Download R&S®FS-K10x(PC) LTE Measurement Software (Uplink) User Manual

Transcript
R&S®FS‑K101/103/105PC
R&S®FSV‑K101/103/105
R&S®FSQ‑K101/103/105
EUTRA / LTE Uplink PC Software
User Manual
(=8éSZ)
User Manual
Test & Measurement
1308.9135.42 ─ 15
This manual covers the following products.
● R&S®FSQ-K101 (1308.9058.02)
●
R&S®FSQ-K103 (1309.9097.02)
●
R&S®FSQ-K105 (1309.9516.02)
●
R&S®FSV-K101 (1310.9100.02)
●
R&S®FSV-K103 (1310.9200.02)
●
R&S®FSV-K105 (1309.9780.02)
●
R&S®FS-K101PC (1309.9922.02)
●
R&S®FS-K103PC (1309.9945.02)
●
R&S®FS-K105PC (1309.9968.02)
The R&S®FS-K10xPC versions are available for the following spectrum and signal analyzers
● R&S®FSG
●
R&S®FSQ
●
R&S®FSV
●
R&S®FSVR
●
R&S®FSW
The contents of the manual correspond to version 3.40 or higher.
© 2014 Rohde & Schwarz GmbH & Co. KG
Mühldorfstr. 15, 81671 München, Germany
Phone: +49 89 41 29 - 0
Fax: +49 89 41 29 12 164
E-mail: [email protected]
Internet: www.rohde-schwarz.com
Subject to change – Data without tolerance limits is not binding.
R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.
Trade names are trademarks of the owners.
The following abbreviations are used throughout this manual: R&S®FS-K101-/K103/-K105 is abbreviated as R&S FS-K101/-K103/K105.
R&S®FS‑K101/103/105PC
Contents
Contents
1 Introduction............................................................................................ 7
1.1
Requirements for UMTS Long-Term Evolution.......................................................... 7
1.2
Long-Term Evolution Uplink Transmission Scheme................................................. 9
1.2.1
SC-FDMA........................................................................................................................9
1.2.2
SC-FDMA Parameterization..........................................................................................10
1.2.3
Uplink Data Transmission............................................................................................. 10
1.2.4
Uplink Reference Signal Structure................................................................................ 11
1.2.5
Uplink Physical Layer Procedures................................................................................ 11
1.3
References................................................................................................................... 13
2 Welcome............................................................................................... 14
2.1
Licensing the Software............................................................................................... 14
2.2
Installing the Software................................................................................................ 17
2.3
Connecting the Computer to an Analyzer................................................................ 17
2.3.1
Instrument Configuration...............................................................................................17
2.3.2
Figuring Out IP Addresses............................................................................................ 20
2.4
Application Overview..................................................................................................23
2.5
Configuring the Software........................................................................................... 25
2.5.1
Configuring the Display................................................................................................. 26
2.5.2
Configuring the Software...............................................................................................27
3 Measurements and Result Displays...................................................29
3.1
Numerical Results....................................................................................................... 30
3.2
Measuring the Power Over Time............................................................................... 33
3.3
Measuring the Error Vector Magnitude (EVM)..........................................................35
3.4
Measuring the Spectrum............................................................................................ 38
3.4.1
Frequency Sweep Measurements................................................................................ 38
3.4.2
I/Q Measurements.........................................................................................................41
3.5
Measuring the Symbol Constellation........................................................................ 46
3.6
Measuring Statistics................................................................................................... 48
3.7
3GPP Test Scenarios.................................................................................................. 50
4 General Settings...................................................................................52
User Manual 1308.9135.42 ─ 15
3
R&S®FS‑K101/103/105PC
Contents
4.1
Configuring the Measurement................................................................................... 52
4.1.1
Defining General Signal Characteristics....................................................................... 52
4.1.2
Configuring the Input.....................................................................................................53
4.1.3
Configuring the Input Level........................................................................................... 54
4.1.4
Configuring the Data Capture....................................................................................... 56
4.1.5
Configuring Measurement Results................................................................................58
4.1.6
Configuring Time Alignment Measurements................................................................. 61
4.2
Configuring MIMO Measurement Setups.................................................................. 61
4.3
Triggering Measurements.......................................................................................... 63
4.4
Spectrum Settings...................................................................................................... 64
4.4.1
Configuring SEM and ACLR Measurements.................................................................64
4.4.2
Configuring Spectrum Flatness Measurements............................................................ 66
4.5
Advanced Settings...................................................................................................... 66
4.5.1
Controlling I/Q Data.......................................................................................................67
4.5.2
Configuring the Baseband Input....................................................................................67
4.5.3
Using Advanced Input Settings..................................................................................... 68
4.5.4
Configuring the Digital I/Q Input.................................................................................... 69
4.5.5
Global Settings..............................................................................................................69
5 Demod Settings....................................................................................71
5.1
Configuring Uplink Signal Demodulation................................................................. 71
5.1.1
Configuring the Data Analysis.......................................................................................71
5.1.2
Compensating Signal Errors......................................................................................... 74
5.2
Defining Uplink Signal Characteristics..................................................................... 75
5.2.1
Defining the Physical Signal Characteristics.................................................................75
5.2.2
Configuring the Physical Layer Cell Identity..................................................................77
5.2.3
Configuring Subframes................................................................................................. 78
5.3
Defining Advanced Signal Characteristics............................................................... 83
5.3.1
Configuring the Demodulation Reference Signal.......................................................... 83
5.3.2
Configuring the Sounding Reference Signal................................................................. 85
5.3.3
Defining the PUSCH Structure......................................................................................88
5.3.4
Defining the PUCCH Structure......................................................................................90
5.3.5
Defining the PRACH Structure......................................................................................92
5.3.6
Defining Global Signal Characteristics..........................................................................93
User Manual 1308.9135.42 ─ 15
4
R&S®FS‑K101/103/105PC
Contents
6 Analyzing Measurement Results........................................................ 95
7 Data Management................................................................................ 98
7.1
Importing and Exporting I/Q Data.............................................................................. 98
7.2
Managing Frame Data................................................................................................. 99
7.3
Customizing Reference Symbols............................................................................ 100
7.4
Importing and Exporting Limits............................................................................... 101
8 Measurement Basics......................................................................... 102
8.1
Symbols and Variables............................................................................................. 102
8.2
Overview.................................................................................................................... 103
8.3
The LTE Uplink Analysis Measurement Application............................................. 103
8.3.1
Synchronization...........................................................................................................104
8.3.2
Analysis.......................................................................................................................105
8.4
MIMO Measurement Guide....................................................................................... 107
8.4.1
MIMO Measurements with Signal Analyzers.............................................................. 107
8.4.2
MIMO Measurements with Oscilloscopes................................................................... 111
8.5
Performing Time Alignment Measurements........................................................... 113
8.6
SRS EVM Calculation................................................................................................114
9 Remote Commands........................................................................... 116
9.1
Overview of Remote Command Suffixes................................................................ 116
9.2
Introduction............................................................................................................... 117
9.2.1
Long and Short Form.................................................................................................. 117
9.2.2
Numeric Suffixes......................................................................................................... 118
9.2.3
Optional Keywords...................................................................................................... 118
9.2.4
| (Vertical Stroke).........................................................................................................118
9.2.5
SCPI Parameters........................................................................................................ 119
9.3
Remote Commands to Select a Result Display......................................................121
9.4
Remote Commands to Perform Measurements..................................................... 122
9.5
Remote Commands to Read Numeric Results....................................................... 123
9.6
Remote Commands to Read Trace Data................................................................. 130
9.6.1
Using the TRACe[:DATA] Command.......................................................................... 130
9.6.2
Reading Out Limit Check Results............................................................................... 140
9.7
Remote Commands to Configure General Settings.............................................. 150
User Manual 1308.9135.42 ─ 15
5
R&S®FS‑K101/103/105PC
Contents
9.7.1
Remote Commands for General Settings................................................................... 150
9.7.2
Configuring MIMO Measurement Setups....................................................................157
9.7.3
Using a Trigger............................................................................................................160
9.7.4
Configuring Spectrum Measurements.........................................................................161
9.7.5
Remote Commands for Advanced Settings................................................................ 164
9.8
Remote Commands to Configure the Demodulation.............................................167
9.8.1
Remote Commands for UL Demodulation Settings.................................................... 167
9.8.2
Remote Commands for UL Signal Characteristics......................................................171
9.8.3
Remote Commands for UL Advanced Signal Characteristics.....................................178
9.9
Configuring the Software......................................................................................... 189
9.10
Managing Files.......................................................................................................... 190
List of Commands..............................................................................192
Index....................................................................................................197
User Manual 1308.9135.42 ─ 15
6
R&S®FS‑K101/103/105PC
Introduction
Requirements for UMTS Long-Term Evolution
1 Introduction
Currently, UMTS networks worldwide are being upgraded to high speed downlink
packet access (HSDPA) in order to increase data rate and capacity for downlink packet
data. In the next step, high speed uplink packet access (HSUPA) will boost uplink performance in UMTS networks. While HSDPA was introduced as a 3GPP Release 5 feature, HSUPA is an important feature of 3GPP Release 6. The combination of HSDPA
and HSUPA is often referred to as HSPA.
However, even with the introduction of HSPA, the evolution of UMTS has not reached
its end. HSPA+ will bring significant enhancements in 3GPP Release 7. The objective
is to enhance the performance of HSPA-based radio networks in terms of spectrum
efficiency, peak data rate and latency, and to exploit the full potential of WCDMAbased
5 MHz operation. Important features of HSPA+ are downlink multiple input multiple output (MIMO), higher order modulation for uplink and downlink, improvements of layer 2
protocols, and continuous packet connectivity.
In order to ensure the competitiveness of UMTS for the next 10 years and beyond,
concepts for UMTS long term evolution (LTE) have been investigated. The objective is
a high-data-rate, low-latency and packet-optimized radio access technology. Therefore, a study item was launched in 3GPP Release 7 on evolved UMTS terrestrial radio
access (EUTRA) and evolved UMTS terrestrial radio access network (EUTRAN). LTE/
EUTRA will then form part of 3GPP Release 8 core specifications.
This introduction focuses on LTE/EUTRA technology. In the following, the terms LTE
or EUTRA are used interchangeably.
In the context of the LTE study item, 3GPP work first focused on the definition of
requirements, e.g. targets for data rate, capacity, spectrum efficiency, and latency.
Also commercial aspects such as costs for installing and operating the network were
considered. Based on these requirements, technical concepts for the air interface
transmission schemes and protocols were studied. Notably, LTE uses new multiple
access schemes on the air interface: orthogonal frequency division multiple access
(OFDMA) in downlink and single carrier frequency division multiple access (SC-FDMA)
in uplink. Furthermore, MIMO antenna schemes form an essential part of LTE. In an
attempt to simplify protocol architecture, LTE brings some major changes to the existing UMTS protocol concepts. Impact on the overall network architecture including the
core network is being investigated in the context of 3GPP system architecture evolution (SAE).
●
●
●
Requirements for UMTS Long-Term Evolution......................................................... 7
Long-Term Evolution Uplink Transmission Scheme................................................. 9
References..............................................................................................................13
1.1 Requirements for UMTS Long-Term Evolution
LTE is focusing on optimum support of packet switched (PS) services. Main requirements for the design of an LTE system are documented in 3GPP TR 25.913 [1] and
can be summarized as follows:
User Manual 1308.9135.42 ─ 15
7
R&S®FS‑K101/103/105PC
Introduction
Requirements for UMTS Long-Term Evolution
●
Data Rate: Peak data rates target 100 Mbps (downlink) and 50 Mbps (uplink) for
20 MHz spectrum allocation, assuming two receive antennas and one transmit
antenna are at the terminal.
●
Throughput: The target for downlink average user throughput per MHz is three to
four times better than Release 6. The target for uplink average user throughput per
MHz is two to three times better than Release 6.
●
Spectrum efficiency: The downlink target is three to four times better than Release
6. The uplink target is two to three times better than Release 6.
●
Latency: The one-way transit time between a packet being available at the IP layer
in either the UE or radio access network and the availability of this packet at IP
layer in the radio access network/UE shall be less than 5 ms. Also C-plane latency
shall be reduced, e.g. to allow fast transition times of less than 100 ms from
camped state to active state.
●
Bandwidth: Scaleable bandwidths of 5 MHz, 10 MHz, 15 MHz, and 20 MHz shall
be supported. Also bandwidths smaller than 5 MHz shall be supported for more
flexibility.
●
Interworking: Interworking with existing UTRAN/GERAN systems and non-3GPP
systems shall be ensured. Multimode terminals shall support handover to and from
UTRAN and GERAN as well as inter-RAT measurements. Interruption time for
handover between EUTRAN and UTRAN/GERAN shall be less than 300 ms for
realtime services and less than 500 ms for non-realtime services.
●
Multimedia broadcast multicast services (MBMS): MBMS shall be further enhanced
and is then referred to as E-MBMS.
●
Costs: Reduced CAPEX and OPEX including backhaul shall be achieved. Costeffective migration from Release 6 UTRA radio interface and architecture shall be
possible. Reasonable system and terminal complexity, cost, and power consumption shall be ensured. All the interfaces specified shall be open for multivendor
equipment interoperability.
●
Mobility: The system should be optimized for low mobile speed (0 to 15 km/h), but
higher mobile speeds shall be supported as well, including high speed train environment as a special case.
●
Spectrum allocation: Operation in paired (frequency division duplex / FDD mode)
and unpaired spectrum (time division duplex / TDD mode) is possible.
●
Co-existence: Co-existence in the same geographical area and co-location with
GERAN/UTRAN shall be ensured. Also, co-existence between operators in adjacent bands as well as cross-border co-existence is a requirement.
●
Quality of Service: End-to-end quality of service (QoS) shall be supported. VoIP
should be supported with at least as good radio and backhaul efficiency and
latency as voice traffic over the UMTS circuit switched networks.
●
Network synchronization: Time synchronization of different network sites shall not
be mandated.
User Manual 1308.9135.42 ─ 15
8
R&S®FS‑K101/103/105PC
Introduction
Long-Term Evolution Uplink Transmission Scheme
1.2 Long-Term Evolution Uplink Transmission Scheme
1.2.1 SC-FDMA
During the study item phase of LTE, alternatives for the optimum uplink transmission
scheme were investigated. While OFDMA is seen optimum to fulfil the LTE requirements in downlink, OFDMA properties are less favourable for the uplink. This is mainly
due to weaker peak-to-average power ratio (PAPR) properties of an OFDMA signal,
resulting in worse uplink coverage.
Thus, the LTE uplink transmission scheme for FDD and TDD mode is based on
SCFDMA with a cyclic prefix. SC-FDMA signals have better PAPR properties compared to an OFDMA signal. This was one of the main reasons for selecting SC-FDMA
as LTE uplink access scheme. The PAPR characteristics are important for cost-effective design of UE power amplifiers. Still, SC-FDMA signal processing has some similarities with OFDMA signal processing, so parameterization of downlink and uplink can be
harmonized.
There are different possibilities how to generate an SC-FDMA signal. DFT-spreadOFDM (DFT-s-OFDM) has been selected for EUTRA. The principle is illustrated in figure 1-1.
For DFT-s-OFDM, a size-M DFT is first applied to a block of M modulation symbols.
QPSK, 16QAM and 64 QAM are used as uplink EUTRA modulation schemes, the latter being optional for the UE. The DFT transforms the modulation symbols into the frequency domain. The result is mapped onto the available sub-carriers. In EUTRA
uplink, only localized transmission on consecutive sub-carriers is allowed. An N point
IFFT where N>M is then performed as in OFDM, followed by addition of the cyclic prefix and parallel to serial conversion.
Fig. 1-1: Block Diagram of DFT-s-OFDM (Localized Transmission)
User Manual 1308.9135.42 ─ 15
9
R&S®FS‑K101/103/105PC
Introduction
Long-Term Evolution Uplink Transmission Scheme
The DFT processing is therefore the fundamental difference between SC-FDMA and
OFDMA signal generation. This is indicated by the term DFT-spread-OFDM. In an
SCFDMA signal, each sub-carrier used for transmission contains information of all
transmitted modulation symbols, since the input data stream has been spread by the
DFT transform over the available sub-carriers. In contrast to this, each sub-carrier of
an OFDMA signal only carries information related to specific modulation symbols.
1.2.2 SC-FDMA Parameterization
The EUTRA uplink structure is similar to the downlink. An uplink radio frame consists
of 20 slots of 0.5 ms each, and 1 subframe consists of 2 slots. The slot structure is
shown in figure 1-2.
SC-FDMA symbols, where
= 7 for the normal cyclic prefix
Each slot carries
and
= 6 for the extended cyclic prefix. SC-FDMA symbol number 3 (i.e. the 4th
symbol in a slot) carries the reference signal for channel demodulation.
Fig. 1-2: Uplink Slot Structure
Also for the uplink, a bandwidth agnostic layer 1 specification has been selected. The
table below shows the configuration parameters in an overview table.
1.2.3 Uplink Data Transmission
In uplink, data is allocated in multiples of one resource block. Uplink resource block
size in the frequency domain is 12 sub-carriers, i.e. the same as in downlink. However,
not all integer multiples are allowed in order to simplify the DFT design in uplink signal
processing. Only factors 2, 3, and 5 are allowed.
The uplink transmission time interval (TTI) is 1 ms (same as downlink).
User data is carried on the Physical Uplink Shared Channel (PUSCH) that is determined by the transmission bandwidth NTx and the frequency hopping pattern k0.
User Manual 1308.9135.42 ─ 15
10
R&S®FS‑K101/103/105PC
Introduction
Long-Term Evolution Uplink Transmission Scheme
The Physical Uplink Control Channel (PUCCH) carries uplink control information, e.g.
CQI reports and ACK/NACK information related to data packets received in the downlink. The PUCCH is transmitted on a reserved frequency region in the uplink.
1.2.4 Uplink Reference Signal Structure
Uplink reference signals are used for two different purposes: on the one hand, they are
used for channel estimation in the eNodeB receiver in order to demodulate control and
data channels. On the other hand, the reference signals provide channel quality information as a basis for scheduling decisions in the base station. The latter purpose is
also called channel sounding.
The uplink reference signals are based on CAZAC (Constant Amplitude Zero AutoCorrelation) sequences.
1.2.5 Uplink Physical Layer Procedures
For EUTRA, the following uplink physical layer procedures are especially important:
Non-synchronized random access
Random access may be used to request initial access, as part of handover, when transiting from idle to connected, or to re-establish uplink synchronization. The structure is
shown in figure 1-3.
Fig. 1-3: Random Access Structure, principle
User Manual 1308.9135.42 ─ 15
11
R&S®FS‑K101/103/105PC
Introduction
Long-Term Evolution Uplink Transmission Scheme
Multiple random access channels may be defined in the frequency domain within one
access period TRA in order to provide a sufficient number of random access opportunities.
For random access, a preamble is defined as shown in figure 1-4. The preamble
sequence occupies TPRE = 0.8 ms and the cyclic prefix occupies TCP = 0.1 ms within
one subframe of 1 ms. During the guard time TGT, nothing is transmitted. The preamble
bandwidth is 1.08 MHz (72 sub-carriers). Higher layer signalling controls in which subframes the preamble transmission is allowed, and the location in the frequency
domain. Per cell, there are 64 random access preambles. They are generated from
Zadoff-Chu sequences.
Fig. 1-4: Random Access Preamble
The random access procedure uses open loop power control with power ramping similar to WCDMA. After sending the preamble on a selected random access channel, the
UE waits for the random access response message. If no response is detected then
another random access channel is selected and a preamble is sent again.
Uplink scheduling
Scheduling of uplink resources is done by eNodeB. The eNodeB assigns certain time/
frequency resources to the UEs and informs UEs about transmission formats to use.
Scheduling decisions affecting the uplink are communicated to the UEs via the Physical Downlink Control Channel (PDCCH) in the downlink. The scheduling decisions may
be based on QoS parameters, UE buffer status, uplink channel quality measurements,
UE capabilities, UE measurement gaps, etc.
Uplink link adaptation
As uplink link adaptation methods, transmission power control, adaptive modulation
and channel coding rate, as well as adaptive transmission bandwidth can be used.
Uplink timing control
Uplink timing control is needed to time align the transmissions from different UEs with
the receiver window of the eNodeB. The eNodeB sends the appropriate timing-control
commands to the UEs in the downlink, commanding them to adapt their respective
transmit timing.
Hybrid automatic repeat request (ARQ)
The Uplink Hybrid ARQ protocol is already known from HSUPA. The eNodeB has the
capability to request retransmissions of incorrectly received data packets.
User Manual 1308.9135.42 ─ 15
12
R&S®FS‑K101/103/105PC
Introduction
References
1.3 References
[1] 3GPP TS 25.913: Requirements for E-UTRA and E-UTRAN (Release 7)
[2] 3GPP TR 25.892: Feasibility Study for Orthogonal Frequency Division Multiplexing
(OFDM) for UTRAN enhancement (Release 6)
[3] 3GPP TS 36.211 v8.3.0: Physical Channels and Modulation (Release 8)
[4] 3GPP TS 36.300: E-UTRA and E-UTRAN; Overall Description; Stage 2 (Release 8)
[5] 3GPP TS 22.978: All-IP Network (AIPN) feasibility study (Release 7)
[6] 3GPP TS 25.213: Spreading and modulation (FDD)
[7] Speth, M., Fechtel, S., Fock, G., and Meyr, H.: Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM – Part I. IEEE Trans. on Commun. Vol. 47
(1999) No. 11, pp. 1668-1677.
[8] Speth, M., Fechtel, S., Fock, G., and Meyr, H.: Optimum Receiver Design for
OFDM-Based Broadband Transmission – Part II: A Case Study. IEEE Trans. on Commun. Vol. 49 (2001) No. 4, pp. 571-578.
User Manual 1308.9135.42 ─ 15
13
R&S®FS‑K101/103/105PC
Welcome
Licensing the Software
2 Welcome
The EUTRA/LTE measurement software makes use of the I/Q capture functionality of
the following spectrum and signal analyzers to enable EUTRA/LTE TX measurements
conforming to the EUTRA specification.
●
R&S FSQ
●
R&S FSG
●
R&S FSV
●
R&S FSVR
●
R&S FSW
●
R&S RTO
This manual contains all information necessary to configure, perform and analyze such
measurements.
●
●
●
●
●
Licensing the Software............................................................................................14
Installing the Software.............................................................................................17
Connecting the Computer to an Analyzer............................................................... 17
Application Overview...............................................................................................23
Configuring the Software.........................................................................................25
2.1 Licensing the Software
The software provides the following general functionality.
●
To capture and analyze I/Q data from an R&S®FSW, R&S®FSV, R&S®FSVR,
R&S®FSQ, R&S®FSG or R&S®RTO.
●
To read and analyze I/Q data from a file.
License type
You can purchase two different license types for the software.
●
R&S®FS-K10xPC
This license supports software operation with and without an R&S instrument (analyzer or oscilloscope).
The software works with a connection to an analyzer but also supports the analysis
of data stored in a file. This license type requires a smartcard reader (dongle).
●
R&S®FSV/FSQ-K10x
This license requires a connection to an R&S®FSV, R&S®FSVR, R&S®FSQ or
R&S®FSG. The license must be installed on the analyzer.
Using the smartcard reader (dongle)
Before you can use the software, you have to load the license(s) on a smartcard (if you
already have one) or order a new smartcard (R&S FSPC). New license types are available as registered licenses (see below).
User Manual 1308.9135.42 ─ 15
14
R&S®FS‑K101/103/105PC
Welcome
Licensing the Software
You can use the smart card together with the USB smart card reader (for SIM format)
supplied with the software. Alternatively, you can insert the smart card (full format) in a
reader that is connected to or built into your PC.
Note that support for problems with the smart card licensing can only be guaranteed if
the supplied USB smart card reader (for SIM format) is used.
1. With the delivery of the R&S FSPC you got a smart card and a smart card reader.
2. Remove the smart card.
3. Insert the smart card into the reader.
If the OMNIKEY label faces upward, the smart card has to be inserted with the chip
facedown and the angled corner facing away from the reader.
4. After pushing the smart card completely inside the USB smart card reader, you can
use it together with the software.
When you insert the USB Smartcard reader into the PC, the drivers will be loaded. If
your PC does not already have drivers installed for this reader, the hardware will not be
detected and the software will not work.
