromthebuilding'selectrical
installation withthemainpowerswitch.
Neverdisconnectorconnectthemoduleswithoutfirstopeningthecircuit.
Switchoffordisconnecttheloadbeforemodifyingthebranchconnectionsonthe
modules under power. Photovoltaic systems are considered to be low voltage
systems.
However, the system's maximum voltage is generally very high. The in-series
connection of the modules will add each module's voltages; the total voltage will
exceedthesafetythresholdof 120VDCrelatedtothelowvoltage,butshouldnot
begreaterthantheinputvoltageofthe inverters.ForSUNEALphotovoltaicblade,
thismaximumvoltageis ixedat600VDC(even thoughthecomponent'scertified
protectionclassIIallowsamaximumvoltageof1000VDC).
5
1.3.3.2Controlelectronics
Controlelectronicsisnecessarytomonitorandforpropersequencingofvarious
system operationssothatthesolarenergyisutilizedefficiently.Readthe
instructionsdescribedinthe relevantproductmanualthoroughlybeforeinstalling
orworkingwiththeproduct.
Useonlyinsulatedtoolsandmetersduringinstallationandperiodicmaintenance.
Otherwise,it maygiveyouanelectricshock.
Donotinterferewithanyelectroniccomponentswhileitisinworkingcondition.It
maycontain dangerousvoltages.
Ensureallelectronicequipmentisproperlygrounded(asapplicable).
Donotattempttoservicetheunitatcomponentlevel.
Whiletroubleshooting,makesurethePCBassembliesareremovedonlyafter
disconnecting solararrayandbattery.Followtheconnectionanddisconnection
sequenceasrecommended.
1.3.3.3Grounding&lightning
Lightning is one of the most awesome phenomena of nature and produces both
electricand magneticfieldswhichvarywithdistance,frequencyandtime.Dueto
theadvantagesoflow maintenanceandautonomousoperation,solarpowerarrays
aresituatedinmanydiverse, isolatedandextremelocationsthroughouttheworld.
Protection against a direct lightning strike should only be necessary for critical
applications or where the probability of a lightning strike is high. In general
effective grounding of solar array structures and associated equipment will give
adequateprotectioninthefield.
Usethelightningprotectioncomponentsasrecommendedandinstallat
appropriateplaces
asmentionedintheinstallation/usermanual.
GroundingthesolarPVsystemisimportantforbothsafetyandprotectionagainst
lightning. Groundingtheequipmentensuresthatthesystemvoltagecannotdrift
awayfromground potentialandthusreducestheriskofelectricshocks.Adequate
groundingalsoprovidesapath forfaultcurrentsinducedbylightning.
6
Tomakethesolarpowersystemassafeandsecureaspossible,allexposedmetal
(e.g. solar array structure, charge Controller / panel enclosure, metal cable
conduits etc.) should be grounded. Use super grounding kits for grounding
purposesifitisrecommendedintheproduct /system.
Electrical grounding leakage on stationary battery installations can lead to low
temperature carbonization fires. This can happen with valve regulated batteries.
Ground leakage can also arise due to physically leaking cells or block batteries
because of damaged housings or due to leakage through the valve , especially in
caseofhorizontalinstallations.
Ground leakage is possible, for instance with earthed racks or battery
compartments or where these are in direct ground contact. Over time, acid
concentrationthroughevaporationofwater canhappen,leadingtoreducedlevel
ofinsulationresistance.Itfollowsthattheuseofinsulated racksorcompartments
isnotacompletesolutioninthelongterm.Therefore,duringinspection
ofthebattery,thefollowingsystemsarelookedfor:
•Tracesofacidonthebatteryhousing,racks,connectors
•Tracesofcorrosiononracksorcompartments
•Crystalline,whitesedimentsonthebatteryhousings,racks,compartments,
•Connectors
Duringinspections,measurementofearthleakageshouldbecarriedout.The
resultsfromthe measurements,comparedwithpreviousresults,willenable
changestobedetected.