In this case, install the required driver manually. On the CD, it is in the folder
\Install\USB SmartCard Reader Driver Files, named according to the pro-
User Manual 1308.9135.42 ─ 15
15
R&S®FS‑K101/103/105PC
Welcome
Licensing the Software
cessor architecture (OMNIKEY3x21_x86... or OMNIKEY3x21_x64). Detailed information on the file content and the download location for updated drivers can be found in
the ReadMe.txt file in the same folder.
You may have problems locking a computer while the card is inserted, because MS
Windows tries to get log-in information from the card immediately after you have locked
the computer.
Solve this issue by changing a registry entry.
Either execute the registry file DisableCAD.reg in the same folder the USM Smartcard
reader installation files are located. Or manually change the entry.
●
Open the Windows Start Menu and select the "Run" item.
●
Enter "regedit" in the dialog to open the system reigistry.
●
Navigate to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
policies\system.
●
Set the value of DisableCAD to 0.
Note that security policies may prevent you from editing the value. Contact your IT
administrator if you have problems with editing the value or installing the drivers.
Ordering licenses
In case of registered licenses, the license key code is based on the serial number of
the R&S FSPC smartcard. Thus, you need to know the serial number when you order
a new license.
1. Start the software (without a connected dongle).
2. Press the SETUP key.
3. Press the "Dongle License Info" softkey.
The software opens the "Rohde & Schwarz License Information" dialog box.
4. Connect the smartcard / dongle to the computer.
User Manual 1308.9135.42 ─ 15
16
R&S®FS‑K101/103/105PC
Welcome
Installing the Software
5. Press the "Check Licenses" button.
The software shows all current licenses.
The serial number which is necessary to know if you need a license is shown in the
"Serial" column.
The "Device ID" also contains the serial number.
6. To enter a new license code, press the "Enter License Key Code" button.
2.2 Installing the Software
For information on the installation procedure see the release notes of the software.
2.3 Connecting the Computer to an Analyzer
In order to be able to communicate with an analyzer (R&S FSQ, R&S FSG, R&S FSV,
R&S FSVR or R&S FSW) or oscilloscope (R&S RTO family), you have to connect it to
a computer. You can use the IEEE bus (GPIB) or a local area network (LAN).
Requirements
To be able to capture I/Q data, you need one of the signal analyzers or oscilloscopes
mentioned above.
If you are using an R&S FSQ, you must
●
use firmware 3.65 or higher to be able to establish a connection via TCP/IP
or
●
install the RSIB passport driver on the computer.
The driver is available for download at http://www.rohde-schwarz.com/appnote/
1EF47
To establish a connection, you also have to determine the network address of the analyzer and set it up in the LTE software.
2.3.1 Instrument Configuration
The functionality necessary to establish the connection to the test equipment is part of
the "Analyzer Config / MIMO Setup" tab of the "General Settings" dialog box.
The software supports simultaneous connections to several analyzers or oscilloscopes.
Using a combination of analyzers and oscilloscopes is also possible. The software
automatically detects if you have connected an analyzer or an oscilloscope. On the
whole, you can perform measurement on up to eight input channels. Each input channel captures one I/Q data stream.
If you use a spectrum or signal analyzer, one input channel corresponds to one instrument's RF input. Thus, the required number of analyzers depends on the number of I/Q
User Manual 1308.9135.42 ─ 15
17
R&S®FS‑K101/103/105PC
Welcome
Connecting the Computer to an Analyzer
data streams you want to measure. The analyzers have to be connected to each other
with one analyzer controlling the other instruments by providing the trigger.
If you use an oscilloscope, the number of required instruments depends on the number
of channels available on the oscilloscope.
●
●
2.3.1.1
General Instrument Configuration........................................................................... 18
Instrument Connection Configuration......................................................................19
General Instrument Configuration
The general analyzer or oscilloscope configuration determines the general MIMO
setup. The purpose of the general MIMO setup is to assign an analyzer or oscilloscope
channel to a particular I/Q data stream.
For successful measurements, you have to configure each instrument individually in
the "Analyzer Configuration" table.
The number of table rows depends on the number of antennas you have selected.
Input Channel
Shows the number of the analyzer in the test setup or the channel number of an oscilloscope.
If you are using several instruments, the first input channel always represents the controlling (master) instrument.
VISA RSC
Opens a dialog box to configure the instrument connection in the network (see chapter 2.3.1.2, "Instrument Connection Configuration", on page 19.
If you perform MIMO measurements with several instruments, you have to establish a
network connection for each instrument.
Number of Channels
Defines the number of channels of an oscilloscope that you want to use.
The number of instruments to configure is reduced if you use an instrument with more
than one channel. The software also adjusts the contents of the "Analyzer Input Channel".
If you perform the measurement with one or more signal analyzers (for example
R&S FSW), the number of channels has to be "1".
SCPI command:
User Manual 1308.9135.42 ─ 15
18
R&S®FS‑K101/103/105PC
Welcome
Connecting the Computer to an Analyzer
CONFigure:​ACONfig<instrument>:​NCHannels​ on page 158
Analyzer Input Channel
Assigns one of the I/Q data streams (input channel) to a particular oscilloscope channel.
The "Analyzer Input Channel" has no effect if you use only instruments that have a single input channel.
SCPI command:
CONFigure:​ACONfig<instrument>:​ICSequence​ on page 158
2.3.1.2
Instrument Connection Configuration
The "Instrument Connection Configuration" dialog box contains functionality that is
necessary to successfully establish a connection in a network of analyzers. The dialog
box contains several elements.
Interface Type
Selects the type of interface you want to use. You have to connect the analyzer or
oscilloscope via LAN interface or the IEEE bus (GPIB).
Number
Selects the number of the interface if the PC has more than one interfaces (e.g. several LAN cards).
Address
Defines the address of the instrument. The type of content depends on the interface
type.
●
GPIB Address
Primary GPIB address of the analyzer. Possible values are in the range from 0 to
31. The default GPIB address for an R&S instruments is 20.
Available for IEEE bus systems using the IEEE 488 protocol. The interface type is
GPIB.
●
IP Address or Computer Name
Name or host address (TCP/IP) of the computer.
Available for LAN bus systems using either the VXI-11 protocol or a
Rohde&Schwarz specific protocol (RSIB). The interface type is either LAN (VXI-11)
or LAN (RSIB).
User Manual 1308.9135.42 ─ 15
19
R&S®FS‑K101/103/105PC
Welcome
Connecting the Computer to an Analyzer
Contact your local IT support for information on free IP addresses.
– The RSIB protocol is supported by all firmware version of the R&S analyzers
and oscilloscopes.
–
●
The VXI-11 protocol is supported as of R&S FSQ firmware version 3.65 and by
all firmware version of the R&S FSV(R), R&S FSG and oscilloscopes.
Complete VISA Resource String
Allows you to enter the complete VISA resource string manually. A VISA string is
made up out of the elements mentioned above, separated by double colons (::),
e.g. GPIB::20::INSTR.
Available for interface type "Free Entry".
Subsystem
Shows the subsystem in use. Typically you do not have to change the subsystem.
VISA RSC
Shows or defines the complete VISA resource string.
SCPI command:
CONFigure:​ACONfig<instrument>:​ADDRess​ on page 157
Test Connection
Button that tests the connection.
If the connection has been established successfully, the software returns a PASSED
message. If not, it shows a FAILED message.
2.3.2 Figuring Out IP Addresses
Each of the supported instruments logs its network connection information in a different
place. Find instructions on how to find out the necessary information below.
2.3.2.1
Figuring Out the Address of an R&S FSQ or R&S FSG
Follow these steps to figure out GPIB or IP address of an R&S FSQ or R&S FSG.
Figuring Out the GPIB address
1. Press the SETUP key.
2. Press the "General Setup" softkey.
3. Press the "GPIB" softkey.
The R&S FSQ / FSG opens a dialog box that shows its current GPIB address.
Figuring Out the IP address
1. Press the SETUP key.
User Manual 1308.9135.42 ─ 15
20
R&S®FS‑K101/103/105PC
Welcome
Connecting the Computer to an Analyzer
2. Press the "General Setup" softkey.
3. Press the "Configure Network" softkey.
4. Press the "Configure Network" softkey.
The MS Windows "Network Connections" dialog box opens.
5. Select the "Local Area Connection" item.
The "Local Area Connection Status" dialog box opens.
6. Select the "Support" tab.
The "Support" tab shows the current TCP/IP information of the R&S FSQ.
2.3.2.2
Figuring Out the Address of an R&S FSV or R&S FSVR
Follow these steps to figure out the GPIB or IP address of an R&S FSV or R&S FSVR.
Figuring Out the GPIB address
1. Press the SETUP key.
2. Press the "General Setup" softkey.
3. Press the "GPIB" softkey.
4. Press the "GPIB Address" softkey.
The R&S FSV(R) opens a dialog box that shows its current GPIB address.
Figuring Out the IP address
1. Press the SETUP key.
2. Press the "General Setup" softkey.
3. Press the "Network Address" softkey.
4. Press the "IP Address" softkey.
User Manual 1308.9135.42 ─ 15
21
R&S®FS‑K101/103/105PC
Welcome
Connecting the Computer to an Analyzer
The R&S FSV(R) opens a dialog box that contains information about the LAN connection.
2.3.2.3
Figuring Out the Address of an R&S FSW
Follow these steps to figure out the GPIB or IP address of an R&S FSW.
Figuring Out the GPIB address
1. Press the SETUP key.
2. Press the "Network + Remote" softkey.
The R&S FSW opens the "Network & Remote" dialog box.
3. Select the "GPIB" tab.
The R&S FSW shows information about the GPIB connection, including the GPIB
address.
Figuring Out the IP address
1. Press the SETUP key.
2. Press the "Network + Remote" softkey.
The R&S FSW opens the "Network & Remote" dialog box and shows its current IP
address in the corresponding field.
User Manual 1308.9135.42 ─ 15
22
R&S®FS‑K101/103/105PC
Welcome
Application Overview
2.3.2.4
Figuring Out the Address of an R&S RTO
Follow these steps to figure out the network address of an R&S RTO.
► Press the SETUP key.
The R&S RTO opens a dialog box that contains general information about the system.
2.4 Application Overview
Starting the application
To start the software, use either the shortcut on the computer desktop or the entry in
the Microsoft Windows Start menu.
If you run the software on an analyzer, access the software via the "Mode" menu.
► Press the MODE key and select "EUTRA/LTE".
User Manual 1308.9135.42 ─ 15
23
R&S®FS‑K101/103/105PC
Welcome
Application Overview
Presetting the software
When you first start the software, all settings are in their default state. After you have
changed any parameter, you can restore the default state with the PRESET key.
Note that using the preset function also presets an analyzer if one is connected and
you capture the data from the hardware.
CONFigure:​PRESet​ on page 189
Using the preset if the software has been installed on an R&S FSQ, R&S FSG,
R&S FSV, R&S FSVR or R&S FSW presets the software and the analyzer and exits
the LTE software.
SCPI command:
*RST
Elements and layout of the user interface
The user interface of the LTE measurement application is made up of several elements.
User Manual 1308.9135.42 ─ 15
24
R&S®FS‑K101/103/105PC
Welcome
Configuring the Software
1 = Header table. The header table shows basic information like measurement frequency or sync state.
2 = Diagram area. The diagram area contains the measurement results. You can display it in full screen or
split screen mode. The result display is separated in a header that shows the title etc. and the diagram
area that show the actual results.
3 = Status bar. The status bar contains information about the current status of the measurement and the
software.
4 = Hotkeys. Hotkeys contain functionality to control the measurement process.
5 = Softkeys. Softkeys contain functionality to configure and select measurement functions.
6 = Hardkeys. Hardkeys open new softkey menus.
The status bar
The status bar is located at the bottom of the display. It shows the current measurement status and its progress in a running measurement. The status bar also shows
warning and error messages. Error messages are generally highlighted.
Display of measurement settings
The header table above the result displays shows information on hardware and measurement settings.
The header table includes the following information
●
Freq
The analyzer RF frequency.
●
Mode
Link direction, duplexing, cyclic prefix and maximum number of physical resource
blocks (PRBs) / signal bandwidth.
●
CP/Cell Grp/ID
Shows the cell identity information.
●
Sync State
The following synchronization states may occur:
– OK The synchronization was successful.
–
FAIL The synchronization has failed.
SCPI Command:
[SENSe]:​SYNC[:​STATe]?​ on page 123
●
Master Ref Level
Shows the reference level of the master analyzer.
●
Capture Time/Frame
Shows the capture length in ms.
In PRACH analysis mode, it also shows the preamble that is currently analyzed.
2.5 Configuring the Software
This chapter contains information about general software functionality.
User Manual 1308.9135.42 ─ 15
25
R&S®FS‑K101/103/105PC
Welcome
Configuring the Software
2.5.1 Configuring the Display
The "Display" menu contains functionality to improve the display and documentation of
results.
► Press the DISP key.
The application features four screens (or result displays). Each of the screens may
contain a different result display. The number of visible screens depends on the screen
layout.
Full screen mode
In full screen mode, the application shows the contents a single screen.
► Press the "Full Screen" softkey.
If you have configured more than one result displays, these are still working in the
background.
Split screen mode
In split screen mode, the application shows the contents of two screens, either screen
A and screen B or screen C and screen D.
► Press the "Split Screen" softkey.
If you have configured more than two result displays, these are still working in the
background.
2x2 split screen mode
In 2x2 split screen mode, the application shows the contents of four screens.
► Press the "2x2 Split Screen" softkey.
Limitations
For the Spectrum Emission Mask, ACLR and Time Alignment measurements, a maximum of two screens is possible.
By default, the software shows the results in all four screens. The screens are labeled
A to D to the right of the measurement diagrams. The label of the currently active
screen is highlighted green ( ). The currently active screen is the one settings are
applied to.
Switch between the screens with the "Screen A", "Screen B", "Screen C" and "Screen
D" hotkeys.
The background color of the software by default is black. Apply another color via the
"Color Selection" softkey and the corresponding dialog box.
User Manual 1308.9135.42 ─ 15
26
R&S®FS‑K101/103/105PC
Welcome
Configuring the Software
For documentation purposes the software provides a hardcopy function that lets you
save the current results in one of the following formats.
●
bmp
●
gif
●
jpeg
●
png
●
tiff
Use the "Hardcopy to Clipboard" function to take a screenshot.
DISPlay[:​WINDow<n>]:​SELect​ on page 189
2.5.2 Configuring the Software
The "Setup" menu contains various general software functions.
► Press the SETUP key to access the "Setup" menu.
Configure Analyzer Connection
Opens the "General Settings" dialog box.
For more information see "MIMO Analyzer Configuration" on page 62.
Data Source (Instr File)
Selects the general input source (an instrument or a file).
For more information see "Selecting the Input Source" on page 54.
Dongle License Info
Opens the "Rohde & Schwarz License Information" dialog box.
The dialog box contains functionality to add new (registered) licenses. For more information see chapter 2.1, "Licensing the Software", on page 14.
"Check Licenses"
Looks for all smartcards connected to the computer and returns their
characteristics like the serial number of the smartcard or its device ID.
Note that the smartcard has to be connected to figure out its properties.
"Enter License
Key Code"
Opens an input field to manually enter a new license key code. A key
code consists of 30 digits.
"Process
License File"
Opens a dialog box to select a file (xml format) that contains a
license. Opening that file automatically adds a new license.
Show Logging
Opens a dialog box that contains a log of all messages that the software has shown in
the status bar.
Use the message log for debugging purposes in case any errors occur. You can
refresh and clear the contents of the log or copy the contents of the system log to the
clipboard.
"Refresh"
User Manual 1308.9135.42 ─ 15
Updates the contents of the log.
27
R&S®FS‑K101/103/105PC
Welcome
Configuring the Software
"Clear All"
Deletes all entries in the log.
"Copy to Clipboard"
Copies the contents of the log to the clipboard.
System Info
Opens a dialog box that contains information about the system like driver versions or
the utility software. You can use this information in case an analyzer does not work
properly.
User Manual 1308.9135.42 ─ 15
28
R&S®FS‑K101/103/105PC
Measurements and Result Displays
3 Measurements and Result Displays
The LTE measurement analyzer features several measurements to examine and analyze different aspects of an LTE signal.
The source of the data that is processed is either a live signal or a previously recorded
signal whose characteristics have been saved to a file. For more information see
"Selecting the Input Source" on page 54.
In both cases, you can perform a continuous or a single measurement.
Continuous measurements capture and analyze the signal continuously and stop only
after you turn it off manually.
► Press the "Run Cont" softkey to start and stop continuous measurements.
Single measurements capture and analyze the signal over a particular time span or
number of frames. The measurement stops after the time has passed or the frames
have been captured.
► Press the "Run Sgl" softkey to start a single measurement.
You can also repeat a measurement based on the data that has already been captured, e.g. if you want to apply different demodulation settings to the same signal.
► Press the "Refresh" softkey to measure the signal again.
This chapter provides information on all types of measurements that the LTE measurement analyzer supports.
Note that all measurements are based on the I/Q data that is captured except the
Spectrum Emission Mask and the Adjacent Channel Leakage Ratio. Those are based
on a frequency sweep the analyzer performs for the measurement.
SCPI command:
INITiate[:​IMMediate]​ on page 122
INITiate:​REFResh​ on page 122
●
●
●
●
●
●
●
Numerical Results................................................................................................... 30
Measuring the Power Over Time............................................................................ 33
Measuring the Error Vector Magnitude (EVM)........................................................ 35
Measuring the Spectrum......................................................................................... 38
Measuring the Symbol Constellation.......................................................................46
Measuring Statistics................................................................................................ 48
3GPP Test Scenarios..............................................................................................50
User Manual 1308.9135.42 ─ 15
29
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Numerical Results
3.1 Numerical Results
Result Summary
The Result Summary shows all relevant measurement results in numerical form, combined in one table.
▶ Press the "Display (List Graph)" softkey so that the "List" element turns green to view
the Result Summary.
Remote command:
DISPlay[:​WINDow<n>]:​TABLe​ on page 122
Contents of the result summary
The contents of the result summary depend on the analysis mode you have selected.
The first screenshot shows the results for PUSCH/PUCCH analysis mode, the second
one those for PRACH analysis mode.
User Manual 1308.9135.42 ─ 15
30
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Numerical Results
The table is split in two parts. The first part shows results that refer to the complete
frame. It also indicates limit check results where available. The font of 'Pass' results is
green and that of 'Fail' results is red.
By default, the software checks the limits defined by the standard. You can also import
customized limits. In that case the software evaluates those limits instead of the predefined ones. For more information see chapter 7.4, "Importing and Exporting Limits",
on page 101.
Note: The EVM results on a frame level (first part of the table) are calculated as
defined by 3GPP at the edges of the cyclic prefix.
The other EVM results (lower part of the table) are calculated at the optimal timing
position in the middle of the cyclic prefix.
Because of inter-symbol interference, the EVM calculated at the edges of the cyclic
prefix is higher than the EVM calculated in the middle of the cyclic prefix.
Note: In some cases, it is not possible to calculate the I/Q Gain Imbalance and the I/Q
Quadrature Error.
The reason may be that the subframe selection is set to "All". In that case the software
only displays the results if there is a result in all subframes. Try and search through
individual subframes to find a subframe that provides those results.
EVM PUSCH QPSK
Shows the EVM for all QPSK-modulated resource elements of the PUSCH
channel in the analyzed frame.
FETCh:​SUMMary:​EVM:​USQP[:​AVERage]?​ on page 127
EVM PUSCH 16QAM
Shows the EVM for all 16QAM-modulated resource elements of the PUSCH
channel in the analyzed frame.
FETCh:​SUMMary:​EVM:​USST[:​AVERage]?​ on page 127
EVM PUSCH 64QAM
Shows the EVM for all 64QAM-modulated resource elements of the PUSCH
channel in the analyzed frame.
FETCh:​SUMMary:​EVM:​USSF[:​AVERage]?​ on page 127
EVM DRMS PUSCH QPSK
Shows the EVM of all DMRS resource elements with QPSK modulation of the
PUSCH in the analyzed frame.
FETCh:​SUMMary:​EVM:​SDQP[:​AVERage]?​ on page 125
User Manual 1308.9135.42 ─ 15
31
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Numerical Results
EVM DRMS PUSCH 16QAM
Shows the EVM of all DMRS resource elements with 16QAM modulation of
the PUSCH in the analyzed frame.
FETCh:​SUMMary:​EVM:​SDST[:​AVERage]?​ on page 126
EVM DRMS PUSCH 64QAM
Shows the EVM of all DMRS resource elements with 64QAM modulation of
the PUSCH in the analyzed frame.
FETCh:​SUMMary:​EVM:​SDSF[:​AVERage]?​ on page 125
EVM PUCCH
Shows the EVM of all resource elements of the PUCCH channel in the analyzed frame.
FETCh:​SUMMary:​EVM:​UCCH[:​AVERage]?​ on page 126
EVM DMRS PUCCH
Shows the EVM of all DMRS resource elements of the PUCCH channel in the
analyzed frame.
FETCh:​SUMMary:​EVM:​UCCD[:​AVERage]?​ on page 126
EVM PRACH
Shows the EVM of all resource elements of the PRACH channel in the analyzed frame.
FETCh:​SUMMary:​EVM:​UPRA[:​AVERage]?​ on page 127
By default, all EVM results are in %. To view the EVM results in dB, change the EVM
Unit.
The second part of the table shows results that refer to a specifc selection of the frame.
The statistic is always evaluated over the slots.
The header row of the table contains information about the selection you have made
(like the subframe).
EVM All
Shows the EVM for all resource elements in the analyzed frame.
FETCh:​SUMMary:​EVM[:​ALL][:​AVERage]?​ on page 124
EVM Phys Channel
Shows the EVM for all physical channel resource elements in the analyzed
frame.
A physical channel corresponds to a set of resource elements carrying information from higher layers. PUSCH, PUCCH and PRACH are physical channels. For more information see 3GPP 36.211.
FETCh:​SUMMary:​EVM:​PCHannel[:​AVERage]?​ on page 125
EVM Phys Signal
Shows the EVM for all physical signal resource elements in the analyzed
frame.
The reference signal is a physical signal. For more information see 3GPP
36.211.
FETCh:​SUMMary:​EVM:​PSIGnal[:​AVERage]?​ on page 125
Frequency Error
Shows the difference in the measured center frequency and the reference
center frequency.
FETCh:​SUMMary:​FERRor[:​AVERage]?​ on page 128
Sampling Error
Shows the difference in measured symbol clock and reference symbol clock
relative to the system sampling rate.
FETCh:​SUMMary:​SERRor[:​AVERage]?​ on page 129
I/Q Offset
Shows the power at spectral line 0 normalized to the total transmitted power.
FETCh:​SUMMary:​IQOFfset[:​AVERage]?​ on page 128
User Manual 1308.9135.42 ─ 15
32
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Power Over Time
I/Q Gain Imbalance
Shows the logarithm of the gain ratio of the Q-channel to the I-channel.
FETCh:​SUMMary:​GIMBalance[:​AVERage]?​ on page 128
I/Q Quadrature Error
Shows the measure of the phase angle between Q-channel and I-channel
deviating from the ideal 90 degrees.
FETCh:​SUMMary:​QUADerror[:​AVERage]?​ on page 129
Power
Shows the average time domain power of the allocated resource blocks of the
analyzed signal.
FETCh:​SUMMary:​POWer[:​AVERage]?​ on page 129
Crest Factor
Shows the peak-to-average power ratio of captured signal.
FETCh:​SUMMary:​CRESt[:​AVERage]?​ on page 124
3.2 Measuring the Power Over Time
This chapter contains information on all measurements that show the power of a signal
over time.
Capture Buffer...............................................................................................................33
Power vs Symbol x Carrier............................................................................................34
Time Alignment Error.................................................................................................... 34
Capture Buffer
The Capture Buffer result display shows the complete range of captured data for the
last data capture. The x-axis represents time. The maximum value of the x-axis is
equal to the Capture Time. The y-axis represents the amplitude of the captured I/Q
data in dBm (for RF input).
The green bar at the bottom of the diagram represents the frame that is currently analyzed.
A blue vertical line at the beginning of the green bar in the Capture Buffer display represents the subframe start. Additionally, the diagram contains the "Start Offset" value.
This value is the time difference between the subframe start and capture buffer start.
User Manual 1308.9135.42 ─ 15
33
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Power Over Time
When you zoom into the diagram, you will see that the bar may be interrupted at certain positions. Each small bar indicates the useful parts of the OFDM symbol.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'PVT:CBUF'
Querying results: TRACe:DATA?
Querying the subframe start offset: FETCh:​SUMMary:​TFRame?​ on page 130
Power vs Symbol x Carrier
The Power vs Symbol x Carrier shows the power for each carrier in each symbol.
The horizontal axis represents the symbols. The vertical axis represents the carriers.
Different colors in the diagram area represent the power. The color map for the power
levels is provided above the diagram area.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'SPEC:PVSC'
Querying results: TRACe:DATA?
Time Alignment Error
Starts the Time Alignment Error result display.
The time alignment is an indicator of how well the transmission antennas in a MIMO
system are synchronized. The Time Alignment Error is the time delay between a reference antenna (for example antenna 1) and another antenna. For more information see
chapter 8.5, "Performing Time Alignment Measurements", on page 113.
The software shows the results in a table.
Each row in the table represents one antenna. The reference antenna is not shown.
For each antenna the maximum, minimum and average time delay that has been measured is shown. The minimum and maximum results are calculated only if the measurement covers more than one subframe.
If you perform the measurement on a system with carrier aggregation, each row represents one antenna. The number of lines increases because of multiple carriers. The
reference antenna of the main component carrier (CC1) is not shown. In case of carrier
aggregation, the result display also evaluates the frequency error of the component
carrier (CC2) relative to the main component carrier (CC1).
User Manual 1308.9135.42 ─ 15
34
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Error Vector Magnitude (EVM)
In any case, results are only displayed if the transmission power of both antennas is
within 15 dB of each other. Likewise, if only one antenna transmits a signal, results will
not be displayed (for example if the cabling on one antenna is faulty).
You can select the reference antenna via "Antenna Selection" in the MIMO Configuration.
When you perform a time alignment measurement, the software also displays the
Power Spectrum result display.
Remote command:
Selecting the result display: CALCulate<screenid>:FEED 'PVT:TAER'
Querying results: FETCh:​TAERror[:​CC<cci>]:​ANTenna<antenna>[:​AVERage]?​
on page 130
Selecting reference antenna: CONFigure[:​LTE]:​UL:​MIMO:​ASELection​
on page 158
3.3 Measuring the Error Vector Magnitude (EVM)
This chapter contains information on all measurements that show the error vector magnitude (EVM) of a signal.
The EVM is one of the most important indicators for the quality of a signal. For more
information on EVM calculation methods refer to chapter 8, "Measurement Basics",
on page 102.
EVM vs Carrier..............................................................................................................35
EVM vs Symbol.............................................................................................................36
EVM vs Sym x Carr.......................................................................................................37
EVM vs Subframe......................................................................................................... 38
EVM vs Carrier
Starts the EVM vs Carrier result display.
This result display shows the Error Vector Magnitude (EVM) of the subcarriers. With
the help of a marker, you can use it as a debugging technique to identify any subcarriers whose EVM is too high.
The results are based on an average EVM that is calculated over the resource elements for each subcarrier. This average subcarrier EVM is determined for each analyzed slot in the capture buffer.
If you analyze all slots, the result display contains three traces.
● Average EVM
This trace shows the subcarrier EVM averaged over all slots.
● Minimum EVM
This trace shows the lowest (average) subcarrier EVM that has been found over
the analyzed slots.
● Maximum EVM
This trace shows the highest (average) subcarrier EVM that has been found over
the analyzed slots.
User Manual 1308.9135.42 ─ 15
35
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Error Vector Magnitude (EVM)
If you select and analyze one slot only, the result display contains one trace that shows
the subcarrier EVM for that slot only. Average, minimum and maximum values in that
case are the same. For more information see "Subframe Selection" on page 59
The x-axis represents the center frequencies of the subcarriers. On the y-axis, the
EVM is plotted either in % or in dB, depending on the EVM Unit.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'EVM:EVCA'
Querying results: TRACe:DATA?
EVM vs Symbol
Starts the EVM vs Symbol result display.
This result display shows the Error Vector Magnitude (EVM) of the OFDM symbols.
You can use it as a debugging technique to identify any symbols whose EVM is too
high.
The results are based on an average EVM that is calculated over all subcarriers that
are part of a particular OFDM symbol. This average OFDM symbol EVM is determined
for all OFDM symbols in each analyzed slot.
If you analyze all subframes, the result display contains three traces.
● Average EVM
This trace shows the OFDM symbol EVM averaged over all slots.
● Minimum EVM
This trace shows the lowest (average) OFDM symbol EVM that has been found
over the analyzed slots.
● Maximum EVM
This trace shows the highest (average) OFDM symbol EVM that has been found
over the analyzed slots.
If you select and analyze one slot only, the result display contains one trace that shows
the OFDM symbol EVM for that slot only. Average, minimum and maximum values in
that case are the same. For more information see "Subframe Selection" on page 59
User Manual 1308.9135.42 ─ 15
36
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Error Vector Magnitude (EVM)
The x-axis represents the OFDM symbols, with each symbol represented by a dot on
the line. The number of displayed symbols depends on the Subframe Selection and the
length of the cyclic prefix. Any missing connections from one dot to another mean that
the analyzer could not determine the EVM for that symbol. In case of TDD signals, the
result display does not show OFDM symbols that are not part of the measured link
direction.
On the y-axis, the EVM is plotted either in % or in dB, depending on the EVM Unit.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'EVM:EVSY'
Querying results: TRACe:DATA?
EVM vs Sym x Carr
The EVM vs Symbol x Carrier shows the EVM for each carrier in each symbol.
The horizontal axis represents the symbols. The vertical axis represents the carriers.
Different colors in the diagram area represent the EVM. The color map for the power
levels is provided above the diagram area.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'EVM:EVSC'
Querying results: TRACe:DATA?
User Manual 1308.9135.42 ─ 15
37
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
EVM vs Subframe
Starts the EVM vs Subframe result display.
This result display shows the Error Vector Magnitude (EVM) for each subframe. You
can use it as a debugging technique to identify a subframe whose EVM is too high.
The result is an average over all subcarriers and symbols of a specific subframe.
The x-axis represents the subframes, with the number of displayed subframes being
10.
On the y-axis, the EVM is plotted either in % or in dB, depending on the EVM Unit.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'EVM:EVSU'
Querying results: TRACe:DATA?
3.4 Measuring the Spectrum
This chapter contains information on all measurements that show the power of a signal
in the frequency domain.
In addition to the I/Q measurements, spectrum measurements also include two frequency sweep measurements, the Spectrum Emission Mask and the Adjacent Channel Leakage Ratio.
3.4.1 Frequency Sweep Measurements
The Spectrum Emission Mask (SEM) and Adjacent Channel Leakage Ratio (ACLR)
measurements are the only frequency sweep measurements available for the
EUTRA/LTE measurement software. They do not use the I/Q data all other measurements use. Instead those measurements sweep the frequency spectrum every time
you run a new measurement. Therefore it is not possible to to run an I/Q measurement
and then view the results in the frequency sweep measurements and vice-versa. Also
because each of the frequency sweep measurements uses different settings to obtain
signal data it is not possible to run a frequency sweep measurement and view the
results in another frequency sweep measurement.
User Manual 1308.9135.42 ─ 15
38
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
Frequency sweep measurements are available if RF input is selected.
Note that unwanted emissions measurements (for example the ACLR) are not supported for measurements with an oscilloscope.
Spectrum Mask............................................................................................................. 39
ACLR.............................................................................................................................40
Spectrum Mask
Starts the Spectrum Emission Mask (SEM) result display.
The Spectrum Emission Mask measurement shows the quality of the measured signal
by comparing the power values in the frequency range near the carrier against a spectral mask that is defined by the 3GPP specifications. In this way, you can test the performance of the DUT and identify the emissions and their distance to the limit.
In the diagram, the SEM is represented by a red line. If any measured power levels are
above that limit line, the test fails. If all power levels are inside the specified limits, the
test is passed. The software labels the limit line to indicate whether the limit check has
passed or failed.
The x-axis represents the frequency with a frequency span that relates to the specified
EUTRA/LTE channel bandwidths. On the y-axis, the power is plotted in dBm.
The result display also contains some numerical results for the SEM measurement, for
example the total signal power or the limit check result.
A table above the result display contains the numerical values for the limit check at
each check point:
●
●
●
●
Start / Stop Freq Rel
Shows the start and stop frequency of each section of the Spectrum Mask relative
to the center frequency.
RBW
Shows the resolution bandwidth of each section of the Spectrum Mask
Freq at Δ to Limit
Shows the absolute frequency whose power measurement being closest to the
limit line for the corresponding frequency segment.
Power Abs
Shows the absolute measured power of the frequency whose power is closest to
the limit. The software evaluates this value for each frequency segment.
User Manual 1308.9135.42 ─ 15
39
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
●
●
Power Rel
Shows the distance from the measured power to the limit line at the frequency
whose power is closest to the limit. The software evaluates this value for each frequency segment.
Δ to Limit
Shows the minimal distance of the tolerance limit to the SEM trace for the corresponding frequency segment. Negative distances indicate the trace is below the
tolerance limit, positive distances indicate the trace is above the tolerance limit.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'SPEC:SEM'
Querying results: TRACe:DATA?
ACLR
Starts the Adjacent Channel Leakage Ratio (ACLR) measurement.
The ACLR measurement analyzes the power of the transmission (TX) channel and the
power of the two neighboring channels (adjacent channels) to the left and right of the
TX channel. Thus, the ACLR measurement provides information about the power in
the adjacent channels as well as the leakage into these adjacent channels.
The x-axis represents the frequency with a frequency span that relates to the specified
EUTRA/LTE channel and adjacent channel bandwidths. On the y-axis, the power is
plotted in dBm.
By default the ACLR settings are based on the selected LTE Channel Bandwidth. You
can change the assumed adjacent channel carrier type and the Noise Correction.
User Manual 1308.9135.42 ─ 15
40
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
The software provides a relative and an absolute ACLR measurement mode that you
can select with the "ACLR (REL ABS)" softkey.
● In case of the relative measurement mode, the power for the TX channel is an
absolute value in dBm. The power of the adjacent channels are values relative to
the power of the TX channel.
● In case of the absolute measurement mode, the power for both TX and adjacent
channels are absolute values in dBm.
In addition, the ACLR measurement results are also tested against the limits defined
by 3GPP. In the diagram, the limits are represented by horizontal red lines.
ACLR table
A table above the result display contains information about the measurement in numerical form:
●
●
●
●
Channel
Shows the channel type (TX, Adjacent or Alternate Channel).
Bandwidth
Shows the bandwidth of the channel.
Spacing
Shows the channel spacing.
Channel Power
Shows the absolute or relative power of the corresponding channel.
Remote command:
Selecting the result display:
CALCulate<n>:FEED 'SPEC:ACP'
Querying results:
CALCulate<n>:​MARKer<m>:​FUNCtion:​POWer:​RESult[:​CURRent]?​
TRACe:DATA?
Querying limit check results:
CALCulate<n>:​LIMit<k>:​ACPower:​ACHannel:​RESult?​ on page 140
CALCulate<n>:​LIMit<k>:​ACPower:​ALTernate:​RESult?​ on page 141
CALCulate<n>:​LIMit<k>:​FAIL?​ on page 141
3.4.2 I/Q Measurements
Power Spectrum............................................................................................................42
Inband Emission............................................................................................................42
Spectrum Flatness........................................................................................................ 43
User Manual 1308.9135.42 ─ 15
41
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
Spectrum Flatness SRS................................................................................................44
Spectrum Flatness Difference.......................................................................................44
Channel Group Delay....................................................................................................45
Power Spectrum
Starts the Power Spectrum result display.
This result display shows the power density of the complete capture buffer in dBm/Hz.
The displayed bandwidth depends on bandwidth or number of resource blocks you
have set.
For more information see "Channel Bandwidth / Number of Resource Blocks"
on page 75.
The x-axis represents the frequency. On the y-axis the power level is plotted.
Remote command:
Selecting the result display: CALCulate<screenid>:FEED 'SPEC:PSPE'
Querying results: TRACe:DATA?
Inband Emission
Starts the Inband Emission result display.
This result display shows the relative power of the unused resource blocks (yellow
trace) and the inband emission limit lines (red trace) specified by the LTE standard
document 3GPP TS36.101.
The measurement is evaluated over the currently selected slot in the currently selected
subframe. The currently selected subframe depends on your selection.
Note that you have to select a specific subframe and slot to get valid measurement
results.
User Manual 1308.9135.42 ─ 15
42
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
You can also display the inband emissions for the allocated resource block in addition
to the unused resource blocks when you select the Inband Emissions All result display.
Remote command:
Selecting the result display: CALCulate<screenid>:FEED 'SPEC:IE'
Selecting the result display: CALCulate<screenid>:FEED 'SPEC:IEA'
Qurying results: TRACe:DATA?
Spectrum Flatness
Starts the Spectrum Flatness result display.
This result display shows the relative power offset caused by the transmit channel.
The measurement is evaluated over the currently selected slot in the currently selected
subframe.
The currently selected subframe depends on your selection.
The x-axis represents the frequency. On the y-axis, the channel flatness is plotted in
dB.
User Manual 1308.9135.42 ─ 15
43
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
Note that the limit lines are only displayed if you match the Operating Band to the center frequency. Limits are defined for each operating band in the standard. The shape of
the limit line is different when "Extreme Conditions" on page 66 are on.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'SPEC:SFL'
Querying results: TRACe:DATA?
Spectrum Flatness SRS
The Spectrum Flatness SRS display shows the amplitude of the channel transfer function based on the sounding reference signal.
The measurement is evaluated over the currently selected slot in the currently selected
subframe. The slot and subframe selection may be changed in the general settings.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'SPEC:SFSR'
Querying results: TRACe:DATA
Spectrum Flatness Difference
Starts the Spectrum Flatness Difference result display.
This result display shows the level difference in the spectrum flatness result between
two adjacent physical subcarriers.
User Manual 1308.9135.42 ─ 15
44
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Spectrum
The measurement is evaluated over the currently selected slot in the currently selected
subframe.
The currently selected subframe depends on your selection.
The x-axis represents the frequency. On the y-axis, the power is plotted in dB.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'SPEC:SFD'
Querying results: TRACe:DATA?
Channel Group Delay
Starts the Channel Group Delay result display.
This result display shows the group delay of each subcarrier.
The measurement is evaluated over the currently selected slot in the currently selected
subframe.
The currently selected subframe depends on your selection.
The x-axis represents the frequency. On the y-axis, the group delay is plotted in ns.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'SPEC:GDEL'
Querying results: TRACe:DATA?
User Manual 1308.9135.42 ─ 15
45
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Symbol Constellation
3.5 Measuring the Symbol Constellation
This chapter contains information on all measurements that show the constellation of a
signal.
Constellation Diagram...................................................................................................46
DFT Precod Constellation............................................................................................. 46
Evaluation Range for the Constellation Diagram.......................................................... 47
Constellation Diagram
Starts the Constellation Diagram result display.
This result display shows the inphase and quadrature phase results and is an indicator
of the quality of the modulation of the signal.
In the default state, the result display evaluates the full range of the measured input
data. You can filter the results in the Constellation Selection dialog box.
The ideal points for the selected modulation scheme are displayed for reference purposes.
The constellation diagram also contains information about the current evaluation
range. In addition, it shows the number of points that are displayed in the diagram.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'CONS:CONS'
Querying results: TRACe:DATA?
DFT Precod Constellation
Starts the DFT Precod Constellation result display.
This result display shows the inphase and quadrature phase results. It shows the data
without the DFT precoding. The result display evaluates the full range of the measured
input data. You can filter the results in the Constellation Selection dialog box.
User Manual 1308.9135.42 ─ 15
46
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring the Symbol Constellation
Remote command:
Selecting the result display: CALCulate<screenid>:FEED 'CONS:DFTC'
Evaluation Range for the Constellation Diagram
The "Evaluation Range" dialog box defines the type of constellation points that are displayed in the Constellation Diagram.
By default the software displays all constellation points of the data that have been evaluated. However, you can filter the results by several aspects.
●
●
●
●
Modulation
Filters the results to include only the selected type of modulation.
Allocation
Filters the results to include only a particular type of allocation.
Symbol
Filters the results to include only a particular OFDM symbol.
Carrier
Filters the results to include only a particular subcarrier.
The result display is updated as soon as you make the changes.
Note that the constellation selection is applied to all windows in split screen mode if the
windows contain constellation diagrams.
Remote command:
not supported
User Manual 1308.9135.42 ─ 15
47
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring Statistics
3.6 Measuring Statistics
This chapter contains information on all measurements that show the statistics of a signal.
CCDF............................................................................................................................ 48
Allocation Summary...................................................................................................... 48
Bit Stream..................................................................................................................... 49
CCDF
Starts the Complementary Cumulative Distribution Function (CCDF) result display.
This result display shows the probability of an amplitude exceeding the mean power.
For the measurement, the complete capture buffer is used.
The x-axis represents the power relative to the measured mean power. On the y-axis,
the probability is plotted in %.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'STAT:CCDF'
Querying results: TRACe:DATA?
Allocation Summary
Starts the Allocation Summary result display.
This result display shows the results of the measured allocations in tabular form.
User Manual 1308.9135.42 ─ 15
48
R&S®FS‑K101/103/105PC
Measurements and Result Displays
Measuring Statistics
The rows in the table represent the allocations. A set of allocations form a subframe.
The subframes are separated by a dashed line. The columns of the table contain the
follwing information:
●
●
●
●
●
●
●
Subframe
Shows the subframe number.
Allocation ID
Shows the type / ID of the allocation.
Number of RB
Shows the number of resource blocks assigned to the current PDSCH allocation.
Offset RB
Shows the resource block offset of the allocation.
Modulation
Shows the modulation type.
Power
Shows the power of the allocation in dBm.
EVM
Shows the EVM of the allocation. The unit depends on your selection.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'STAT:ASUM'
Querying results: TRACe:DATA?
Bit Stream
Starts the Bit Stream result display.
This result display shows the demodulated data stream for each data allocation.
Depending on the Bit Stream Format, the numbers represent either bits (bit order) or
symbols (symbol order).
Selecting symbol format shows the bit stream as symbols. In that case the bits belonging to one symbol are shown as hexadecimal numbers with two digits. In the case of bit
format, each number represents one raw bit.
Symbols or bits that are not transmitted are represented by a "-".
If a symbol could not be decoded because the number of layers exceeds the number
of receive antennas, the application shows a "#" sign.
User Manual 1308.9135.42 ─ 15
49
R&S®FS‑K101/103/105PC
Measurements and Result Displays
3GPP Test Scenarios
The table contains the following information:
●
●
●
●
●
●
Subframe
Number of the subframe the bits belong to.
Allocation ID
Channel the bits belong to.
Codeword
Code word of the allocation.
Modulation
Modulation type of the channels.
Symbol Index or Bit Index
Shows the position of the table row's first bit or symbol within the complete stream.
Bit Stream
The actual bit stream.
Remote command:
Selecting the result display: CALCulate<n>:FEED 'STAT:BSTR'
Querying results: TRACe:DATA?
3.7 3GPP Test Scenarios
3GPP defines several test scenarios for measuring user equipment. These test scenarios are described in detail in 3GPP TS 36.521-1.
The following table provides an overview which measurements available in the LTE
software are suited to use for the test scenarios in the 3GPP documents.
Table 3-1: Test scenarios for E-TMs as defined by 3GPP (3GPP TS 36.521-1)
Test scenario
Test described in
Measurement
UE Maximum Output Power
chapter 6.2.2
Power (➙ Result Summary)
Maximum Power Reduction
chapter 6.2.3
Power (➙ Result Summary)
Additional Maximum Power
Reduction
chapter 6.2.4
Power (➙ Result Summary)
User Manual 1308.9135.42 ─ 15
50
R&S®FS‑K101/103/105PC
Measurements and Result Displays
3GPP Test Scenarios
Test scenario
Test described in
Measurement
Configured UE-transmitted Output
Power
chapter 6.2.5
Power (➙ Result Summary)
Minimum Output Power
chapter 6.3.2
Power (➙ Result Summary)
Transmit Off Power
chapter 6.3.3
n/a
On/Off Time Mask
chapter 6.3.4
n/a
Power Control
chapter 6.3.5
n/a
Frequency Error
chapter 6.5.1
Frequency Error (➙ Result Summary)
Transmit Modulation
chapter 6.5.2.1
EVM results
chapter 6.5.2.2
I/Q Offset (➙ Result Summary)
chapter 6.5.2.3
Inband Emission
chapter 6.5.2.4
Spectrum Flatness
Occupied Bandwidth
chapter 6.6.1
Occupied Bandwidth1
Out of Band Emission
chapter 6.6.2.1
Spectrum Emission Mask
chapter 6.6.2.2
Spectrum Emission Mask
chapter 6.6.2.3
ACLR
chapter 6.6.3.1
Spurious Emissions1
chapter 6.6.3.2
Spurious Emissions1
chapter 6.6.3.3
Spurious Emissions1
Transmit Intermodulation
chapter 6.7
ACLR
Time Alignment
chapter 6.8
Time Alignment
Spurious Emissions
1these
measurements are available in the Spectrum application of the Rohde & Schwarz signal and spectrum analyzers (for example the R&S FSW)
User Manual 1308.9135.42 ─ 15
51
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
4 General Settings
The following chapter contains all settings that are available in the "General Settings"
dialog box.
●
●
●
●
●
Configuring the Measurement.................................................................................52
Configuring MIMO Measurement Setups................................................................61
Triggering Measurements....................................................................................... 63
Spectrum Settings...................................................................................................64
Advanced Settings.................................................................................................. 66
4.1 Configuring the Measurement
The general settings contain various settings that configure the general measurement
setup.
You can find the signal characteristics in the "General Settings" dialog box.
●
●
●
●
●
●
Defining General Signal Characteristics................................................................. 52
Configuring the Input...............................................................................................53
Configuring the Input Level..................................................................................... 54
Configuring the Data Capture................................................................................. 56
Configuring Measurement Results..........................................................................58
Configuring Time Alignment Measurements........................................................... 61
4.1.1 Defining General Signal Characteristics
The general signal characteristics contain settings to describe the general physical
attributes of the signal.
The signal characteristics are part of the "General Settings" tab of the "General Settings" dialog box.
Selecting the LTE Mode................................................................................................52
Defining the Signal Frequency...................................................................................... 53
Selecting the LTE Mode
The LTE mode is a combination of the "Standard" (always 3GPP LTE), the "Duplexing"
mode and the "Link Direction".
The choices you have depend on the set of options you have installed.
●
option FSx-K100(PC) enables testing of 3GPP LTE FDD signals on the downlink
User Manual 1308.9135.42 ─ 15
52
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
●
●
●
●
●
option FSx-K101(PC) enables testing of 3GPP LTE FDD signals on the uplink
option FSx-K102(PC) enables testing of 3GPP LTE MIMO signals on the downlink
option FSx-K103(PC) enables testing of 3GPP MIMO signals on the uplink
option FSx-K104(PC) enables testing of 3GPP LTE TDD signals on the downlink
option FSx-K105(PC) enables testing of 3GPP LTE TDD signals on the uplink
FDD and TDD are duplexing methods.
● FDD mode uses different frequencies for the uplink and the downlink.
● TDD mode uses the same frequency for the uplink and the downlink.
Downlink (DL) and Uplink (UL) describe the transmission path.
● Downlink is the transmission path from the base station to the user equipment. The
physical layer mode for the downlink is always OFDMA.
Uplink
is the transmission path from the user equipment to the base station. The
●
physical layer mode for the uplink is always SC-FDMA.
The software shows the currently selected LTE mode (including the bandwidth) in the
header table.
Remote command:
Link direction: CONFigure[:​LTE]:​LDIRection​ on page 151
Duplexing mode: CONFigure[:​LTE]:​DUPLexing​ on page 150
Defining the Signal Frequency
For measurements with an RF input source, you have to match the center frequency
of the analyzer to the frequency of the signal.
The software shows the current center frequency in the header table.
The available frequency range depends on the hardware configuration of the analyzer
you are using.