1.3.3.4Structuralassembly
Constructionofstructuremustnotbeattemptedinhighwinds
•Caremustbetakeninliftingstructuralmembersand whileworkingatabove
groundlevel
•Protectiveheadgearshouldbewornatalltimes
•Refertorelevantdrawingsforstructuresandfoundationdetails.Followthe
installation sequence.
1.3.3.5Emergencyguide-lines
ACIDONSKINWashskinimmediatelywithwater.Removecontaminated
clothing.
Washagainandagain.
ACIDinEYESWasheyesoutwithcleanwaterforsometime.
AskforIMMEDIATEmedicalattention.
7
ACIDSPILLAGESprinklesodiumbicarbonate(bakingpowder)ontothe
affectedarea, andwashdownwithplentyofwater
ELECTRICSHOCKSwitchOFFthecircuitbreakersandgivefirstaidtothe
patientand seekimmediatemedicalattention.Neverswitch
ONtheunitunlessitis thoroughlycheckedanddiagnosedfor
reasonsofelectricshocks.
1.3.4Legalspeci ications
1.3.4.1Responsibilities
Thecontractorwillberesponsibleofthecorrectexecutionofthesafetymeasures
ofthe subcontractedparties.Hewillrespondsupportivelytotheconsequences
thatmayariseofthe attributablesubcontractor'slackofvigilance.
1.3.4.2Obligations
Thecontractcompanyhastheobligationtocomplywiththedirectivesofthe
HealthandSafety Study.
Thepersonalprotectivemeasureshavetobeapprovedbyacompetent
organisation.Iftheyare notavailableinthepresentmarket,themostadequate
onesshallbeused.Theseshallbe definedbythetechnicalcriteriaofthesafety
servicesofthecontractedcompanywiththe contractorcompany.
Takingintoconsiderationanynormalizedmodelthatcouldbeusedbythe
contractor,the accidentanddefectsreportshavetoincludethefollowing
minimuminformation:
A)Accidentreport.
-
Identificationoftheconstructionwork.
Day,monthandyearofthedaytheaccidenthappened.
Timeoftheaccident.
Nameoftheinjured.
Professionalstandingandtradeoftheinjured.
Addressoftheinjured.
Placewheretheaccidentoccurred.
Causeoftheaccident.
Apparentimportanceoftheaccident.
Possiblespecificationsofhumanerrors.
8
-
Place,personandwayinwhichthefirstaidtookplace(doctor,nurse,first
aider,other constructionworkpersonnel).
Placewheretheinjuredwastakenforhospitalization.
Witnessesoftheaccident(nominalverificationandversions).
Tocomplementthispart,areporthastobemadecontaining:
-
Howcouldithavebeenavoided??
Immediateorderstodo
B)Deficienciesreport
-
Identificationoftheconstructionwork
Dateoftheobservations
Placewheretheobservationtookplace
Reportofthedeficiencyobserved
Studytosolvetheexistingdeficiency
1.3.4.3Insurance.
It is perceptive during the building construction that the liable technicians have
professional indemnity insurance. However, the contractor has to have the
required professional indemnity insurance to cover its industrial activity. This
insurance should cover the inherent risk of its activity towards third parties of
which the contractor could be liable outside the contract, by its own fault or
negligence,orthepeopleheisliablefor.Itisunderstoodthatthisprofessional
indemnityinsurancecoverstheworkersprofessionalindemnityinsurance.
Thecontractorisobligedtohave afullcoverconstructioninsurancepolicyduring
the constructionofthebuilding,withanextensionduringthemaintenanceperiod
ofoneyearafter thefinishingdateofthebuilding.
9
ANNEX5
PVmoduledatasheet
Tobefulfilledbythesupplier
WWW.DIDSOLIT.EU
1
ANNEX 5. PV Modules Data Sheets
POLY CRYSTALINE MODULES
Glass Laminated Semitransparent Crystalline Modules
Project name and location:
Number of PV module units (approx.)
System size (approx.)