Remote command:
Center frequency: [SENSe]:​FREQuency:​CENTer[:​CC<cci>]​ on page 151
4.1.2 Configuring the Input
The input settings control the basic configuration of the input.
The input source selection is part of the "General Settings" tab of the "General Settings" dialog box.
For more information on advanced input configuration see chapter 4.5, "Advanced Settings", on page 66.
Selecting the Input Source............................................................................................ 54
User Manual 1308.9135.42 ─ 15
53
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
Selecting the Input Source
The input source selects the source of the data you'd like to analyze. You can either
analyze a live signal or a signal that has been recorded previously and whose characteristics have been saved to a file.
You can select the input source from the "Source" dropdown menu.
●
●
●
●
RF
Captures and analyzes the data from the RF input of the spectrum analyzer in use.
Baseband (BB)
Captures and analyzes the data from the baseband input of the spectrum analyzer
in use.
Note that you have to use an analyzer that supports analog baseband input if you
select that input source.
Digital I/Q
Captures and analyzes the data from the digital baseband input of the spectrum
analyzer in use.
Note that you have to use an analyzer that supports digital baseband input if you
select that input source.
File
Analyzes data that has been recorded already and has been saved to a file.
If selected, the software asks you to select a file from a dialog box after you have
initiated a measurement. If the file contents are not valid or the file could not be
found, the software shows an error message.
A connection to an analyzer or a dongle is required to successfully load a file.
For more information see chapter 7.1, "Importing and Exporting I/Q Data",
on page 98.
Remote command:
Input source selection: SENSe:​INPut​ on page 151
Loading I/Q data from file: MMEMory:​LOAD:​IQ:​STATe​ on page 190
4.1.3 Configuring the Input Level
The level settings contain settings that control the input level of any analyzer in the
measurement setup.
You can control the input level for any of the input channels you are using separately
from the dropdown menu next to the "Level Settings" label.
The level settings are part of the "General Settings" tab of the "General Settings" dialog box.
User Manual 1308.9135.42 ─ 15
54
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
Defining a Reference Level...........................................................................................55
Attenuating the Signal................................................................................................... 56
Defining a Reference Level
The reference level is the power level the analyzer expects at the RF input. Keep in
mind that the power level at the RF input is the peak envelope power in case of signals
with a high crest factor like LTE.
To get the best dynamic range, you have to set the reference level as low as possible.
At the same time, make sure that the maximum signal level does not exceed the reference level. If it does, it will overload the A/D converter, regardless of the signal power.
Measurement results may deteriorate (e.g. EVM). This applies especially for measurements with more than one active channel near the one you are trying to measure (± 6
MHz).
Note that the signal level at the A/D converter may be stronger than the level the application displays, depending on the current resolution bandwidth. This is because the
resolution bandwidths are implemented digitally after the A/D converter.
You can either specify the RF Reference Level (in dBm) or Baseband Reference
Level (in V), depending on the input source.
You can also use automatic detection of the reference level with the "Auto Level"
function.
If active, the software measures and sets the reference level to its ideal value before
each sweep. This process slightly increases the measurement time. You can define
the measurement time of that measurement with the Auto Level Track Time (➙
"Advanced" tab).
Automatic level detection also optimizes RF attenuation.
Automatic level detection is available for an RF input source.
The software shows the current reference level of the first input channel (including RF
and external attenuation) in the header table.
Remote command:
Manual (RF): CONFigure:​POWer:​EXPected:​RF<instrument>​ on page 152
Manual (BB): CONFigure:​POWer:​EXPected:​IQ<instrument>​ on page 152
Automatic: [SENSe]:​POWer:​AUTO<instrument>[:​STATe]​ on page 152
Auto Level Track Time: [SENSe]:​POWer:​AUTO<instrument>:​TIME​ on page 166
User Manual 1308.9135.42 ─ 15
55
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
Attenuating the Signal
Attenuation of the signal may become necessary if you have to reduce the power of
the signal that you have applied. Power reduction is necessary, for example, to prevent
an overload of the input mixer.
You can attenuate the signal at the RF input of one of the analyzers in the measurement setup (mechanical or RF attenuation) or attenuate the signal externally (external attenuation).
If you attenuate or amplify the signal either way, the software adjusts the numeric and
graphical results accordingly. In case of graphical power result displays, it moves the
trace(s) vertically by the specified value.
Positive values correspond to an attenuation and negative values correspond to an
amplification.
The range of the RF attenuation depends on the hardware you are using in the measurement setup. For details refer to its data sheet. If the attenuation you have set is not
supported by the hardware, the software corrects the attenuation and shows a corresponding message.
The software shows the RF and external attenuation level in the header table next to
the reference level.
Remote command:
RF attenuation: INPut<n>:​ATTenuation<instrument>​ on page 153
External attenuation: DISPlay[:​WINDow<n>]:​TRACe<t>:​Y[:​SCALe]:​RLEVel:​
OFFSet​ on page 153
4.1.4 Configuring the Data Capture
The data capture settings contain settings that control the amount of data and the way
that the software records the LTE signal.
The data capture settings are part of the "General Settings" tab of the "General Settings" dialog box.
Capture Time................................................................................................................ 56
Overall Frame Count.....................................................................................................57
Number of Frames to Analyze...................................................................................... 57
Auto According to Standard.......................................................................................... 57
Capture Time
Defines the capture time.
User Manual 1308.9135.42 ─ 15
56
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
The capture time corresponds to the time of one sweep. Hence, it defines the amount
of data the software captures during one sweep.
By default, the software captures 20.1 ms of data to make sure that at least one complete LTE frame is captured in one sweep.
The software shows the current capture time (including the frame number) in the
header table.
Remote command:
[SENSe]:​SWEep:​TIME​ on page 153
Overall Frame Count
Turns the manual selection of the number of frames to capture (and analyze) on and
off.
If the overall frame count is active, you can define a particular number of frames to
capture and analyze. The measurement runs until all required frames have been analyzed, even if it takes more than one sweep. The results are an average of the captured frames.
If the overall frame count is inactive, the analyzer analyzes all complete LTE frames
currently in the capture buffer.
Remote command:
[SENSe][:​LTE]:​FRAMe:​COUNt:​STATe​ on page 153
Number of Frames to Analyze
Sets the number of frames that you want to capture and analyze.
If the number of frames you have set last longer than a single sweep, the analyzer continues the measurement until all frames have been captured.
The parameter is read only if
●
●
the overall frame count is inactive,
the data is captured according to the standard.
Remote command:
[SENSe][:​LTE]:​FRAMe:​COUNt​ on page 154
Auto According to Standard
Turns automatic selection of the number of frames to capture and analyze on and off.
If active, the analyzer evaluates the number of frames as defined for EVM tests in the
LTE standard.
If inactive, you can set the number of frames you want to analyze.
This parameter is not available if the overall frame count is inactive.
Remote command:
[SENSe][:​LTE]:​FRAMe:​COUNt:​AUTO​ on page 154
User Manual 1308.9135.42 ─ 15
57
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
4.1.5 Configuring Measurement Results
The measurement result settings contain settings that define certain aspects of the
results that are displayed.
The result settings are part of the "General Settings" tab of the "General Settings" dialog box.
EVM Unit....................................................................................................................... 58
Bit Stream Format......................................................................................................... 58
Carrier Axes.................................................................................................................. 59
Subframe Selection.......................................................................................................59
Slot Selection................................................................................................................ 60
Preamble Selection....................................................................................................... 60
Antenna Selection......................................................................................................... 60
EVM Unit
Selects the unit for graphic and numerical EVM measurement results.
Possible units are dB and %.
Remote command:
UNIT:​EVM​ on page 155
Bit Stream Format
Selects the way the bit stream is displayed.
The bit stream is either a stream of raw bits or of symbols. In case of the symbol format, the bits that belong to a symbol are shown as hexadecimal numbers with two digits.
Examples:
Fig. 4-1: Bit stream display in uplink application if the bit stream format is set to "symbols"
User Manual 1308.9135.42 ─ 15
58
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
Fig. 4-2: Bit stream display in uplink application if the bit stream format is set to "bits"
Remote command:
UNIT:​BSTR​ on page 155
Carrier Axes
Selects the scale of the x-axis for result displays that show results of OFDM subcarriers.
●
X-axis shows the frequency of the subcarrier
●
X-axis shows the number of the subcarrier
Remote command:
UNIT:​CAXes​ on page 155
Subframe Selection
Selects a particular subframe whose results the software displays.
You can select a particular subframe for the following measurements.
Result Summary, EVM vs. Carrier, EVM vs. Symbol, EVM vs. Symbol x Carrier, Inband
Emission, Channel Flatness, Spectrum Flatness SRS, Channel Group Delay, Spectrum Flatness Difference, Power vs Symbol x Carrier, Constellation Diagram, DFT Precoded Constellation, Allocation Summary, Bit Stream and Time Alignment. If ---All--- is
selected, either the results from all subframes are displayed at once or a statistic is calculated over all analyzed subframes.
Selecting a subframe is not possible in PRACH analysis mode.
Selecting "All" either displays the results over all subframes or calculates a statistic
over all subframes that have been analyzed.
User Manual 1308.9135.42 ─ 15
59
R&S®FS‑K101/103/105PC
General Settings
Configuring the Measurement
Example: Subframe selection
If you select all subframes ("All"), the software shows three traces. One trace shows
the subframe with the minimum level characteristics, the second trace shows the subframe with the maximum level characteristics and the third subframe shows the averaged level characteristics of all subframes.
●
●
●
PK: peak value
AV: average value
MI: minimum value
If you select a specific subframe, the software shows one trace. This trace contains the
results for that subframe only.
Remote command:
[SENSe][:​LTE]:​SUBFrame:​SELect​ on page 156
Slot Selection
Selects a particular slot whose measurement results you want to see.
You can select a particular slot for the following measurements.
Result Summary, EVM vs Carrier, EVM vs Symbol, EVM vs Symbol x Carrier, Inband
Emission, Channel Flatness, Spectrum Flatness SRS, Channel Group Delay, Spectrum Flatness Difference, Power vs Symbol x Carrier, Constellation Diagram, DFT Precoded Constellation Diagram and Time Alignment.
In PRACH analysis mode, you can not select a particular slot.
Remote command:
[SENSe][:​LTE]:​SLOT:​SELect​ on page 156
Preamble Selection
Selects a particular preamble for measurements that analyze individual preambles.
Selecting preambles is available in PRACH analysis mode.
Remote command:
[SENSe][:​LTE]:​PREamble:​SELect​ on page 156
Antenna Selection
Selects the antenna you want to display the results for.
User Manual 1308.9135.42 ─ 15
60
R&S®FS‑K101/103/105PC
General Settings
Configuring MIMO Measurement Setups
For more information see "MIMO Configuration" on page 62.
Remote command:
[SENSe][:​LTE]:​ANTenna:​SELect​ on page 155
4.1.6 Configuring Time Alignment Measurements
The Time Alignment measurement settings contain settings that define certain aspects
of this measurement.
The Time Alignment measurement settings are part of the "General Settings" tab of the
"General Settings" dialog box.
Carrier Aggregation.......................................................................................................61
Carrier Aggregation
The software supports Time Alignment Error measurements with carrier aggregation.
Select the number of carriers from the "Number of Component Carriers" dropdown
menu.
If you select more than one carrier, define the frequency of the other carrier in the
"CC2 Frequency" field.
The "CC2 Demod Settings" button opens a dialog box to configure the signal characteristics of the second carrier. This dialog contains a selection of the demodulation settings.
For more information see chapter 5, "Demod Settings", on page 71.
Note that the software shows measurement results for the second component carrier
even if only one antenna of the second component carrier is attached (i.e. no combiner
is used).
Remote command:
CONFigure:​NOCC​ on page 157
[SENSe]:​FREQuency:​CENTer[:​CC<cci>]​ on page 151
CC2 Demod settings: see chapter 9.8, "Remote Commands to Configure the Demodulation", on page 167
4.2 Configuring MIMO Measurement Setups
The MIMO settings contain settings to configure a MIMO test setup and control the
instruments in that test setup.
User Manual 1308.9135.42 ─ 15
61
R&S®FS‑K101/103/105PC
General Settings
Configuring MIMO Measurement Setups
The MIMO settings are part of the "Analyzer Config / MIMO Setup" tab of the "General
Settings" dialog box.
MIMO Configuration...................................................................................................... 62
MIMO Analyzer Configuration....................................................................................... 62
MIMO Configuration
Selects the antenna configuration and test conditions for a MIMO system.
The MIMO configuration selects the number of transmit antennas for selected channels in the system. MIMO configurations are supported for the PUSCH, the PUCCH
and the Sounding Reference Signal (SRS). For each channel you can select from a 1-,
2- or 4-antenna configuration.
In setups with multiple antennas, the antenna selection defines the antenna you'd like
to test. Note that as soon as you have selected a transmission on more than one
antenna for one of the channels, the corresponding number of antennas becomes
available for testing.
Antenna 1
Tests antenna 1 only.
Antenna 2
Tests antenna 2 only.
Antenna 3
Tests antenna 3 only.
Antenna 4
Tests antenna 4 only.
All
Tests all antennas in the test setup in consecutive order (1-2-3-4).
A corresponding number of analyzers is required.
Remote command:
CONFigure[:​LTE]:​UL:​MIMO:​SRS:​CONFig​ on page 159
CONFigure[:​LTE]:​UL:​MIMO:​PUCCh:​CONFig​ on page 159
CONFigure[:​LTE]:​UL:​MIMO:​PUSCh:​CONFig​ on page 159
CONFigure[:​LTE]:​UL:​MIMO:​ASELection​ on page 158
MIMO Analyzer Configuration
For a comprehensive description see chapter 2.3, "Connecting the Computer to an
Analyzer", on page 17.
User Manual 1308.9135.42 ─ 15
62
R&S®FS‑K101/103/105PC
General Settings
Triggering Measurements
4.3 Triggering Measurements
The trigger settings contain settings that control triggered measurements.
You can select a trigger for any of the four possible analyzers in the measurement
setup separately by selecting one of the analyzers from the dropdown menu next to the
"Trigger Settings" label.
The trigger settings are part of the "General Settings" tab of the "General Settings" dialog box.
Configuring the Trigger
A trigger allows you to capture those parts of the signal that you are really interested
in.
While the software runs freely and analyzes all signal data in its default state, no matter if the signal contains information or not, a trigger initiates a measurement only
under certain circumstances (the trigger event).
The software supports several trigger modes or sources.
●
●
●
●
Free Run
Starts the measurement immediately and measures continuously.
External
The trigger event is the level of an external trigger signal. The measurement starts
when this signal meets or exceeds a specified trigger level at the "Ext Trigger/
Gate" input.
Some measurement devices have several trigger ports. When you use one of
these, you can additionally select the trigger port (1 to 3) you want to use.
IF Power
The trigger event is the IF power level. The measurement starts when the IF power
meets or exceeds a specified power trigger level.
Trigger Unit FS-Z11
The R&S FS-Z11 is a trigger unit designed to control triggers in MIMO measurement setups.
Note that the trigger unit is not compatible with oscilloscope measurements.
For more information see "Measurements with the R&S FS-Z11 trigger unit"
on page 110 and the documentation of the R&S FS-Z11.
You can define a power level for an external and an IF power trigger.
For most trigger sources you can select the trigger slope. The trigger slope defines
whether triggering occurs when the signal rises to the trigger level or falls down to it.
User Manual 1308.9135.42 ─ 15
63
R&S®FS‑K101/103/105PC
General Settings
Spectrum Settings
The measurement starts as soon as the trigger event happens. It may become necessary to start the measurement some time after the trigger event. In that case, define a
trigger offset (or trigger delay). The trigger offset is the time that should pass between
the trigger event and the start of the measurement.
The trigger offset may be a negative time. The trigger offset is then called a pretrigger.
The trigger offset is available for all trigger modes, except free run.
Remote command:
For a comprehensive list of commands to define trigger characteristics see chapter 9.7.3, "Using a Trigger", on page 160.
4.4 Spectrum Settings
The spectrum settings contain settings to configure frequency sweep measurements
(ACLR and SEM).
You can find the spectrum settings in the "General Settings" dialog box.
4.4.1 Configuring SEM and ACLR Measurements
The SEM (Spectrum Emission Mask) and ACLR (Adjacent Channel Leakage Ratio)
settings contain settings that define aspects of those measurements.
The SEM and ACLR settings are part of the "Spectrum" tab of the "General Settings"
dialog box.
Number of TX Channels................................................................................................64
SEM Requirement.........................................................................................................65
Assumed Adjacent Channel Carrier..............................................................................65
Noise Correction........................................................................................................... 65
Auto Gating................................................................................................................... 65
Number of TX Channels
The software allows you to perform ACLR and SEM measurements on systems that
support carrier aggregation.
Measurements on one or two TX channels are supported.
For the second TX channel, you can select the bandwidths as defined by 3GPP. For
more information see "Channel Bandwidth / Number of Resource Blocks"
on page 75.
User Manual 1308.9135.42 ─ 15
64
R&S®FS‑K101/103/105PC
General Settings
Spectrum Settings
In case of ACLR measurements with carrier aggregation, the measurement frequency
is not the frequency of one of the carriers, but lies somewhere in between the carrier
frequencies, depending on the bandwidths you have selected for the two carriers. The
carriers have to be next to each other for the measurement to work reliably.
Remote command:
CONFigure[:​LTE]:​UL:​CABW​ on page 162
SEM Requirement
Selects the type of spectrum emission mask used for the Out of Band emission measurement.
The software supports general and specific (additional) spectrum emission masks. The
specific spectrum emission masks contain additional SEM requirements. The additional requirements masks to use for the measurement depend on the network signalled value "NS_03", "NS_04", "NS_06" or "NS_07".
If "NS_06" or "NS_07" is indicated in the cell, use SEM requirement "NS_06_07".
Remote command:
[SENSe]:​POWer:​SEM:​UL:​REQuirement​ on page 162
Assumed Adjacent Channel Carrier
Selects the assumed adjacent channel carrier for the ACLR measurement.
The supported types are EUTRA of same bandwidth, 1.28 Mcps UTRA, 3.84 Mcps
UTRA and 7.68 Mcps UTRA.
Note that not all combinations of LTE Channel Bandwidth settings and Assumed Adj.
Channel Carrier settings are defined in the 3GPP standard.
Remote command:
[SENSe]:​POWer:​ACHannel:​AACHannel​ on page 163
Noise Correction
Turns noise correction on and off.
Note that the input attenuator makes a clicking noise after each sweep if you are using
the noise correction in combination with the auto leveling process.
Remote command:
[SENSe]:​POWer:​NCORrection​ on page 163
Auto Gating
Turns gating for SEM and ACLR measurements on and off.
If on, the software evaluates the on-periods of an LTE TDD signal only. The software
determines the location and length of the on-period from the "TDD UL/DL Allocations"
and the "Configuration of the Special Subframe".
Note that the automatic cyclic prefix mode detection is not supported if you have turned
on Auto Gating. In that case, you have to select the cyclic prefix mode manually.
Auto gating is available for TDD measurements in combination with an external or IF
power trigger.
User Manual 1308.9135.42 ─ 15
65
R&S®FS‑K101/103/105PC
General Settings
Advanced Settings
If you are using an external trigger, the DUT has to send an LTE frame trigger.
Remote command:
[SENSe]:​SWEep:​EGATe:​AUTO​ on page 163
4.4.2 Configuring Spectrum Flatness Measurements
The spectrum flatness settings contain settings that define certain aspects of those
measurements.
The Spectrum Flatness measurement settings are part of the "General Settings" tab of
the "General Settings" dialog box.
Operating Band Index................................................................................................... 66
Extreme Conditions.......................................................................................................66
Operating Band Index
Selects one of the 40 operating bands for spectrum flatness measurements as defined
in TS 36.101.
The operating band defines the frequency band and the dedicated duplex mode.
Remote command:
[SENSe][:​LTE]:​SFLatness:​OBANd​ on page 164
Extreme Conditions
Turns extreme conditions on and off.
If you turn the extreme conditions on, the software will modify the limit lines for the limit
check of the spectral flatness measurement.
Remote command:
[SENSe][:​LTE]:​SFLatness:​ECONditions​ on page 164
4.5 Advanced Settings
The advanced settings contain settings to configure the signal input and some global
measurement analysis settings.
You can find the advanced settings in the "General Settings" dialog box.
●
●
●
●
●
Controlling I/Q Data.................................................................................................67
Configuring the Baseband Input..............................................................................67
Using Advanced Input Settings...............................................................................68
Configuring the Digital I/Q Input.............................................................................. 69
Global Settings........................................................................................................69
User Manual 1308.9135.42 ─ 15
66
R&S®FS‑K101/103/105PC
General Settings
Advanced Settings
4.5.1 Controlling I/Q Data
The I/Q settings contain settings that control the I/Q data flow.
The I/Q settings are part of the "Advanced" tab of the "General Settings" dialog box.
Swap I/Q....................................................................................................................... 67
File Source Offset......................................................................................................... 67
Swap I/Q
Swaps the real (I branch) and the imaginary (Q branch) parts of the signal.
Remote command:
[SENSe]:​SWAPiq​ on page 164
File Source Offset
Defines the location in an I/Q data file where the analysis starts.
Remote command:
INPut:​IQ:​FSOFfset​ on page 165
4.5.2 Configuring the Baseband Input
The baseband settings contain settings that configure the baseband input.
The baseband settings are part of the "Advanced" tab of the "General Settings" dialog
box.
High Impedance............................................................................................................ 67
Balanced....................................................................................................................... 68
Low Pass.......................................................................................................................68
Dither.............................................................................................................................68
High Impedance
Selects the impedance of the baseband input.
By default (high impedance is off), the impedance is 50 Ω.
If you turn the high impedance on, the impedance changes to 1 kΩ or 1 MΩ, depending on the configuration of the analyzer.
User Manual 1308.9135.42 ─ 15
67
R&S®FS‑K101/103/105PC
General Settings
Advanced Settings
High impedance is available for a baseband input source.
Remote command:
INPut:​IQ:​IMPedance​ on page 165
Balanced
Turns symmetric (or balanced) input on and off.
If active, a ground connection is not necessary. If you are using an assymetrical
(unbalanced) setup, the ground connection runs through the shield of the coaxial cable
that is used to connect the DUT
Balancing is available for a baseband input source.
Remote command:
INPut:​IQ:​BALanced[:​STATe]​ on page 165
Low Pass
Turns an anti-aliasing low pass filter on and off.
The filter has a cut-off frequency of 36 MHz and prevents frequencies above from
being mixed into the usable frequency range. Note that if you turn the filter off, harmonics or spurious emissions of the DUT might be in the frequency range above 36 MHz
and might be missed.
You can turn it off for measurement bandwidths greater than 30 MHz.
The low pass filter is available for a baseband input source.
Remote command:
[SENSe]:​IQ:​LPASs[:​STATe]​ on page 166
Dither
Adds a noise signal into the signal path of the baseband input.
Dithering improves the linearity of the A/D converter at low signal levels or low modulation. Improving the linearity also improves the accuracy of the displayed signal levels.
The signal has a bandwidth of 2 MHz with a center frequency of 38.93 MHz.
Dithering is available for a baseband input source.
Remote command:
[SENSe]:​IQ:​DITHer[:​STATe]​ on page 166
4.5.3 Using Advanced Input Settings
The advanced input settings contain settings that configure the RF input.
The advanced input settings are part of the "Advanced" tab of the "General Settings"
dialog box.
For more information see "Defining a Reference Level" on page 55.
User Manual 1308.9135.42 ─ 15
68
R&S®FS‑K101/103/105PC
General Settings
Advanced Settings
4.5.4 Configuring the Digital I/Q Input
The digital I/Q settings contain settings that configure the digital I/Q input.
The digital I/Q settings are part of the "Advanced" tab of the "General Settings" dialog
box.
Sampling Rate (Input Data Rate).................................................................................. 69
Full Scale Level.............................................................................................................69
Sampling Rate (Input Data Rate)
Defines the data sample rate at the digital baseband input.
The sample rate is available for a digital baseband input source.
Remote command:
INPut<n>:​DIQ:​SRATe​ on page 167
Full Scale Level
Defines the voltage corresponding to the maximum input value of the digital baseband
input.
Remote command:
INPut<n>:​DIQ:​RANGe[:​UPPer]​ on page 166
4.5.5 Global Settings
The global settings contain settings that are independent of other settings.
The global settings are part of the "Advanced" tab of the "General Settings" dialog box.
Couple Screens.............................................................................................................69
Stop Run Continuous On Limit Check Fail....................................................................70
Couple Screens
Couples and decouples markers that have the same x-axis unit in the top and bottom
result displays (e.g. both result displays have a frequency axis).
In case of the constellation diagram, the constellation selection is also coupled to the
marker.
User Manual 1308.9135.42 ─ 15
69
R&S®FS‑K101/103/105PC
General Settings
Advanced Settings
Stop Run Continuous On Limit Check Fail
Stops a continuous measurement if the signal fails any limit check in the currently
active result display.
For example, the measurement would stop on an EVM PUSCH QPSK limit check fail if
the result summary is active.
User Manual 1308.9135.42 ─ 15
70
R&S®FS‑K101/103/105PC
Demod Settings
Configuring Uplink Signal Demodulation
5 Demod Settings
The following chapter contains all settings that are available in the "Demodulation Settings" dialog box.
●
●
●
Configuring Uplink Signal Demodulation.................................................................71
Defining Uplink Signal Characteristics.................................................................... 75
Defining Advanced Signal Characteristics.............................................................. 83
5.1 Configuring Uplink Signal Demodulation
The uplink demodulation settings contain settings that describe the signal processing
and the way the signal is measured.
You can find the demodulation settings in the "Demod Settings" dialog box.
●
●
Configuring the Data Analysis.................................................................................71
Compensating Signal Errors................................................................................... 74
5.1.1 Configuring the Data Analysis
The data analysis settings contain setting that control the data analysis.
The data analysis settings are part of the "Downlink Demodulation Settings" tab of the
"Demodulation Settings" dialog box.
Analysis Mode...............................................................................................................72
Channel Estimation Range........................................................................................... 72
EVM with Exclusion Period........................................................................................... 72
Analyze TDD Transient Slots........................................................................................ 72
Compensate DC Offset................................................................................................. 72
Scrambling of Coded Bits..............................................................................................72
Auto Demodulation........................................................................................................73
Subframe Configuration Detection................................................................................ 73
Suppressed Interference Synchronization.................................................................... 74
Multicarrier Filter........................................................................................................... 74
User Manual 1308.9135.42 ─ 15
71
R&S®FS‑K101/103/105PC
Demod Settings
Configuring Uplink Signal Demodulation
Analysis Mode
Selects the channel analysis mode.
You can select from "PUSCH/PUCCH" mode and "PRACH" mode.
PUSCH/PUCCH mode analyzes the PUSCH and PUCCH. This is the default.
PRACH mode analyzes the PRACH only. In PRACH analysis mode no subframe or
slot selection is available. Instead you can select a particular preamble that the results
are shown for. Note that PRACH analysis mode does not support all result displays.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​MODE​ on page 168
Channel Estimation Range
Selects the method for channel estimation.
You can select if only the pilot symbols are used to perform channel estimation or if
both pilot and payload carriers are used.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​CESTimation​ on page 168
EVM with Exclusion Period
Turns exclusion periods for EVM measurements as defined in 3GPP TS 36.521 on and
off.
The exclusion period affects the PUSCH data EVM of the first and last symbol.
The software automatically determines the length of the exclusion period according to
3GPP TS 36.521-1.
The exclusion period has no effect on the EVM vs Carrier and EVM vs Symbol x Carrier result displays.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​EEPeriod​ on page 168
Analyze TDD Transient Slots
Includes or excludes the transient slots present after a switch from downlink to uplink in
the analysis.
If on, the transient slots are not included in the measurement.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​ATTSlots​ on page 168
Compensate DC Offset
Turns DC offset compensation when calculating measurement results on and off.
According to 3GPP TS 36.101 (Annex F.4), the analyzer removes the carrier leakage
(I/Q origin offset) from the evaluated signal before it calculates the EVM and in-band
emissions.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​CDCoffset​ on page 169
Scrambling of Coded Bits
Turns the scrambling of coded bits for the PUSCH on and off.
User Manual 1308.9135.42 ─ 15
72
R&S®FS‑K101/103/105PC
Demod Settings
Configuring Uplink Signal Demodulation
The scrambling of coded bits affects the bitstream results.
Fig. 5-1: Source for bitstream results if scrambling for coded bits is on and off
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​CBSCrambling​ on page 169
Auto Demodulation
Turns automatic demodulation on and off.
If active, the analyzer automatically detects the characteristics of each subframe in the
signal (resource allocation of the signal).
Two methods of detection are supported:
● Subframe Configuration
This method automatically determines the characteristics for each subframe as
shown in the Subframe Configuration Table.
The table is populated accordingly.
● Subframe Configuration & DMRS
Auto Demodulation, DMRS Auto Detection (On)
This method automatically detects the PUSCH and SRS (i.e. no PUCCH can be
detected).
To determine these characteristics, the software detects the CAZAC base parameters. Thus, the DMRS configuration parameters are not required for the synchronization and therefore are not available using this method.
Note however that it is not possible to derive the DMRS configuration parameters
from the CAZAC base parameters so that the disabled DMRS configuration parameters do not reflect the current parameters used for the synchronization. Also note
that it can happen that the software successfully synchronizes on non-3GPP signals without a warning.
Automatic demodulation is not available if the Suppressed Interference Synchronization is active.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​ACON​ on page 169
Subframe Configuration Detection
Turns the detection of the subframe configuration on and off.
User Manual 1308.9135.42 ─ 15
73
R&S®FS‑K101/103/105PC
Demod Settings
Configuring Uplink Signal Demodulation
Upon activation, the software compares the current demodulated LTE frame to the
subframe configuration you have set. Only if the signal is consistent with the configuration, the software will further analyze the LTE frame.
If inactive, the software analyzes the signal even if it is not consistent with the current
subframe configuration.
Subframe configuration detection is available if "Auto Demodulation" is turned off.
Remote command:
[SENSe][:​LTE]:​UL:​FORMat:​SCD​ on page 169
Suppressed Interference Synchronization
Turns suppressed interference synchronization on and off.
If active, the synchronization on signals containing more than one user equipment (UE)
is more robust. Additionally, the EVM is lower in case the UEs have different frequency
offsets. Note that Auto Demodulation is not supported in this synchronization mode
and the EVM may be higher in case only one UE is present in the signal.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​SISYnc​ on page 170
Multicarrier Filter
Turns the suppression of interference of neighboring carriers on and off.
Remote command:
[SENSe][:​LTE]:​UL:​DEMod:​MCFilter​ on page 170
5.1.2 Compensating Signal Errors
The tracking settings contain settings that compensate for various common signal
errors that may occur.
The tracking settings are part of the "Downlink Demodulation Settings" tab of the
"Demodulation Settings" dialog box.
Phase............................................................................................................................ 74
Timing........................................................................................................................... 75
Phase
Specifies whether or not the measurement results should be compensated for common
phase error. When phase compensation is used, the measurement results will be compensated for phase error on a per-symbol basis.
"Off"
Phase tracking is not applied.
"Pilot Only"
Only the reference signal is used for the estimation of the phase
error.
User Manual 1308.9135.42 ─ 15
74
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
"Pilot and Payload"
Both reference signal and payload resource elements are used for
the estimation of the phase error.
Remote command:
[SENSe][:​LTE]:​UL:​TRACking:​PHASe​ on page 170
Timing
Specifies whether or not the measurement results should be compensated for timing
error. When timing compensation is used, the measurement results will be compensated for timing error on a per-symbol basis.
Remote command:
[SENSe][:​LTE]:​UL:​TRACking:​TIME​ on page 170
5.2 Defining Uplink Signal Characteristics
The uplink signal characteristics contain settings to describe the physical attributes and
structure of an uplink LTE signal.
You can find the signal characteristics in the "Demod Settings" dialog box.
●
●
●
Defining the Physical Signal Characteristics...........................................................75
Configuring the Physical Layer Cell Identity............................................................77
Configuring Subframes........................................................................................... 78
5.2.1 Defining the Physical Signal Characteristics
The physical signal characteristics contain settings to describe the physical attributes
of an uplink LTE signal.
The physical settings are part of the "Uplink Signal Characteristics" tab of the "Demodulation Settings" dialog box.
Channel Bandwidth / Number of Resource Blocks
Specifies the channel bandwidth and number of resource blocks (RB).
The channel bandwidth and number of resource blocks (RB) are interdependent. Currently, the LTE standard recommends six bandwidths (see table below).
The software also calculates the FFT size, sampling rate, occupied bandwidth and
occupied carriers from the channel bandwidth. Those are read only.
User Manual 1308.9135.42 ─ 15
75
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
Channel Bandwidth [MHz]
1.4
3
5
10
15
20
Number of Resource Blocks
6
15
25
50
75
100
Sample Rate [MHz]
1.92
3.84
7.68
15.36
30.72
30.72
FFT Size
128
256
512
1024
2048
2048
The software shows the currently selected LTE mode (including the bandwidth) in the
header table.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​BW​ on page 171
Cyclic Prefix
The cyclic prefix serves as a guard interval between OFDM symbols to avoid interferences. The standard specifies two cyclic prefix modes with a different length each.
The cyclic prefix mode defines the number of OFDM symbols in a slot.
●
●
●
Normal
A slot contains 7 OFDM symbols.
Extended
A slot contains 6 OFDM symbols.
The extended cyclic prefix is able to cover larger cell sizes with higher delay
spread of the radio channel.
Auto
The application automatically detects the cyclic prefix mode in use.
The software shows the currently selected cyclic prefix in the header table.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​CYCPrefix​ on page 171
Configuring TDD Frames
TDD frames contain both uplink and downlink information separated in time with every
subframe being responsible for either uplink or downlink transmission. The standard
specifies several subframe configurations or resource allocations for TDD systems.
TDD UL/DL Allocations
Selects the configuration of the subframes in a radio frame in TDD systems.
The UL/DL configuration (or allocation) defines the way each subframe is used: for
uplink, downlink or if it is a special subframe. The standard specifies seven different
configurations.
User Manual 1308.9135.42 ─ 15
76
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
Configuration
Subframe Number and Usage
0
1
2
3
4
5
6
7
8
9
0
D
S
U
U
U
D
S
U
U
U
1
D
S
U
U
D
D
S
U
U
D
2
D
S
U
D
D
D
S
U
D
D
3
D
S
U
U
U
D
D
D
D
D
4
D
S
U
U
D
D
D
D
D
D
5
D
S
U
D
D
D
D
D
D
D
6
D
S
U
U
U
D
S
U
U
D
U = uplink
D = downlink
S = special subframe
Conf. of Special Subframe
In combination with the cyclic prefix, the special subframes serve as guard periods for
switches from uplink to downlink. They contain three parts or fields.
● DwPTS
The DwPTS is the downlink part of the special subframe. It is used to transmit
downlink data.
● GP
The guard period makes sure that there are no overlaps of up- and downlink signals during a switch.
● UpPTS
The UpPTS is the uplink part of the special subframe. It is used to transmit uplink
data.
The length of the three fields is variable. This results in several possible configurations
of the special subframe. The LTE standard defines 10 different configurations for the
special subframe. However, configurations 8 and 9 only work for a normal cyclic prefix.
If you select configurations 8 or 9 using an extended cyclic prefix or automatic detection of the cyclic prefix, the software will show an error message.
Remote command:
Subframe: CONFigure[:​LTE]:​UL[:​CC<cci>]:​TDD:​UDConf​ on page 172
Special subframe: CONFigure[:​LTE]:​UL[:​CC<cci>]:​TDD:​SPSC​ on page 172
5.2.2 Configuring the Physical Layer Cell Identity
The physical signal characteristics contain settings to describe the physical attributes
of an uplink LTE signal.
The physical settings are part of the "Uplink Signal Characteristics" tab of the "Demodulation Settings" dialog box.
User Manual 1308.9135.42 ─ 15
77
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
Configuring the Physical Layer Cell Identity
The cell ID, cell identity group and physical layer identity are interdependent parameters. In combination they are responsible for synchronization between network and
user equipment.
The physical layer cell ID identifies a particular radio cell in the LTE network. The cell
identities are divided into 168 unique cell identity groups. Each group consists of 3
physical layer identities. According to
cell
(1)
( 2)
N ID
 3  N ID
 N ID
N(1) = cell identity group, {0...167}
N(2) = physical layer identity, {0...2}
there is a total of 504 different cell IDs.
If you change one of these three parameters, the software automatically updates the
other two.
The Cell ID determines
●
●
●
●
●
●
the reference signal grouping hopping pattern
the reference signal sequence hopping
the PUSCH demodulation reference signal pseudo-random sequence
the cyclic shifts for PUCCH formats 1/1a/1b and sequences for PUCCH formats
2/2a/2b
the pseudo-random sequence used for scrambling
the pseudo-random sequence used for type 2 PUSCH frequency hopping
The software shows the currently selected cell ID in the header table.
Remote command:
Cell ID: CONFigure[:​LTE]:​UL[:​CC<cci>]:​PLC:​CID​ on page 173
Cell Identity Group: CONFigure[:​LTE]:​UL[:​CC<cci>]:​PLC:​CIDGroup​
on page 173
Identity: CONFigure[:​LTE]:​UL[:​CC<cci>]:​PLC:​PLID​ on page 174
5.2.3 Configuring Subframes
An LTE frame consists of 10 subframes. Each individual subframe may have a different resource block configuration. This configuration is shown in the "Subframe Configuration Table".
The application supports two ways to determine the characteristics of each subframe.
●
Automatic demodulation of the channel configuration and detection of the subframe
characteristics.
In case of automatic demodulation, the contents of the table are determined
according to the signal currently evaluated.
For more information see "Auto Demodulation" on page 73.
●
Custom configuration of the configuration of each subframe.
In case of manual configuration, you can customize the table according to the signal that you expect. The signal is demodulated even if the signal does not fit the
User Manual 1308.9135.42 ─ 15
78
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
decription in the table or, in case of Physical Detection, only if the frame fits the
description in the table.
Remote command:
Conf. subframes: CONFigure[:​LTE]:​UL:​CSUBframes​ on page 175
Frame number offset
A frame number offset is also available. The frame number offset assigns a number to
the demodulated frame in order to identify it in a series of transmitted (and captured)
frames.
Remote command:
CONFigure[:​LTE]:​UL:​SFNO​ on page 174
●
●
5.2.3.1
Individual Subframe Configuration.......................................................................... 79
Enhanced Settings..................................................................................................81
Individual Subframe Configuration
The "Subframe Configuration Table" contains the characteristics for each subframe.
The software supports a maximum uplink LTE frame size of 10 subframes. The subframe number in the table depends on the number of "Configurable Subframes" that
you have defined or that have been detected in case of automatic demodulation.
Each row in the table represents one subframe or one allocation if the subframe is a
cluster of allocations.
Subframe Number.........................................................................................................79
Enable PUCCH............................................................................................................. 80
Enable PUSCH............................................................................................................. 80
Modulation.....................................................................................................................80
Enhanced Settings........................................................................................................ 80
Number of RB............................................................................................................... 80
Offset RB.......................................................................................................................80
Subframe Number
Shows the number of a subframe.
User Manual 1308.9135.42 ─ 15
79
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
Note that, depending on the TDD configuration, some subframes may not be available
for editing. The analyzer labels those subframes "(not used)".
Enable PUCCH
Turns the PUCCH in the corresponding subframe on and off.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​CONT​
on page 175
Enable PUSCH
Turns the PUSCH in the corresponding subframe on and off.
If you turn on a PUSCH, "Modulation", "Number of RBs" and "Offset RB" become available.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​CONT​
on page 175
Modulation
Selects the modulation scheme for the corresponding PUSCH allocation.
The modulation scheme is either QPSK, 16QAM or 64QAM.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​MODulation​
on page 176
Enhanced Settings
Opens a dialog box to configure enhanced functionality for selected channels in each
subframe.
For more information see Enhanced Settings.
Number of RB
Sets the number of resource blocks the PUSCH allocation covers. The number of
resource blocks defines the size or bandwidth of the PUSCH allocation.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc[:​
CLUSter<cluster>]:​RBCount​ on page 175
Offset RB
Sets the resource block at which the PUSCH allocation begins.
Make sure not to allocate PUSCH allocations into regions reserved for PUCCH allocations.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc[:​
CLUSter<cluster>]:​RBOFfset​ on page 175
User Manual 1308.9135.42 ─ 15
80
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
5.2.3.2
Enhanced Settings
The "Enhanced Settings" contain functionality to define enhanced characteristics for
selected channels.
Enhanced PUSCH Configuration.................................................................................. 81
Enhanced Demodulation Reference Signal Configuration............................................81
Enhanced PUCCH Configuration..................................................................................82
Enhanced PUSCH Configuration
Configures the PUSCH in individual subframes.
Note that you have to select more than one antenna for the PUSCH transmission to
access these parameters. For more information see "MIMO Configuration" on page 62.
Resource Allocation Type 1
Turns a clustered PUSCH allocation an and off. If on, a second row is added to the
corresponding allocation. This second row represents the second cluster.
You can define the number of resource block and the offset resource block for each
cluster. All other parameters (power, modulation etc.) are the same for both clusters.
Precoding Settings
If you are using a clustered PUSCH, you can also define the number of layers for any
allocation and the codebook index.
The number of layers of an allocation in combination with the number of code words
determines the layer mapping. The available number of layers depends on the number
of transmission antennas. Thus, the maximum number of layers you can select is four.
The codebook index determines the precoding matrix. The available number of indices
depends on the number of transmission antennas in use. The range is from 0 to 23.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​RATO​
on page 178
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​PRECoding:​
CLMapping​ on page 176
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​PRECoding:​
CBINdex​ on page 176
Enhanced Demodulation Reference Signal Configuration
Configures the Demodulation Reference Signal in individual subframes.
User Manual 1308.9135.42 ─ 15
81
R&S®FS‑K101/103/105PC
Demod Settings
Defining Uplink Signal Characteristics
n(2)_DMRS
Defines the part of the demodulation reference signal index that is part of the uplink
scheduling assignment. Thus, this part of the index is valid for corresponding UE and
subframe only.
The index applies when multiple shifts within a cell are used. It is used for the calculation of the DMRS sequence.
Cyclic Shift Field
If Activate-DMRS-With OCC is on, the "Cyclic Shift Field" becomes available to define
the cyclic shift field.
The Cyclic Shift Field is signalled by the PDCCH downlink channel in DCI format 0 and
4. It selects n(2)_DMRS and the orthogonal sequence (OCC) for signals according to
LTE release 10.
If the "Cyclic Shift Field" is off, the demodulation reference signal is configured by the
n(2)_DMRS parameter.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​PUSCh:​
NDMRs​ on page 177
CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​PUSCh:​
CSField​ on page 177
Enhanced PUCCH Configuration
Configures the PUSCH in individual subframes.
n_PUCCH
Defines the n_PUCCH parameter for the selected subframe.
Available only if you have selected "Per Subframe" for the N_PUCCH.
PUCCH Format
Selects the PUCCH format for the selected subframe.
Available only if you have selected "Per Subframe" for the Format.
Remote command:
n_PUCCH: CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​
PUCCh:​NPAR​ on page 177
Format: CONFigure[:​LTE]:​UL[:​CC<cci>]:​SUBFrame<subframe>:​ALLoc:​
PUCCh:​FORMat​ on page 176
User Manual 1308.9135.42 ─ 15
82
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
5.3 Defining Advanced Signal Characteristics
The uplink advanced signal characteristics contain settings that describe the detailed
structure of an uplink LTE signal.
You can find the advanced signal characteristics in the "Demod Settings" dialog box.
●
●
●
●
●
●
Configuring the Demodulation Reference Signal.................................................... 83
Configuring the Sounding Reference Signal........................................................... 85
Defining the PUSCH Structure................................................................................88
Defining the PUCCH Structure................................................................................90
Defining the PRACH Structure................................................................................92
Defining Global Signal Characteristics....................................................................93
5.3.1 Configuring the Demodulation Reference Signal
The demodulation reference signal settings contain settings that define the physical
attributes and structure of the demodulation reference signal. This reference signal
helps to demodulate the PUSCH.
The demodulation reference signal settings are part of the "Uplink Advanced Signal
Characteristics" tab of the "Demodulation Settings" dialog box.
Sequence...................................................................................................................... 83
Group Hopping..............................................................................................................84
Sequence Hopping........................................................................................................84
Relative Power PUSCH................................................................................................ 84
Activate-DMRS-With OCC............................................................................................ 84
n(1)_DMRS................................................................................................................... 85
Delta Sequence Shift.................................................................................................... 85
Relative Power PUCCH................................................................................................ 85
Sequence
Selects the definition the demodulation reference signal is based on.
"3GPP"
User Manual 1308.9135.42 ─ 15
The structure of the DRS is based on the 3GPP standard.
If you are using a DRS based on 3GPP, you have to set all parameters in the "Demodulation Reference Signal" settings group. They
have to be the same as those of the signal generator.
83
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
"I/Q File"
The structure of the DRS is customized.
Move the file that contains the signal definition into the default directory. For more information see chapter 7.3, "Customizing Reference
Symbols", on page 100.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​SEQuence​ on page 180
Group Hopping
Turns group hopping for the demodulation reference signal on and off.
The group hopping pattern is based on 17 hopping patterns and 30 sequence shift patterns. It is generated by a pseudo-random sequence generator.
If on, PUSCH and PUCCH use the same group hopping pattern.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​GRPHopping​ on page 179
Sequence Hopping
Turns sequence hopping for the uplink demodulation reference signal on and off.
Sequence hopping is generated by a pseudo-random sequence generator.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​SEQHopping​ on page 180
Relative Power PUSCH
Defines the power of the DMRS relative to the power level of the PUSCH allocation in
the corresponding subframe (PDMRS_Offset).
The effective power level of the DMRS depends on the allocation of the subframe and
is calculated as follows.
PDMRS = PUE + PPUSCH + PDMRS_Offset
The relative power of the DMRS is applied to all subframes.
The power of the PUSCH (PPUSCH) may be different in each subframe.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS[:​PUSCh]:​POWer​ on page 180
Activate-DMRS-With OCC
Turns the configuration of the demodulation reference signal on a subframe basis via
the "Cyclic Shift Field" on and off.
If on, the "Cyclic Shift Field" becomes available. Otherwise, the demodulation reference signal is configured by the n(2)_DMRS parameter.
Note that this parameter is automatically turned on if at least one of the physical channels uses more than one antenna.
For more information see Enhanced Settings and MIMO Configuration.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​AOCC​ on page 178
User Manual 1308.9135.42 ─ 15
84
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
n(1)_DMRS
Defines the part of the demodulation reference signal index that is broadcasted. It is
valid for the whole cell.
The index applies when multiple shifts within a cell are used. It is used for the calculation of the DMRS sequence.
The n_DMRS parameter can be found in 3GPP TS36.211 V8.5.0, 5.5.2.1.1 Reference
signal sequence.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​NDMRs​ on page 179
Delta Sequence Shift
Defines the delta sequence shift ΔSS.
The standard defines a sequence shift pattern fss for the PUCCH. The corresponding
sequence shift pattern for the PUSCH is a function of fssPUCCH and the delta sequence
shift.
For more information refer to 3GPP TS 36.211, chapter 5.5.1.3 "Group Hopping".
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​DSSHift​ on page 179
Relative Power PUCCH
Defines the power of the DMRS relative to the power level of the PUCCH allocation in
the corresponding subframe (PDMRS_Offset).
The effective power level of the DMRS depends on the allocation of the subframe and
is calculated as follows.
PDMRS = PUE + PPUCCH + PDMRS_Offset
The relative power of the DMRS is applied to all subframes.
The power of the PUCCH (PPUCCH) may be different in each subframe.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​PUCCh:​POWer​ on page 179
5.3.2 Configuring the Sounding Reference Signal
The sounding reference signal settings contain settings that define the physical attributes and structure of the sounding reference signal.
The sounding reference signal settings are part of the "Uplink Advanced Signal Characteristics" tab of the "Demodulation Settings" dialog box.