Governorate’s building, Matrouh
Technology
Glass composition
Glass/Glass laminate
44.2kWp
Encapsulant
Total thickness
Size
Weight
Transparency (%)
Module efficiency
Type of cells
Number of cells
Distance between PV cells
Junction box
Mounting (frame)
Electrical parameters (STC) 1000 W/m2
Nominal power Pnom (approx)
Power / m²
Rated Voltage [VMPP]
rated Current [IMPP]
Open circuit voltage [Voc]
Short circuit current [ISC]
Max. System voltage
Electrical protection class
Quality and Safety
Tested according
EN 14449, EN 12150, EN 12600, EN 12543,1-6
Designed and produced according
Certificates
EN 61215, EN 61730
TÜV certificate
Origen certificate
Warranty
2 year product guarantee
10 year on power output at 90%
20 years on power output at 80%
Conditions
Packaging and transportation costs
Delivery time
Parameters to be defined by the Bidder (PV module manufacturer), according to general
layout
2
POLY CRYSTALINE MODULES
Glass Laminated Semitransparent Crystalline Modules
Project name and location:
MEILS Language School, Matrouh
Number of PV module units (approx.)
System size (approx.)
5kWp
Technology
Glass composition
Glass/Glass laminate
Encapsulant
Total thickness
Size
Weight
Transparency (%)
Module efficiency
Type of cells
Number of cells
Distance between PV cells
Junction box
Mounting (frame)
Electrical parameters (STC) 1000 W/m2
Nominal power Pnom (approx)
Power / m²
Rated Voltage [VMPP]
rated Current [IMPP]
Open circuit voltage [Voc]
Short circuit current [ISC]
Max. System voltage
Electrical protection class
Quality and Safety
Tested according
Designed and produced according
Certificates
Warranty
EN 14449, EN 12150, EN 12600, EN 12543,1-6
EN 61215, EN 61730
TÜV certificate
Origen certificate
2 year product guarantee
10 year on power output at 90%
20 years on power output at 80%
Conditions
Packaging and transportation costs
Delivery time
Parameters to be defined by the Bidder (PV module manufacturer), according to general
layout.
3
THIN FILM MODULES
Glass Laminated Semitransparent Thin Film Modules
Project name and location:
Number of PV module units (approx.)
System size (approx.)
Matrouh General Hospital - Matrouh
Technology
Glass composition
Glass/Glass laminate
20kWp
Encapsulant
Total thickness
Size
Weight
Transparency (%)
Module efficiency
Type of cells
Junction box
Mounting (frame)
Electrical parameters (STC) 1000 W/m2
Nominal power Pnom (approx)
Power / m²
Rated Voltage [VMPP]
rated Current [IMPP]
Open circuit voltage [Voc]
Short circuit current [ISC]
Max. System voltage
Electrical protection class
Quality and Safety
Tested according
EN 14449, EN 12150, EN 12600, EN 12543,1-6
Designed and produced according
Certificates
EN 61215, EN 61730
TÜV certificate
Origen certificate
Warranty
2 year product guarantee
10 year on power output at 90%
20 years on power output at 80%
Conditions
Packaging and transportation costs
Delivery time
Parameters to be defined by the Bidder (PV module manufacturer), according to general
layout.
4
FLEXIBLE THIN FILM (EFTE) MODULES
EFTE Laminated Flexible Thin Film (a-Si) Modules
Project name and location:
Number of PV module units (approx.)
System size (approx.)
Public Library - Matrouh
Technology
Laminated composition
EFTE laminate flexible / Thin Film
Polymer on the front side highly transparent and UV and
weathering resistant EFTE
Encapsulant
Total thickness
Size
Weight
Transparency (%)
Module efficiency
Type of cells
Number of cells
Junction box
Mounting (frame)
Electrical parameters (STC) 1000 W/m2
Nominal power Pnom (approx)
Power / m²
Rated Voltage [VMPP]
rated Current [IMPP]
Open circuit voltage [Voc]
Short circuit current [ISC]
Max. System voltage
Electrical protection class
Quality and Safety
Tested according
Designed and produced according
EN 14449, EN 12150, EN 12600, EN 12543,1-6
EN 61215, EN 61730
Certificates
TÜV certificate
Origen certificate
2 year product guarantee
20 years on power output at 80%
Warranty
Conditions
Packaging and transportation costs
Delivery time
Parameters to be defined by the Bidder (PV module manufacturer), according to general
layout.
5