User Manual 1308.9135.42 ─ 15
85
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
Present..........................................................................................................................86
SRS Subframe Conf......................................................................................................86
SRS BW Conf. C_SRS................................................................................................. 86
SRS MaxUpPts............................................................................................................. 86
Conf. Index I_SRS........................................................................................................ 86
SRS Bandwidth B_SRS................................................................................................ 87
Transm. Comb. k_TC....................................................................................................87
SRS Rel Power............................................................................................................. 87
Hopping BW b_hop....................................................................................................... 87
Freq. Domain Pos. n_RRC........................................................................................... 88
SRS Cyclic Shift N_CS................................................................................................. 88
A/N + SRS Simultaneous TX........................................................................................ 88
Present
Includes or excludes the sounding reference signal (SRS) from the test setup.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​STAT​ on page 183
SRS Subframe Conf.
Defines the subframe configuration of the SRS.
The subframe configuration of the SRS is specific to a cell. The UE sends a shortened
PUCCH/PUSCH in these subframes, regardless of whether the UE is configured to
send an SRS in the corresponding subframe or not.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​SUConfig​ on page 183
SRS BW Conf. C_SRS
Defines the bandwidth configuration of the SRS.
The bandwidth configuration is a cell specific parameter that, in combination with the
SRS bandwidth and the channel bandwidth, defines the length of the souunding reference signal sequence. For more information on the calculation refer to 3GPP TS
36.211 chapter 5.5.3 "Sounding Reference Signal".
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​CSRS​ on page 181
SRS MaxUpPts
Turns the parameter srs_MaxUpPts on and off.
srs_MaxUpPts controls the SRS transmission in the UpPTS field in TDD systems. If
on, the SRS is transmitted in a frequency range of the UpPTS field that does not overlap with resources reserved for PRACH preamble 4 transmissions.
To avoid an overlap, the number of SRS resource blocks otherwise determined by
C_SRS and B_SRS is reconfigured.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​MUPT​ on page 182
Conf. Index I_SRS
Defines the configuration index of the SRS.
User Manual 1308.9135.42 ─ 15
86
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
The configuration index ISRS is a cell specific parameter that determines the SRS periodicity (TSRS) and the SRS subframe offset (Toffset). The effects of the configuration index
on TSRS and Toffset depends on the duplexing mode.
For more information refer to 3GPP TS 36.213, Table 8.2-1 (FDD) and 8.2-2 (TDD).
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​ISRS​ on page 182
SRS Bandwidth B_SRS
Defines the parameter BSRS.
BSRS is a UE specific parameter that defines the bandwidth of the SRS. The SRS either
spans the entire frequency bandwidth or uses frequency hopping when several narrowband SRS cover the same total bandwidth.
The standard defines up to four bandwidths for the SRS. The most narrow SRS bandwidth (BSRS = 3) spans four resource blocks and is available for all channel bandwidths.
The other three values of BSRS define more wideband SRS bandwidths. Their availability depends on the channel bandwidth.
The availability of SRS bandwidths additionally depends on the bandwidth configuration of the SRS (CSRS).
For more information refer to 3GPP TS 36.211, chapter 5.5.3.2 "Mapping to Physical
Resources" for the Sounding Reference Signal.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​BSRS​ on page 181
Transm. Comb. k_TC
Defines the transmission comb kTC.
The transmission comb. is a UE specific parameter. For more information refer to
3GPP TS 36.211, chapter 5.5.3.2 "Mapping to Physical Resources" for the Sounding
Reference Signal.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​TRComb​ on page 183
SRS Rel Power
Defines the power of the SRS relative to the power of the corresponding UE (PSRS_Offset).
The effective power level of the SRS is calculated as follows.
PSRS = PUE + PSRS_Offset
The relative power of the SRS is applied to all subframes.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​POWer​ on page 182
Hopping BW b_hop
Defines the parameter bhop.
User Manual 1308.9135.42 ─ 15
87
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
bhop is a UE specific parameter that defines the frequency hopping bandwidth. SRS frequency hopping is active if bhop < BSRS.
For more information refer to 3GPP TS 36.211, chapter 5.5.3.2 "Mapping to Physical
Resources" for the Sounding Reference Signal.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​BHOP​ on page 181
Freq. Domain Pos. n_RRC
Defines the parameter nRRC.
nRRC is a UE specific parameter and determines the starting physical resource block of
the SRS transmission.
For more information refer to 3GPP TS 36.211, chapter 5.5.3.2 "Mapping to Physical
Resources" for the Sounding Reference Signal.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​NRRC​ on page 182
SRS Cyclic Shift N_CS
Defines the cyclic shift (nCS) used for the generation of the SRS CAZAC sequence.
Because the different shifts of the same Zadoff-Chu sequence are orthogonal to each
other, applying different SRS cyclic shifts can be used to schedule different UE to
simultaneously transmit their SRS.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​CYCS​ on page 182
A/N + SRS Simultaneous TX
Turns simultaneous transmission of the Sounding Reference Signal (SRS) and ACK/
NACK messages (via PUCCH) on and off.
By turning the parameter on, you allow for simultaneous transmission of PUCCH and
SRS in the same subframe.
If off, the SRS not transmitted in the subframe for which you have configured simultaneous transmission of PUCCH and SRS.
Note that simultaneous transmission of SRS and PUCCH is available only if the
PUCCH format is either 1, 1a, 1b or 3. The other PUCCH formats contain CQI reports
which are not transmitted with the SRS.
Remote command:
CONFigure[:​LTE]:​UL:​SRS:​ANST​ on page 181
5.3.3 Defining the PUSCH Structure
The PUSCH structure settings contain settings that describe the physical attributes and
structure of the PUSCH.
The PUSCH structure setup is part of the "Uplink Advanced Signal Characteristics" tab
of the "Demodulation Settings" dialog box.
User Manual 1308.9135.42 ─ 15
88
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
Frequency Hopping Mode.............................................................................................89
Info. in Hopping Bits...................................................................................................... 89
PUSCH Hopping Offset.................................................................................................89
Number of Subbands.................................................................................................... 89
Frequency Hopping Mode
Selects the frequency hopping mode of the PUSCH.
Several hopping modes are supported.
● None
No frequency hopping.
● Inter Subframe Hopping
PUSCH changes the frequency from one subframe to another.
● Intra Subframe Hopping
PUSCH also changes the frequency within a subframe.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​PUSCh:​FHMode​ on page 183
Info. in Hopping Bits
Defines the information available in the hopping bits according to the PDCCH DCI format 0 hopping bit definition.
The information in the hopping bits determines whether type 1 or type 2 hopping is
used in the subframe and, in case of type 1, additionally determines the exact hopping
function to use.
For more information on PUSCH frequency hopping refer to 3GPP TS36.213.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​PUSCh:​FHOP:​IIHB​ on page 184
PUSCH Hopping Offset
Defines the PUSCH Hopping Offset NRBHO.
The PUSCH Hopping Offset determines the first physical resource block and the maximum number of physical resource blocks available for PUSCH transmission if PUSCH
frequency hopping is active.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​PUSCh:​FHOFfset​ on page 184
Number of Subbands
Defines the number of subbands reserved for PUSCH.
For more information refer to 3GPP TS 36.211, chapter 5.5.3.2 "Mapping to Physical
Resources" for the Sounding Reference Signal.
Remote command:
CONFigure[:​LTE]:​UL[:​CC<cci>]:​PUSCh:​NOSM​ on page 184
User Manual 1308.9135.42 ─ 15
89
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
5.3.4 Defining the PUCCH Structure
The PUCCH structure settings contain settings that describe the physical attributes
and structure of the PUCCH.
The PUSCH structure setup is part of the "Uplink Advanced Signal Characteristics" tab
of the "Demodulation Settings" dialog box.
No. of RBs for PUCCH..................................................................................................90
Delta Shift......................................................................................................................90
N(1)_cs..........................................................................................................................91
N(2)_RB........................................................................................................................ 91
Format...........................................................................................................................91
N_PUCCH.....................................................................................................................91
No. of RBs for PUCCH
Defines the number of resource blocks reserved for PUCCH.
The resource blocks for PUCCH are always allocated at the edges of the LTE spectrum.
In case of an even number of PUCCH resource blocks, half of the available PUCCH
resource blocks is allocated on the lower, the other half on the upper edge of the LTE
spectrum (outermost resource blocks).
In case of an odd number of PUCCH resource blocks, the number of resource blocks
on the lower edge is one resource block larger than the number of resource blocks on
the upper edge of the LTE spectrum.
If you select the "Auto" menu item, the software automatically detects the number of
RBs.
Remote command:
CONFigure[:​LTE]:​UL:​PUCCh:​NORB​ on page 185
Delta Shift
Defines the delta shift parameter.
The delta shift is the difference between two adjacent PUCCH resource indices with
the same orthogonal cover sequence (OC).
It determines the number of available sequences in a resource block that can be used
for PUCCH formats 1/1a/1b.
For more information refer to 3GPP TS36.211, chapter 5.4 "Physical Uplink Control
Channel".
Remote command:
CONFigure[:​LTE]:​UL:​PUCCh:​DESHift​ on page 185
User Manual 1308.9135.42 ─ 15
90
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
N(1)_cs
Defines the number of cyclic shifts used for PUCCH format 1/1a/1b in a resource block
used for a combination of the formats 1/1a/1b and 2/2a/2b.
Only one resource block per slot can support a combination of the PUCCH formats
1/1a/1b and 2/2a/2b.
The number of cyclic shifts available for PUCCH format 2/2a/2b N(2)_cs in a block with
combination of PUCCH formats is calculated as follows.
N(2)_cs = 12 - N(1)_cs - 2
For more information refer to 3GPP TS36.211, chapter 5.4 "Physical Uplink Control
Channel".
Remote command:
CONFigure[:​LTE]:​UL:​PUCCh:​N1CS​ on page 185
N(2)_RB
Defines bandwidth in terms of resource blocks that are reserved for PUCCH formats
2/2a/2b transmission in each subframe.
Since there can be only one resource block per slot that supports a combination of the
PUCCH formats 1/1a/1b and 2/2a/2b, the number of resource block(s) per slot available for PUCCH format 1/1a/1b is determined by N(2)_RB.
For more information refer to 3GPP TS36.211, chapter 5.4 "Physical Uplink Control
Channel".
Remote command:
CONFigure[:​LTE]:​UL:​PUCCh:​N2RB​ on page 185
Format
Selects the format of the PUCCH.
You can define the PUCCH format for all subframes or define the PUCCH format for
each subframe individually.
●
●
F1, F1a, F1b, F2, F2a, F2b, F3
Selects the PUCCH format globally for every subframe.
Per Subframe
You can select the PUCCH format for each subframe separately in the Enhanced
Settings of the "Subframe Configuration".
Note that formats F2a and F2b are only supported for normal cyclic prefix length.
For more information refer to 3GPP TS36.211, table 5.4-1 "Supported PUCCH Formats".
Remote command:
CONFigure[:​LTE]:​UL:​PUCCh:​FORMat​ on page 186
N_PUCCH
Defines the resource index for PUCCH format 1/1a/1b respectively 2/2a/2b.
You can select the PUCCH format manually or allow the software to determine the
PUCCH format automatically based on the measurement.
User Manual 1308.9135.42 ─ 15
91
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
It is also possible to define NPUCCH on a subframe level by selecting the "Per Subframe"
menu item. For more information see chapter 5.2.3, "Configuring Subframes",
on page 78.
Remote command:
CONFigure[:​LTE]:​UL:​PUCCh:​NPAR​ on page 186
5.3.5 Defining the PRACH Structure
The PRACH structure settings contain settings that describe the physical attributes and
structure of the PUCCH.
The PRACH structure setup is part of the "Uplink Advanced Signal Characteristics" tab
of the "Demodulation Settings" dialog box.
PRACH Configuration................................................................................................... 92
Restricted Set................................................................................................................92
Frequency Offset...........................................................................................................92
Ncs Conf....................................................................................................................... 93
Logical Root Sequ. Idx.................................................................................................. 93
Sequence Index (v)....................................................................................................... 93
PRACH Preamble Mapping.......................................................................................... 93
PRACH Configuration
Sets the PRACH configuration index as defined in the 3GPP TS 36.211, i.e. defines
the subframes in which random access preamble transmission is allowed.
The preamble format is automatically derived form the PRACH Configuration.
Remote command:
CONFigure[:​LTE]:​UL:​PRACh:​CONF​ on page 187
Restricted Set
Selects whether a restricted preamble set (high speed mode) or the unrestricted preamble set (normal mode) will be used.
Remote command:
CONFigure[:​LTE]:​UL:​PRACh:​RSET​ on page 187
Frequency Offset
For preamble formats 0-3, sets the PRACH Frequency Offset as defined in the 3GPP
TS 36.211, i.e. determines the first physical resource block available for PRACH
expressed as a physical resource block number.
Remote command:
CONFigure[:​LTE]:​UL:​PRACh:​FOFFset​ on page 187
User Manual 1308.9135.42 ─ 15
92
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
Ncs Conf
Selects the Ncs configuration, i.e. determines the Ncs value set according to TS
36.211, table 5.7.2.-2 and 5.7.2-3.
Remote command:
CONFigure[:​LTE]:​UL:​PRACh:​NCSC​ on page 188
Logical Root Sequ. Idx
Selects the logical root sequence index.
The logical root sequence index is used to generate preamble sequences. It is provided by higher layers.
Remote command:
CONFigure[:​LTE]:​UL:​PRACh:​RSEQ​ on page 188
Sequence Index (v)
Defines the sequence index (v).
The sequence index controls which of the 64 preambles available in a cell is used.
If you select the "Auto" menu item, the software automatically selects the required
sequence index.
Remote command:
CONFigure[:​LTE]:​UL:​PRACh:​SINDex​ on page 188
PRACH Preamble Mapping
The frequency resource index fRA and the half frame indicator t1RA are neccessary to
clearly specify the physical resource mapping of the PRACH in case a PRACH configuration index has more than one mapping alternative.
If you turn on the "Auto Preamble Mapping", the software automatically detects fRA and
t1RA.
The values for both parameters are defined in table '5.7.1-4: Frame structure type 2
random access preamble mapping in time and frequency' (3GPP TS 36.211 v10.2.0).
The frequency resource index and half frame indicator are available in TDD mode.
Remote command:
CONFigure[:​LTE]:​UL:​PRACh:​APM​ on page 187
CONFigure[:​LTE]:​UL:​PRACh:​FRINdex​ on page 188
CONFigure[:​LTE]:​UL:​PRACh:​HFINdicator​ on page 188
5.3.6 Defining Global Signal Characteristics
The global settings contain settings that apply to the complete signal.
The global settings are part of the "Uplink Advanced Signal Characteristics" tab of the
"Demodulation Settings" dialog box.
User Manual 1308.9135.42 ─ 15
93
R&S®FS‑K101/103/105PC
Demod Settings
Defining Advanced Signal Characteristics
UE ID/n_RNTI............................................................................................................... 94
UE ID/n_RNTI
Sets the radio network temporary identifier (RNTI) of the UE.
Remote command:
CONFigure[:​LTE]:​UL:​UEID​ on page 189
User Manual 1308.9135.42 ─ 15
94
R&S®FS‑K101/103/105PC
Analyzing Measurement Results
6 Analyzing Measurement Results
The measurement software provides several tools to get more detailed information on
the measurement results. The corresponding tools are part of the context menu.
► To access the context menu, click anywhere in the diagram grid with the right
mouse button.
Fig. 6-1: Context menu
Using the marker
You can use a marker to get the coordinates of a single point in the diagram area.
► Open the context menu and select the "Marker" menu item.
When the marker is active, the software puts a check mark ( ) in front of the
"Marker" menu item.
When you turn it on, the software positions the marker on the trace maximum. After
that you can move it around freely to any point of the trace.
In result displays that contain more than one trace (for example EVM vs Carrier), you
can select the trace the marker is positioned on (Peak, Minimum or Average trace) with
the "Set Marker To" menu item. Note that "Set Marker To" is only available if a marker
is already active.
Marker positioning
If you try to put the marker on a coordinate not occupied by the trace, the software puts
the marker to the nearest trace maximum (if you place it above the trace) or the nearest trace minimum (if you place it below the trace).
The marker coordinates are displayed in the upper left area of the diagram. The first
number shows the vertical position, the second number the horizontal position of the
marker including the units.
User Manual 1308.9135.42 ─ 15
95
R&S®FS‑K101/103/105PC
Analyzing Measurement Results
If you want to reposition the marker on the trace maximum after moving it around, you
have to first deactivate the marker and then reactivate it.
To deactivate the marker, open the context menu and reselect the "Marker" menu item.
Note that the marker is not available for all measurements and result displays.
Displaying data points
In result displays that contain a line trace only (for example the Power Spectrum), you
can display the data points the trace is based on with the "Show Data Points" menu
item. The data points are displayed in addition to the line trace.
Some result displays already contain the data points by default (for example EVM vs
Symbol). Note that information might get lost if you turn the data points off in these
result displays.
Zooming into the diagram area
If you'd like to see parts of the diagram area in more detail, you can use the zoom.
► Open the context menu and select the "Zoom" menu item.
The software opens a submenu with several zooming options.
Fig. 6-2: Zooming options
●
Zooming vertically and horizontally (XY)
Click on any point in the diagram area and draw a rectangle with the mouse. The
rectangle defines the part of the diagram area you are zooming into.
●
Zooming horizontally (X)
Click on any point in the diagram area and define the horizontal section of the diagram area you want to zoom into.
●
Zooming vertically (Y)
Click on any point in the diagram area and define the vertical section of the diagram area you want to zoom into.
●
Zooming automatically (Auto XY)
Automatically scales the diagram area so that the complete trace data is visible.
Double-clicking on the diagram has the same effect.
●
Restoring the default zoom
The "Default Zoom" entry restores the default zoom.
User Manual 1308.9135.42 ─ 15
96
R&S®FS‑K101/103/105PC
Analyzing Measurement Results
The software also provides functionality to restore the default zoom each time when
the results are refreshed.
► Open the context menu and select the "Default Zoom on Update" menu item.
Panning the trace
If you'd like to see parts of the measurement results that are outside the diagram area,
you can move the contents of the diagram area. To move the contents of the diagram
area, click anywhere in the diagram area and drag the contents of the diagram area
until the parts you'd like to see are visible.
If there are parts of the trace data that are outside the visible display area, the software
shows arrows to the right of the diagram area.
The arrows point in the direction where the invisible trace data is. If parts of the trace
data is outside the visible area, the arrows are yellow. If all data in a particular direction
is outside the visible area, the arrows turn red.
To make sure that the whole trace is always visible, you can use the automatic zoom
("Auto XY") available in the "Zoom" menu.
► Open the context menu and select the "Pan" menu item.
The software opens a submenu with several panning options.
Fig. 6-3: Panning options
●
Panning vertically and horizontally (XY)
Panning is possible in all directions.
●
Panning horizontally (X)
Panning is possible to the left and right.
●
Panning vertically (Y)
Panning is possible upwards and downwards.
Copying an image to the clipboard
If you want to document measurement results, you can move a copy of them to the
clipboard of the operating system.
► Open the context menu and select the "Copy to Clipboard" menu item.
User Manual 1308.9135.42 ─ 15
97
R&S®FS‑K101/103/105PC
Data Management
Importing and Exporting I/Q Data
7 Data Management
For easy handling of special measurement configurations, the software allows you to
import or export various kinds of data.
7.1 Importing and Exporting I/Q Data
Instead of capturing data directly through hardware components, you can also analyze
data that has been recorded previously and saved in a file. On the same lines, it is also
possible to save the data that has been captured with an analyzer for further analysis
at a later time or for documentation.
You can store and load I/Q data in binary or ASCII format. For a correct display of the
power, the I/Q data has to be scaled linearily in Volt (e.g. for the Capture Buffer result
display).
Loading I/Q data
Load the contents of an I/Q data file into the software fast and easy by dragging and
dropping the file somwhere into the user interface.
The software updates the I/Q data to be measured automatically.
All functionality to import and export data is in the "File" menu (or file manager) that
you can access via the FILE key.
ASCII format (.dat format)
In case of the ASCII (.dat) format, the data is expected as I and Q values in alternating
rows.
<I value 1>
<Q value 1>
<I value 2>
<Q value 2>
(...)
To be able to analyze previously recorded data, you have to set the input source to
"File". When you start a measurement, the software will ask you to select a file that
contains the data.
To save data, enter the file manager and save the data with "Save IQ Data".
Binary format (.iqw format)
In case of the binary .iqw format, the data is expected in 32-bit floating point format.
This format is also known as Little Endian, LSB Order or Intel format.
User Manual 1308.9135.42 ─ 15
98
R&S®FS‑K101/103/105PC
Data Management
Managing Frame Data
Example:
The hexadecimal value 0x1D86E7BB would be decoded to -7.0655481E-3.
For single antenna measurements, the order of the I/Q data is either IQIQIQ... or
II...IQQ...Q.
For MIMO measurements, you also have to consider the antenna in the order of the
data, with alternating I and Q data for every antenna.
[I/Q][antenna index]([symbol index])
Example:
For a two antenna system, the string of data would like:
I0(0),Q0(0),I1(0),Q1(0),I0(1),Q0(1),I1(1),Q1(1),I0(2),Q0(2),...
Binary format (.iq.tar format)
In case of the .iq.tar format, the I/Q data is stored in a compressed format with the file
extension .iq.tar.
An .iq.tar file contains I/Q data in binary format together with meta information that
describes the nature and the source of data, e.g. the sample rate. The objective of
the .iq.tar file format is to separate I/Q data from the meta information while still having
both inside one file. In addition, the file format allows you to preview the I/Q data in a
web browser, and allows you to include customized data.
An .iq.tar file must contain the following files.
●
I/Q parameter XML file
Contains meta information about the I/Q data (e.g. sample rate). The filename can
be defined freely, but there must be only one single I/Q parameter XML file inside
an .iq.tar file.
●
I/Q data binary file
Contains the binary I/Q data of all channels. There must be only one single I/Q
data binary file inside an .iq.tar file.
Optionally, an .iq.tar file can contain the following file.
●
I/Q preview XSLT file
Contains a stylesheet to display the I/Q parameter XML file and a preview of the
I/Q data in a web browser.
7.2 Managing Frame Data
For fast access to the frame description (or structure of a signal), you can save it and
again use it at a later time. To manage frame descriptions, enter the file manager and
select "Save Demod Setup" to save the current setup or "Load Demod Setup" to
restore a previously created setup.
The frame decription contains the complete modulation structure of the signal.
User Manual 1308.9135.42 ─ 15
99
R&S®FS‑K101/103/105PC
Data Management
Customizing Reference Symbols
The frame structure is defined in the xml file format. The file contains all parameters
that are part of the demodulation settings. If you want to define more than one allocation, you can do so by adding additional PRB entries (<PRB> element).
Note the following restrictions for the frame description.
●
You have to define at least one PRB.
●
You can allocate a maximum of one frames.
The example below shows a typical frame description.
<FrameDefinition LinkDirection="uplink" TDDULDLAllocationConfiguration="0"
RessourceBlocks="50" CP="auto" PhysLayCellIDGrp="Group 0" PhysLayID="ID 0"
N_RNTI="0" N_f="0" NOfSubbands="4" N_RB_HO="4" NOfRB_PUCCH="4" DeltaShift="2"
N1_cs="6" N2_RB="1" NPUCCH="0" DeltaOffset="0" PUCCHStructureFormat="F1 normal"
N_c_fastforward="1600" HoppingBitInformation="0" FrequencyHopping="None"
DemRefSeq="3GPP" DemPilBoostdBPUSCH="0" DemPilBoostdBPUCCH="0" GroupHop="0"
SequenceHop="0" EnableN_PRS="1" Delta_ss="0" N_DMRS1="0" N_DMRS2="0"
SoundRefSeq="3GPP" SoundRefBoostdB="0" SoundRefPresent="0" SoundRefSymOffs="13"
SoundRefCAZAC_u="2" SoundRefCAZAC_q="0" SoundRefCAZAC_alpha="0"
SoundRefCAZAC_mode="2" SoundRefB="0" SoundRefC="0" SRSSubframeConfiguration="0"
SoundRefN_CS="0" SoundRefK_TC="0" SoundRefN_RRC="0" SoundRefb_hop="0"
SoundRefI_SRS="0" SoundRefk0="24" SoundRefNumSubcarrier="132">
<Frame>
<Subframe>
<PRBs>
<PRB Start="2" Length="10" Modulation="QPSK" PUCCHOn="0" BoostingdB="0">
</PRB>
</PRBs>
</Subframe>
</Frame>
<stControl PhaseTracking="1" TimingTracking="0" CompensateDCOffset="1"
UseBitStreamScrambling="1" ChannelEstimationRange="2" AutoDemodulation="1">
</stControl>
</FrameDefinition>
7.3 Customizing Reference Symbols
The software supports the use of customized iq sequences for the reference signal.
The sequence of symbols for the reference signal is a string of I/Q data.
Customizing iq sequences
For more information on customizing I/Q symbol sequences see chapter 7.1, "Importing and Exporting I/Q Data", on page 98.
The length of the I/Q symbol sequence must be a multiple of 2. If not enough I/Q symbols are available for mapping, the I/Q symbols are repeated.
User Manual 1308.9135.42 ─ 15
100
R&S®FS‑K101/103/105PC
Data Management
Importing and Exporting Limits
Importing iq sequences
The I/Q symbol definition file must be placed in the same folder as the EUTRA/LTE
application binary ("%Program folder%\Rohde-Schwarz\EUTRA LTE" by default).
The name of the Reference Symbols definition file must be EutraUL_Pilots.iqw
7.4 Importing and Exporting Limits
In addition to the limits defined by the standard, you can create and use customized
limits. After you have created the file, you have to name it Default.eutra_limits and
copy it into the same folder as the software binary ("%Program folder%\RohdeSchwarz\EUTRA LTE" by default). The limits are automatically loaded when you start
the software.
The limits you can customize work for the Result Summary.
Limits are defined in the xml file format. Any xml elements you do not want to define
can be left out, either by making no entry or by deleting the corresponding element.
<?xml version="1.0" encoding="utf-8"?>
<Limits>
<UL>
<EVM>
<PUSCHQPSK Mean="0.175"/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<PUSCH16QAM Mean="0.125"/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<PUSCH64QAM/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<PhysicalChannel/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<PhysicalSignal/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<All/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<DemodulationReference/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<SoundingReference/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
</EVM>
<FrequencyError/><!--Unit: [Hz]-->
<SamplingClockError/><!--Unit [ppm]-->
<IQOffset/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<IQGainImbalance/><!--Unit: linear (1 = 0 dB, 0.1 = -20 dB)-->
<IQQuadraturError/><!--Unit: [°]-->
<PowerTotalPhysChan/><!--Unit: [W]-->
<PowerTotalDemodRef/><!--Unit: [W]-->
<PowerTotalSoundingRef/><!--Unit: [W]-->
<PowerTotal/><!--Unit: [W]-->
<CrestFactor/><!--Unit: linear (1 = 0 dB, 10 = 10 dB)-->
</UL>
</Limits>
User Manual 1308.9135.42 ─ 15
101
R&S®FS‑K101/103/105PC
Measurement Basics
Symbols and Variables
8 Measurement Basics
This chapter provides background information on the measurements and result displays available with the LTE Analysis Software.
●
●
●
●
●
●
Symbols and Variables......................................................................................... 102
Overview............................................................................................................... 103
The LTE Uplink Analysis Measurement Application............................................. 103
MIMO Measurement Guide...................................................................................107
Performing Time Alignment Measurements..........................................................113
SRS EVM Calculation........................................................................................... 114
8.1 Symbols and Variables
The following chapters use various symbols and variables in the equations that the
measurements are based on. The table below explains these symbols for a better
understanding of the measurement principles.
al,kâl,k
data symbol (actual, decided)
Al,k
data symbol after DFT-precoding
Δf, Δ
coarse
carrier frequency offset between transmitter and
receiver (actual, coarse estimate)
Δfres
residual carrier frequency offset
ζ
relative sampling frequency offset
Hl,k,
l,k
channel transfer function (actual, estimate)
i
time index
îcoarse, îfine
timing estimate (coarse, fine)
k
subcarrier index
l
SC-FDMA symbol index
NDS
number of SC-FDMA data symbols
NFFT
length of FFT
Ng
number of samples in cyclic prefix (guard interval)
Ns
number of Nyquist samples
NTX
number of allocated subcarriers
Nk,l
noise sample
n
index of modulated QAM symbol before DFT precoding
Φl
common phase error
User Manual 1308.9135.42 ─ 15
102
R&S®FS‑K101/103/105PC
Measurement Basics
Overview
ri
received sample in the time domain
R'k,l
uncompensated received sample in the frequency
domain
rn,l
equalized received symbols of measurement path
after IDFT
T
duration of the useful part of an SC-FDMA symbol
Tg
duration of the guard interval
Ts
total duration of SC-FDMA symbol
8.2 Overview
The digital signal processing (DSP) involves several stages until the software can present results like the EVM.
The contents of this chapter are structered like the DSP.
8.3 The LTE Uplink Analysis Measurement Application
The block diagram in figure 8-1 shows the general structure of the LTE uplink measurement application from the capture buffer containing the I/Q data up to the actual
analysis block.
After synchronization a fully compensated signal is produced in the reference path
(purple) which is subsequently passed to the equalizer. An IDFT of the equalized symbols yields observations for the QAM transmit symbols an.l from which the data estimates ân,l are obtained via hard decision. Likewise a user defined compensation as
well as equalization is carried out in the measurement path (cyan) and after an IDFT
the observations of the QAM transmit symbols are provided. Accordingly, the measurement path might still contain impairments which are compensated in the reference
path. The symbols of both signal processing paths form the basis for the analysis.
User Manual 1308.9135.42 ─ 15
103
R&S®FS‑K101/103/105PC
Measurement Basics
The LTE Uplink Analysis Measurement Application
Fig. 8-1: Block diagram for the LTE UL measurement application
8.3.1 Synchronization
In a first step the areas of sufficient power are identified within the captured I/Q data
stream which consists of the receive samples ri. For each area of sufficient power, the
analyzer synchronizes on subframes of the uplink generic frame structure [3]. After this
coarse timing estimation, the fractional part as well as the integer part of the carrier frequency offset (CFO) are estimated and compensated. In order to obtain an OFDM
demodulation via FFT of length NFFT that is not corrupted by ISI, a fine timing is established which refines the coarse timing estimate.
A phase tracking based on the reference SC-FDMA symbols is performed in the frequency domain. The corresponding tracking estimation block provides estimates for
●
the relative sampling frequency offset ζ
●
the residual carrier frequency offset Δfres
●
the common phase error Φl
According to references [7] and [8], the uncompensated samples R'k,l in the DFT-precoded domain can be stated as
User Manual 1308.9135.42 ─ 15
104
R&S®FS‑K101/103/105PC
Measurement Basics
The LTE Uplink Analysis Measurement Application
Rk' ,l  Ak ,l  H k ,l  e jl  e j 2 N S


CPE
N FFT  k l


SFO
 e j 2 N S
N FFT f res T l


res .CFO
 N k ,l
(8 - 1)
with
●
the DFT precoded data symbol Ak,l on subcarrier k at SC-FDMA symbol l,
●
the channel transfer function Hk,l,
●
the number of Nyquist samples NS within the total duration TS,
●
the duration of the useful part of the SC-FDMA symbol T=TS-Tg
●
the independent and Gaussian distributed noise sample Nk,l
Within one SC-FDMA symbol, both the CPE and the residual CFO cause the same
phase rotation for each subcarrier, while the rotation due to the SFO depends linearly
on the subcarrier index. A linear phase increase in symbol direction can be observed
for the residual CFO as well as for the SFO.
The results of the tracking estimation block are used to compensate the samples R'k,l
completely in the reference path and according to the user settings in the measurement path. Thus the signal impairments that are of interest to the user are left uncompensated in the measurement path.
After having decoded the data symbols in the reference path, an additional data-aided
phase tracking can be utilized to refine the common phase error estimation.
8.3.2 Analysis
The analysis block of the EUTRA/LTE uplink measurement application allows to compute a variety of measurement variables.
EVM
The most important variable is the error vector magnitude which is defined as
EVM l ,k 
~
rn,l  aˆ n,l
2
E  an,l 


(8 - 2)
for QAM symbol n before precoding and SC-FDMA symbol l. Since the normalized
average power of all possible constellations is 1, the equation can be simplified to
EVM n,l  ~
rn,l  aˆ n,l
(8 - 3)
The average EVM of all data subcarriers is then
User Manual 1308.9135.42 ─ 15
105
R&S®FS‑K101/103/105PC
Measurement Basics
The LTE Uplink Analysis Measurement Application
EVM data 
1
N DS NTX
N LB 1 NTX 1


l 0 n 0
EVM n2,l
(8 - 4)
for NDS SC-FDMA data symbols and the NTX allocated subcarriers.
I/Q imbalance
The I/Q imbalance contained in the continuous received signal r(t) can be written as
r t  I st  jQ st 
(8 - 5)
where s(t) is the transmit signal and I and Q are the weighting factors describing the
I/Q imbalance. We define that I:=1 and Q:=1+ΔQ.
The I/Q imbalance estimation makes it possible to evaluate the
modulator gain balance  | 1  Q |
(8 - 6)
and the
quadrature mismatch  arg{1  Q}
(8 - 7)
based on the complex-valued estimate
.
Basic in-band emissions measurement
The in-band emissions are a measure of the interference falling into the non-allocated
resources blocks.
The relative in-band emissions are given by
Emissionsrelative  RB 
Emissionsabsolute  RB 
1
TS  N RB
c 12 N RB 1
 c
tT
Y t , f 
2
S
(8 - 8)
where TS is a set |TS| of SC-FDMA symbols with the considered modulation scheme
being active within the measurement period, ΔRB is the starting frequency offset
between the allocated RB and the measured non-allocated RB (e.g. ΔRB=1 or ΔRB=-1
for the first adjacent RB), c is the lower edge of the allocated BW, and Y(t,f) is the frequency domain signal evaluated for in-band emissions. NRB is the number of allocated
RBs .
The basic in-band emissions measurement interval is defined over one slot in the time
domain.
User Manual 1308.9135.42 ─ 15
106
R&S®FS‑K101/103/105PC
Measurement Basics
MIMO Measurement Guide
Other measurement variables
Without going into detail, the EUTRA/LTE uplink measurement application additionally
provides the following results:
●
Total power
●
Constellation diagram
●
Group delay
●
I/Q offset
●
Crest factor
●
Spectral flatness
8.4 MIMO Measurement Guide
Performing MIMO measurements requires additional equipment that allows you to capture multiple data streams.
●
Several signal analyzers, the number depending on the number of data streams
you have to capture.
Alternatively, you can use an oscilloscope with multiple channels, the number of
channels also depending on the number of data streams you have to capture.
●
At least one analyzer equipped with option R&S FS(x)-K103(PC) that unlocks
MIMO functionality.
True MIMO measurements are useful to verifiy MIMO precoding implementations for
setups where it is not possible to decode the transmit data using only one antenna
(e.g. applying spatial multiplexing MIMO precoding with more than 1 layer) and to measure the hardware performance of the MIMO transmitter hardware in a true MIMO
measurement setup.
8.4.1 MIMO Measurements with Signal Analyzers
MIMO measurements require multiple signal analyzers. The number depends on the
number of data streams you have to capture.
For valid measurement results, the frequencies of the analyzers in the test setup have
to be synchronized. It is also necessary to configure the trigger system properly to capture the data simultaneously.
Synchronizing the frequency
The frequency of the analyzers in the test setup have to be synchronized. Thus, one of
the analyzers (master) controls the other analyzers (slaves) in the test setup. The master analyzer has to be equipped with the LTE MIMO application and provides the reference oscillator source for the slave analyzers.
► Connect the REF OUT of the master to the REF IN connector of the slaves. Make
sure to configure the slaves to use an external reference (➙ General Setup menu).
User Manual 1308.9135.42 ─ 15
107
R&S®FS‑K101/103/105PC
Measurement Basics
MIMO Measurement Guide
If you are using a measurement setup with several R&S signal generators (for example
R&S SMW), the situation is similar. One of the generators controls the other via the
external reference.
► Connect the REF OUT of the master to the REF IN of the slaves. Make sure to
configure the slaves to use an external reference (➙ Reference Oscillator settings).
Triggering MIMO measurements
For valid MIMO measurements, it is crucial to capture all data streams simultaneously.
To do so, you need a trigger signal provided by the DUT or the signal generator. The
trigger signal has to be connected to all analyzers. If you have several signal generators in the setup, the master generator has to trigger the slave as well.
The 8-2 shows a MIMO setup with two (or optional four) analyzers and one (or optional
two) signal generators with two channels.
Fig. 8-2: MIMO Hardware Setup
You can use several trigger configurations, with or without additional hardware.
Measurements with a delayed trigger signal
Simultaneous capture of the I/Q data requires the trigger inputs of all instruments in the
setup to be armed.
User Manual 1308.9135.42 ─ 15
108
R&S®FS‑K101/103/105PC
Measurement Basics
MIMO Measurement Guide
Arming a trigger does not happen immediately when you start a measurement, but is
delayed slightly for a number of reasons, for example:
●
Connecting several instruments with a LAN or GPIB connection usually causes a
certain network delay.
●
Tasks like the auto leveling function require some time to finish.
Because of these factors, you have to make sure that the trigger event does not occur
during this time frame. You can do so, for example, by configuring an appropriate delay
time on the DUT.
The exact delay depends on the GPIB or network condition and the input settings.
You can estimate the delay by performing a single measurement on one analyzer.
Measure the time it takes until the "DSP" indicator starts flashing.
Note that this estimation also includes the time it takes to transfer the I/Q samples from
the analyzer to the software.
A typical delay to arm the trigger is 2 seconds per instrument.
The minimum delay of the trigger signal must now be greater than the measured time
multiplied with the number of measured antennas (the number of analyzers), because
the spectrum analyzers are initialized sequentially.
The usage of an LTE frame trigger is not possible for this measurement setup.
Measurements with a frame trigger signal
You can use a frame trigger if all transmitted LTE frames use the same frame configuration and contain the same data. In this case, the analyzers in the test setup capture
data from different LTE frames but with the same content.
This method to analyze data, however, raises one issue. The phase variations of the
reference oscillators of the different signals that are transmitted are not the same,
because the data is not captured simultaneously.
The result is a phase error which degrades the EVM (see the figures below).
An application for this measurement method is, for example, the test of the MIMO precoding implementation. Because of the bad EVM values, it is not recommended to use
this test setup to measure hardware performance.
User Manual 1308.9135.42 ─ 15
109
R&S®FS‑K101/103/105PC
Measurement Basics
MIMO Measurement Guide
Fig. 8-3: Constellation diagram
Fig. 8-4: EVM vs OFDM symbol number
Measurements with the R&S FS-Z11 trigger unit
The trigger unit R&S FS-Z11 is a device that makes sure that the measurement starts
on all analyzers (master and slaves) at the same time.
Connecting the trigger unit
► Connect the NOISE SOURCE output of the master analyzer to the NOISE
SOURCE CONTROL input of the trigger unit.
► Connect the EXT TRIG inputs of all analyzers (master and slaves) to the TRIG
OUT 1 to 4 (or 1 and 2 in case of measurements on two antennas) of the trigger
unit. The order is irrelevant, that means it would be no problem if you connect the
master analyzer to the TRIG OUT 2 of the trigger unit.
With this setup, all analyzers (including the master analyzer) are triggered by the
trigger unit.
The trigger unit also has a TRIG INPUT connector that you can connect an external
trigger to. If you are using an external trigger, the external trigger supplies the trigger
event. If not, the analyzer noise source control supplies the trigger event. Note that if
you do not use an external trigger, the TRIG INPUT must remain open.
User Manual 1308.9135.42 ─ 15
110
R&S®FS‑K101/103/105PC
Measurement Basics
MIMO Measurement Guide
To use the R&S FS-Z11 as the trigger source, you have to select it as the trigger
source in the "General Settings" dialog box of the LTE measurement application. For
more information see "Configuring the Trigger" on page 63.
DUT
Master Analyzer
NOISE SOURCE
RF OUTPUT 1
RF INPUT
RF OUTPUT 2
TRIGGER INPUT
RF OUTPUT 3
Slave Analyzer 1
RF OUTPUT 4
TRIGGER OUTPUT
RF INPUT
TRIGGER INPUT
Slave Analyzer 1
FS-Z11 Trigger Unit
TRIG INPUT
TRIG MANUAL
RF INPUT
TRIG OUT 1
TRIGGER INPUT
TRIG OUT 2
Slave Analyzer 1
TRIG OUT 3
NOISE SOURCE TRIG OUT 4
RF INPUT
TRIGGER INPUT
Cable Trigger
Cable Trigger Optional (DUT with TRIGGER OUTPUT)
Cable RF
8.4.2 MIMO Measurements with Oscilloscopes
This part presents an approach to measure a MIMO signal transmitted on two or four
antennas using the R&S®RTO1044 digital oscilloscope, 4 GHz, 4 channels and the
R&S®FS-K102/103PC LTE MIMO downlink/uplink PC software. This has multiple
advantages:
●
Only one measurement instrument is required. This not only reduces the number of
test instruments but also simplifies the test setup and cabling (no reference oscillator and trigger cabling, no additional hardware for synchronization required like the
R&S®FS-Z11).
●
The measurement time is reduced.
For measuring LTE signals with the RTO it has to be equipped with the options
R&S®RTO-B4 and R&S®RTO-K11.
The hardware setup is illustrated in figure 8-5. All transmit antennas (TX) of the device
under test (DUT) or an SMU are connected to the RF input of the RTO. Either two or
optionally four antennas are attached. The LTE-Software runs on a PC and is connected to the RTO via a local area network (LAN).
User Manual 1308.9135.42 ─ 15
111
R&S®FS‑K101/103/105PC
Measurement Basics
MIMO Measurement Guide
Fig. 8-5: Test setup for LTE MIMO measurements with an oscilloscope
To successfully connect the software to the oscilloscope, enter the correct network
address in the "Analyzer Configuration" table and define the hardware properties (for
example the number of input channels).
Fig. 8-6: Configuration of the R&S RTO connection and input channels
For configuring the number of active R&S RTO inputs the DUT MIMO configuration (2
Tx antennas or 4 Tx antennas) and the "Tx Antenna Selection" must be set. The DUT
MIMO configuration describes which antennas are available and the Tx antenna selection defines how many I/Q data streams are captured and which antennas are
assigned to the streams. To measure more than one antenna at once, "Tx Antenna
Selection" must be set to "All", "Auto (2 Antennas)" or "Auto (4 Antennas)".
●
"All": all available Tx antennas are measured and the antennas are assigned to the
streams in ascending order.
●
"Auto": the antenna assignment is automatically detected.
In case of "Auto (2 Antennas)" two streams are captured.
In case of "Auto (4 Antennas)" four streams are captured.
The signal level of each R&S RTO input channel is measured and the reference level
and attenuation settings are adjusted automatically. If a manual setting is preferred and
for speed optimization, the automatic level adjustment can be disabled in the "General"
tab of the "General Settings" dialog box.
User Manual 1308.9135.42 ─ 15
112
R&S®FS‑K101/103/105PC
Measurement Basics
Performing Time Alignment Measurements
8.5 Performing Time Alignment Measurements
The measurement software allows you to perform Time Alignment measurements
between different antennas.
You can perform this measurement in 2 Tx antenna MIMO setups.
The result of the measurement is the Time Alignment Error. The Time Alignment Error
is the time offset between a reference antenna (for example antenna 1) and another
antenna.
The Time Alignment Error results are summarized in the corresponding result display.
A schematic description of the results is provided in figure 8-7.
Fig. 8-7: Time Alignment Error (2 Tx antennas)
Test setup
Successful Time Alignment measurements require a correct test setup.
A typical test setup is shown in figure 8-8.
Fig. 8-8: Hardware setup
For best measurement result accuracy it is recommended to use cables of the same
length and identical combiners as adders.
In the software, make sure to correctly apply the following settings.
●
select a reference antenna in the MIMO Configuration dialog box (not "All")
●
select more than one antenna in the MIMO Configuration dialog box
●
select Codeword-to-Layer mapping "2/1" or "2/2"
●
select an Auto Demodulation different to "Subframe Configuration & DMRS"
●
the transmit signals of all available Tx antennas have to added together
User Manual 1308.9135.42 ─ 15
113
R&S®FS‑K101/103/105PC
Measurement Basics
SRS EVM Calculation
8.6 SRS EVM Calculation
In order to calculate an accurate EVM, a channel estimation needs to be done prior to
the EVM calculation. However, the channel estimation requires a minimum of two
resource elements containing reference symbols on a subcarrier. Depending on the
current Channel Estimation Range setting, this means that either at least two reference
symbols ("Pilot Only") or one reference symbol and at least one data symbol ("Pilot
and Payload") need to be available on the subcarrier the EVM is to be measured.
For PUSCH, PUCCH and PRACH regions, these conditions are normally fulfilled
because the DMRS (= Demodulation Reference Signal) is already included. However,
the SRS may also be located on subcarriers which do not occupy any other reference
symbols (see figure 8-9).
Fig. 8-9: No EVM can be measured for the SRS
In this case it is not reasonable to calculate an EVM and no SRS EVM value will be
displayed for the corresponding subframe.
If the SRS subcarriers contain two DMRS symbols (or one DMRS and one PUSCH for
"Pilot and Payload" channel estimation range) the SRS EVM can be measured (see
figure 8-10).
User Manual 1308.9135.42 ─ 15
114
R&S®FS‑K101/103/105PC
Measurement Basics
SRS EVM Calculation
Fig. 8-10: The EVM of the complete SRS can be measured
The SRS allocation might cover subcarriers which partly fulfill the conditions mentioned
above and partly do not. In this case the EVM value given in the Allocation Summary
will be calculated based only on the subcarriers which fulfill the above requirements
(see figure 8-11).
Fig. 8-11: The EVM for parts of the SRS can be measured
User Manual 1308.9135.42 ─ 15
115
R&S®FS‑K101/103/105PC
Remote Commands
Overview of Remote Command Suffixes
9 Remote Commands
When working via remote control, note that you have to establish a connection
between your remote scripting tool and the software. Because the software runs
directly on the PC and not an R&S instrument, you have to connect the remote scripting tool to your PC and not an instrument.
1. Start the software.
2. If you want to capture I/Q data from an analyzer, connect the software to that analyzer.
3. Start the remote scripting tool (e.g. Matlab) on the PC.
4. Connect the remote scripting tool to the local host (e.g. TCPIC:LocalHost)
●
●
●
●
●
●
●
●
●
●
Overview of Remote Command Suffixes.............................................................. 116
Introduction........................................................................................................... 117
Remote Commands to Select a Result Display.................................................... 121
Remote Commands to Perform Measurements....................................................122
Remote Commands to Read Numeric Results..................................................... 123
Remote Commands to Read Trace Data..............................................................130
Remote Commands to Configure General Settings..............................................150
Remote Commands to Configure the Demodulation............................................ 167
Configuring the Software.......................................................................................189
Managing Files......................................................................................................190
9.1 Overview of Remote Command Suffixes
This chapter provides an overview of all suffixes used for remote commands in the LTE
application.
Suffix
Range
Description
<allocation>
0 to 99
Selects an allocation.
<instrument>
1 to 8
Selects an instrument for
MIMO measurements.
<antenna>
2 to 4
Selects an antenna for
MIMO measurements.
<cci>
1 to 2
Selects a component carrier
<cluster>
1 to 2
Selects a cluster (uplink
only).
<cwnum>
1 to n
Selects a codeword.
<k>
Selects a limit line.
Irrelevant for the LTE software.
User Manual 1308.9135.42 ─ 15
116
R&S®FS‑K101/103/105PC
Remote Commands
Introduction
Suffix
Range
<m>
Description
Selects a marker.
Irrelevant for the LTE software.
<n>
1 to 4
Selects a measurement window.
<subframe>
0 to 39
Selects a subframe.
<t>
Selects a trace.
Irrelevant for the LTE application.
9.2 Introduction
Commands are program messages that a controller (e.g. a PC) sends to the instrument or software. They operate its functions ('setting commands') and request information ('query commands'). Some commands only work either way (setting only, query
only), others work both ways (setting and query).
The syntax of a SCPI command consists of a so-called header and, in most cases, one
or more parameters. A query command must append a question mark after the last
header element, even if it contains a parameter.
A header contains one or more keywords, separated by a colon. Header and parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank).
If there is more than one parameter for a command, these are separated by a comma
from one another.
This chapter summarizes the most important characteristics that you need to know
when working with SCPI commands. For a more complete description, refer to the
manual of one of the R&S analyzers.
Remote command examples
Note that some remote command examples mentioned in this introductory chapter may
not be supported by this application.
9.2.1 Long and Short Form
The keywords have a long and a short form. You can use either the long or the short
form, but no other abbreviations of the keywords.
The short form is emphasized in upper case letter. Note however, that this emphasis
only serves the purpose to distinguish the short from the long form in the manual. For
the instrument, the case does not matter.
User Manual 1308.9135.42 ─ 15
117
R&S®FS‑K101/103/105PC
Remote Commands
Introduction
Example:
SENSe:FREQuency:CENTer is the same as SENS:FREQ:CENT.
9.2.2 Numeric Suffixes
Some keywords have a numeric suffix if the command can be applied to multiple
instances of an object. In that case, the suffix selects a particular instance (e.g. a measurement window).
Numeric suffixes are indicated by angular brackets (<n>) next to the keyword.
If you don't use a suffix for keywords that support one, it is treated as a 1.
Example:
DISPlay[:WINDow<1...4>]:ZOOM:STATe enables the zoom in a particular measurement window, selected by the suffix at WINDow.
DISPlay:WINDow4:ZOOM:STATe ON refers to window 4.
9.2.3 Optional Keywords
Some keywords are optional and are only part of the syntax because of SCPI compliance. You can include them in the header or not.
Note that if an optional keyword has a numeric suffix and you need to use the suffix,
you have to include the optional keyword. Otherwise, the suffix is recognized as a 1.
Optional keywords are emphasized with square brackets.
Example:
Without a numeric suffix in the optional keyword:
[SENSe:]FREQuency:CENTer is the same as FREQuency:CENTer
With a numeric suffix in the optional keyword:
DISPlay[:WINDow<1...4>]:ZOOM:STATe
DISPlay:ZOOM:STATe ON enables the zoom in window 1 (no suffix).
DISPlay:WINDow4:ZOOM:STATe ON enables the zoom in window 4.
9.2.4 | (Vertical Stroke)
A vertical stroke indicates alternatives for a specific keyword. You can use both keywords to the same effect.
Example:
[SENSe:]BANDwidth|BWIDth[:RESolution]
In the short form without optional keywords, BAND 1MHZ would have the same effect
as BWID 1MHZ.
User Manual 1308.9135.42 ─ 15
118
R&S®FS‑K101/103/105PC
Remote Commands
Introduction
9.2.5 SCPI Parameters
Many commands feature one or more parameters.
If a command supports more than one parameter, these are separated by a comma.
Example:
LAYout:ADD:WINDow Spectrum,LEFT,MTABle
Parameters may have different forms of values.
●
●
●
●
●
9.2.5.1
Numeric Values.....................................................................................................119
Boolean.................................................................................................................120
Text....................................................................................................................... 120
Character Strings.................................................................................................. 120
Block Data.............................................................................................................120
Numeric Values
Numeric values can be entered in any form, i.e. with sign, decimal point or exponent. In
case of physical quantities, you can also add the unit. If the unit is missing, the command uses the basic unit.
Example:
with unit: SENSe:FREQuency:CENTer 1GHZ
without unit: SENSe:FREQuency:CENTer 1E9 would also set a frequency of 1 GHz.
Values exceeding the resolution of the instrument are rounded up or down.
If the number you have entered is not supported (e.g. in case of discrete steps), the
command returns an error.
Querying numeric values
When you query numeric values, the system returns a number. In case of physical
quantities, it applies the basic unit (e.g. Hz in case of frequencies). The number of digits after the decimal point depends on the type of numeric value.
Example:
Setting: SENSe:FREQuency:CENTer 1GHZ
Query: SENSe:FREQuency:CENTer? would return 1E9
In some cases, numeric values may be returned as text.
●
INF/NINF
Infinity or negative infinity. Represents the numeric values 9.9E37 or -9.9E37.
●
NAN
Not a number. Represents the numeric value 9.91E37. NAN is returned in case of
errors.
User Manual 1308.9135.42 ─ 15
119
R&S®FS‑K101/103/105PC
Remote Commands
Introduction
9.2.5.2
Boolean
Boolean parameters represent two states. The "ON" state (logically true) is represented by "ON" or a numeric value 1. The "OFF" state (logically untrue) is represented by
"OFF" or the numeric value 0.
Querying boolean parameters
When you query boolean parameters, the system returns either the value 1 ("ON") or
the value 0 ("OFF").
Example:
Setting: DISPlay:WINDow:ZOOM:STATe ON
Query: DISPlay:WINDow:ZOOM:STATe? would return 1
9.2.5.3
Text
Text parameters follow the syntactic rules of keywords. You can enter text using a
short or a long form. For more information see chapter 9.2.1, "Long and Short Form",
on page 117.
Querying text parameters
When you query text parameters, the system returns its short form.
Example:
Setting: SENSe:BANDwidth:RESolution:TYPE NORMal
Query: SENSe:BANDwidth:RESolution:TYPE? would return NORM
9.2.5.4
Character Strings
Strings are either text or number. They have to be in straight quotation marks. You can
use a single quotation mark - ' - or a double quotation mark - ".
Example:
INSTRument:DELete 'Spectrum'
9.2.5.5
Block Data
Block data is a format which is suitable for the transmission of large amounts of data.
The ASCII character # introduces the data block. The next number indicates how many
of the following digits describe the length of the data block. In the example the 4 following digits indicate the length to be 5168 bytes. The data bytes follow. During the transmission of these data bytes all end or other control signs are ignored until all bytes are
transmitted. #0 specifies a data block of indefinite length. The use of the indefinite format requires a NL^END message to terminate the data block. This format is useful
User Manual 1308.9135.42 ─ 15
120
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Select a Result Display
when the length of the transmission is not known or if speed or other considerations
prevent segmentation of the data into blocks of definite length.
9.3 Remote Commands to Select a Result Display
CALCulate<n>:FEED..................................................................................................... 121
DISPlay[:WINDow<n>]:TABLe.........................................................................................122
CALCulate<n>:FEED <DispType>
This command selects the measurement and result display.
Parameters:
<DispType>
Example:
String containing the short form of the result display. See table
below for details.
CALC2:FEED 'PVT:CBUF'
Select Capture Buffer to be displayed on screen B.
Result display
Parameter
ACLR
'SPEC:ACP'
Allocation Summary
'STAT:ASUM'
Bitstream
'STAT:BSTR'
Capture Buffer
'PVT:CBUF'
CCDF
'STAT:CCDF'
Constellation Diagram
'CONS:CONS'
CSI RS Weights (Magnitude)
'BEAM:IRWM'
CSI RS Weights (Phase)
'BEAM:IRWP'
DFT Precoded Constellation
'CONS:DFTC'
EVM vs Carrier
'EVM:EVCA'
EVM vs Subframe
'EVM:EVSU'
EVM vs Symbol
'EVM:EVSY'
EVM vs Symbol x Carrier
'EVM:EVSC'
Group Delay
'SPEC:GDEL'
Inband Emission
'SPEC:IE'
Power Spectrum
'SPEC:PSPE'
Power vs Symbol x Carrier
'SPEC:PVSC'
Spectrum Flatness
'SPEC:SFL'
Spectrum Flatness Difference
'SPEC:SFD'
Spectrum Flatness SRS
'SPEC:SFSR'
User Manual 1308.9135.42 ─ 15
121
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Perform Measurements
Result display
Parameter
Spectrum Emission Mask
'SPEC:SEM'
Time Alignment Error
'PVT:TAER'
DISPlay[:WINDow<n>]:TABLe <State>
This command turns the result summary on and off.
Parameters:
<State>
ON
Turns the result summary on and removes all graphical results
from the screen.
OFF
Turns the result summary off and restores the graphical results
that were previously set.
Example:
DISP:TABL OFF
Turns the result summary off.
9.4 Remote Commands to Perform Measurements
INITiate[:IMMediate]....................................................................................................... 122
INITiate:REFResh.......................................................................................................... 122
[SENSe]:SYNC[:STATe]?............................................................................................... 123
INITiate[:IMMediate]
This command initiates a new measurement sequence.
With a frame count > 0, this means a restart of the corresponding number of measurements.
In single sweep mode, you can synchronize to the end of the measurement with *OPC.
In continuous sweep mode, synchronization to the end of the sweep is not possible.
Example:
INIT
Initiates a new measurement.
Usage:
Event
INITiate:REFResh
This command updates the current I/Q measurement results to reflect the current measurement settings.
No new I/Q data is captured. Thus, measurement settings apply to the I/Q data currently in the capture buffer.
The command applies exclusively to I/Q measurements. It requires I/Q data.
User Manual 1308.9135.42 ─ 15
122
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Numeric Results
Example:
INIT:REFR
The application updates the IQ results
Usage:
Event
[SENSe]:SYNC[:STATe]?
This command queries the current synchronization state.
Return values:
<State>
The string contains the following information.
A zero represents a failure and a one represents a successful
synchronization.
If no compatible frame has been found, the command returns
'0,0,0'.
Example:
SYNC:STAT?
Would return, e.g. '1' for successful synchronization.
Usage:
Query only
9.5 Remote Commands to Read Numeric Results
FETCh:SUMMary:CRESt:MAXimum?.............................................................................. 124
FETCh:SUMMary:CRESt:MINimum?............................................................................... 124
FETCh:SUMMary:CRESt[:AVERage]?............................................................................. 124
FETCh:SUMMary:EVM[:ALL]:MAXimum?.........................................................................124
FETCh:SUMMary:EVM[:ALL]:MINimum?..........................................................................124
FETCh:SUMMary:EVM[:ALL][:AVERage]?........................................................................124
FETCh:SUMMary:EVM:PCHannel:MAXimum?................................................................. 125
FETCh:SUMMary:EVM:PCHannel:MINimum?...................................................................125
FETCh:SUMMary:EVM:PCHannel[:AVERage]?................................................................ 125
FETCh:SUMMary:EVM:PSIGnal:MAXimum?.................................................................... 125
FETCh:SUMMary:EVM:PSIGnal:MINimum?..................................................................... 125
FETCh:SUMMary:EVM:PSIGnal[:AVERage]?................................................................... 125
FETCh:SUMMary:EVM:SDQP[:AVERage]?...................................................................... 125
FETCh:SUMMary:EVM:SDSF[:AVERage]?.......................................................................125
FETCh:SUMMary:EVM:SDST[:AVERage]?.......................................................................126
FETCh:SUMMary:EVM:UCCD[:AVERage]?......................................................................126
FETCh:SUMMary:EVM:UCCH[:AVERage]?......................................................................126
FETCh:SUMMary:EVM:UPRA[:AVERage]?...................................................................... 127
FETCh:SUMMary:EVM:USQP[:AVERage]?...................................................................... 127
FETCh:SUMMary:EVM:USSF[:AVERage]?.......................................................................127
FETCh:SUMMary:EVM:USST[:AVERage]?.......................................................................127
FETCh:SUMMary:FERRor:MAXimum?............................................................................ 128
FETCh:SUMMary:FERRor:MINimum?..............................................................................128
FETCh:SUMMary:FERRor[:AVERage]?........................................................................... 128
FETCh:SUMMary:GIMBalance:MAXimum?...................................................................... 128
FETCh:SUMMary:GIMBalance:MINimum?....................................................................... 128
User Manual 1308.9135.42 ─ 15
123
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Numeric Results
FETCh:SUMMary:GIMBalance[:AVERage]?..................................................................... 128
FETCh:SUMMary:IQOFfset:MAXimum?........................................................................... 128
FETCh:SUMMary:IQOFfset:MINimum?............................................................................ 128
FETCh:SUMMary:IQOFfset[:AVERage]?.......................................................................... 128
FETCh:SUMMary:POWer:MAXimum?..............................................................................129
FETCh:SUMMary:POWer:MINimum?...............................................................................129
FETCh:SUMMary:POWer[:AVERage]?............................................................................ 129
FETCh:SUMMary:QUADerror:MAXimum?........................................................................ 129
FETCh:SUMMary:QUADerror:MINimum?......................................................................... 129
FETCh:SUMMary:QUADerror[:AVERage]?.......................................................................129
FETCh:SUMMary:SERRor:MAXimum?............................................................................ 129
FETCh:SUMMary:SERRor:MINimum?............................................................................. 129
FETCh:SUMMary:SERRor[:AVERage]?........................................................................... 129
FETCh:SUMMary:TFRame?........................................................................................... 130
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>:MAXimum?..............................................130
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>:MINimum?...............................................130
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>[:AVERage]?.............................................130
FETCh:SUMMary:CRESt:MAXimum?
FETCh:SUMMary:CRESt:MINimum?
FETCh:SUMMary:CRESt[:AVERage]?
This command queries the average crest factor as shown in the result summary.
Return values:
<CrestFactor>
<numeric value>
Crest Factor in dB.
Example:
FETC:SUMM:CRES?
Returns the current crest factor in dB.
Usage:
Query only
FETCh:SUMMary:EVM[:ALL]:MAXimum?
FETCh:SUMMary:EVM[:ALL]:MINimum?
FETCh:SUMMary:EVM[:ALL][:AVERage]?
This command queries the EVM of all resource elements.
Return values:
<EVM>
<numeric value>
Minimum, maximum or average EVM, depending on the last
command syntax element.
The unit is % or dB, depending on your selection.
Example:
FETC:SUMM:EVM?
Returns the mean value.
Usage:
Query only
User Manual 1308.9135.42 ─ 15
124
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Numeric Results
FETCh:SUMMary:EVM:PCHannel:MAXimum?
FETCh:SUMMary:EVM:PCHannel:MINimum?
FETCh:SUMMary:EVM:PCHannel[:AVERage]?
This command queries the EVM of all physical channel resource elements.
Return values:
<EVM>
<numeric value>
Minimum, maximum or average EVM, depending on the last
command syntax element.
The unit is % or dB, depending on your selection.
Example:
FETC:SUMM:EVM:PCH?
Returns the mean value.
Usage:
Query only
FETCh:SUMMary:EVM:PSIGnal:MAXimum?
FETCh:SUMMary:EVM:PSIGnal:MINimum?
FETCh:SUMMary:EVM:PSIGnal[:AVERage]?
This command queries the EVM of all physical signal resource elements.
Return values:
<EVM>
<numeric value>
Minimum, maximum or average EVM, depending on the last
command syntax element.
The unit is % or dB, depending on your selection.
Example:
FETC:SUMM:EVM:PSIG?
Returns the mean value.
Usage:
Query only
FETCh:SUMMary:EVM:SDQP[:AVERage]?
This command queries the EVM of all DMRS resource elements with QPSK modulation of the PUSCH.
Return values:
<EVM>
<numeric value>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:SDQP?
Returns the EVM of all DMRS resource elements with QPSK
modulation.
Usage:
Query only
FETCh:SUMMary:EVM:SDSF[:AVERage]?
This command queries the EVM of all DMRS resource elements with 64QAM modulation of the PUSCH.
User Manual 1308.9135.42 ─ 15
125
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Numeric Results
Return values:
<EVM>
<numeric value>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:SDSF?
Returns the maximum EVM of all DMRS resource elements with
64QAM modulation.
Usage:
Query only
FETCh:SUMMary:EVM:SDST[:AVERage]?
This command queries the EVM of all DMRS resource elements with 16QAM modulation of the PUSCH.
Return values:
<EVM>
<numeric value>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:SDST?
Returns the EVM of all DMRS resource elements with 16QAM
modulation.
Usage:
Query only
FETCh:SUMMary:EVM:UCCD[:AVERage]?
This command queries the EVM of all DMRS resource elements of the PUCCH as
shown in the result summary.
Return values:
<EVM>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:UCCD?
Returns the average EVM of all DMRS resource elements.
Usage:
Query only
FETCh:SUMMary:EVM:UCCH[:AVERage]?
This command queries the EVM of all resource elements of the PUCCH as shown in
the result summary.
Return values:
<EVM>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:UCCH?
Returns the average EVM of all resource elements.
Usage:
Query only
User Manual 1308.9135.42 ─ 15
126
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Numeric Results
FETCh:SUMMary:EVM:UPRA[:AVERage]?
This command queries the EVM of all resource elements of the PRACH as shown in
the result summary.
Return values:
<EVM>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:UPRA?
Returns the average EVM of all resource elements.
Usage:
Query only
FETCh:SUMMary:EVM:USQP[:AVERage]?
This query returns the EVM for all QPSK-modulated resource elements of the PUSCH.
Return values:
<EVM>
<numeric value>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:USQP?
Queries the PUSCH QPSK EVM.
Usage:
Query only
FETCh:SUMMary:EVM:USSF[:AVERage]?
This command queries the EVM for all 64QAM-modulated resource elements of the
PUSCH.
Return values:
<EVM>
<numeric value>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:USSF?
Queries the PUSCH 64QAM EVM.
Usage:
Query only
FETCh:SUMMary:EVM:USST[:AVERage]?
This query returns the the EVM for all 16QAM-modulated resource elements of the
PUSCH.
Return values:
<EVM>
EVM in % or dB, depending on the unit you have set.
Example:
FETC:SUMM:EVM:USST?
Queries the PUSCH 16QAM EVM.
Usage:
Query only
User Manual 1308.9135.42 ─ 15
127
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Numeric Results
FETCh:SUMMary:FERRor:MAXimum?
FETCh:SUMMary:FERRor:MINimum?
FETCh:SUMMary:FERRor[:AVERage]?
This command queries the frequency error.
Return values:
<FreqError>
<numeric value>
Minimum, maximum or average frequency error, depending on
the last command syntax element.
Default unit: Hz
Example:
FETC:SUMM:FERR?
Returns the average frequency error in Hz.
Usage:
Query only
FETCh:SUMMary:GIMBalance:MAXimum?
FETCh:SUMMary:GIMBalance:MINimum?
FETCh:SUMMary:GIMBalance[:AVERage]?
This command queries the I/Q gain imbalance.
Return values:
<GainImbalance>
<numeric value>
Minimum, maximum or average I/Q imbalance, depending on
the last command syntax element.
Default unit: dB
Example:
FETC:SUMM:GIMB?
Returns the current gain imbalance in dB.
Usage:
Query only
FETCh:SUMMary:IQOFfset:MAXimum?
FETCh:SUMMary:IQOFfset:MINimum?
FETCh:SUMMary:IQOFfset[:AVERage]?
This command queries the I/Q offset.
Return values:
<IQOffset>
<numeric value>
Minimum, maximum or average I/Q offset, depending on the last
command syntax element.
Default unit: dB
Example:
FETC:SUMM:IQOF?
Returns the current IQ-offset in dB
Usage:
Query only
User Manual 1308.9135.42 ─ 15
128
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Numeric Results
FETCh:SUMMary:POWer:MAXimum?
FETCh:SUMMary:POWer:MINimum?
FETCh:SUMMary:POWer[:AVERage]?
This command queries the total power.
Return values:
<Power>
<numeric value>
Minimum, maximum or average power, depending on the last
command syntax element.
Default unit: dBm
Example:
FETC:SUMM:POW?
Returns the total power in dBm
Usage:
Query only
FETCh:SUMMary:QUADerror:MAXimum?
FETCh:SUMMary:QUADerror:MINimum?
FETCh:SUMMary:QUADerror[:AVERage]?
This command queries the quadrature error.
Return values:
<QuadError>
<numeric value>
Minimum, maximum or average quadrature error, depending on
the last command syntax element.
Default unit: deg
Example:
FETC:SUMM:QUAD?
Returns the current mean quadrature error in degrees.
Usage:
Query only
FETCh:SUMMary:SERRor:MAXimum?
FETCh:SUMMary:SERRor:MINimum?
FETCh:SUMMary:SERRor[:AVERage]?
This command queries the sampling error.
Return values:
<SamplingError>
<numeric value>
Minimum, maximum or average sampling error, depending on
the last command syntax element.
Default unit: ppm
Example:
FETC:SUMM:SERR?
Returns the current mean sampling error in ppm.
Usage:
Query only
User Manual 1308.9135.42 ─ 15
129
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
FETCh:SUMMary:TFRame?
This command queries the (sub)frame start offset as shown in the Capture Buffer
result display.
Note that you have to select a particular subframe; otherwise the command returns an
error.
Return values:
<Offset>
Time difference between the (sub)frame start and capture buffer
start.
Default unit: s
Example:
FETC:SUMM:TFR?
Returns the (sub)frame start offset.
Usage:
Query only
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>:MAXimum?
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>:MINimum?
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>[:AVERage]?
This command queries the time alignment error.
Return values:
<Time Alignment
Error>
Minimum, maximum or average time alignment error, depending
on the last command syntax element.
Default unit: s
Example:
FETC:TAER:ANT2?
Returns the average time alignment error between the reference
antenna and antenna 2 in s.
Usage:
Query only
9.6 Remote Commands to Read Trace Data
●
●
Using the TRACe[:DATA] Command.................................................................... 130
Reading Out Limit Check Results......................................................................... 140
9.6.1 Using the TRACe[:DATA] Command
This chapter contains information on the TRACe:DATA command and a detailed
description of the characteristics of that command.
The TRACe:DATA command queries the trace data or results of the currently active
measurement or result display. The type, number and structure of the return values are
specific for each result display. In case of results that have any kind of unit, the command returns the results in the unit you have currently set for that result display.
User Manual 1308.9135.42 ─ 15
130
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Note also that return values for results that are available for both downlink and uplink
may be different.
For several result displays, the command also supports various SCPI parameters in
combination with the query. If available, each SCPI parameter returns a different
aspect of the results. If SCPI parameters are supported, you have to quote one in the
query.
Example:
TRAC2:DATA? TRACE1
The format of the return values is either in ASCII or binary characters and depends on
the format you have set with FORMat[:​DATA]​.
Following this detailed description, you will find a short summary of the most important
functions of the command (TRACe[:​DATA]?​).
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
9.6.1.1
Adjacent Channel Leakage Ratio..........................................................................131
Allocation Summary.............................................................................................. 132
Bit Stream............................................................................................................. 132
Capture Buffer.......................................................................................................133
CCDF.................................................................................................................... 133
Channel and Spectrum Flatness...........................................................................134
Channel and Spectrum Flatness Difference......................................................... 134
Channel Flatness SRS..........................................................................................134
Channel Group Delay............................................................................................135
Constellation Diagram...........................................................................................135
EVM vs Carrier......................................................................................................136
EVM vs Subframe................................................................................................. 136
EVM vs Symbol.....................................................................................................136
EVM vs Symbol x Carrier...................................................................................... 137
Frequency Error vs Symbol...................................................................................137
Inband Emission....................................................................................................137
Power Spectrum....................................................................................................138
Power vs Symbol x Carrier....................................................................................138
Spectrum Emission Mask......................................................................................138
Return Value Codes..............................................................................................139
Adjacent Channel Leakage Ratio
For the ACLR result display, the number and type of returns values depend on the
parameter.
●
TRACE1
Returns one value for each trace point.
●
LIST
Returns the contents of the ACLR table.
For each channel, it returns three values.
<bandwidth>, <spacing offset>, <power>, ...
The channel order is: TX channel ➙ lower adjacent ➙ upper adjacent ➙ lower
alternate ➙ upper alternate
User Manual 1308.9135.42 ─ 15
131
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
The unit of the <bandwidth> and <spacing offset> is Hz.
The unit of the power is either dBc or dBm, depending on the ACLR measurement
mode (relative or absolute).
Note that the TX channel does not have a <spacing offset>. NaN is returned
instead.
9.6.1.2
Allocation Summary
For the Allocation Summary, the command returns seven values for each line of the
table.
<subframe>, <allocation ID>, <number of RB>, <offset RB>,
<modulation>, <absolute power>, <EVM>, ...
The unit for <absolute power> is always dBm. The unit for <EVM> depends on
UNIT:​EVM​. All other values have no unit.
The <allocation ID> and <modulation> are encoded. For the code assignment
see chapter 9.6.1.20, "Return Value Codes", on page 139.
Note that the data format of the return values is always ASCII.
Example:
TRAC:DATA? TRACE1 would return:
0, -40, 10, 2, 2, -84.7431947342849, 2.68723483754626E-06,
0, -41, 0, 0, 6, -84.7431432845264, 2.37549449584568E-06,
0, -42, 0, 0, 6, -80.9404231343884, 3.97834623871343E-06,
...
9.6.1.3
Bit Stream
For the Bit Stream result display, the command returns five values and the bitstream
for each line of the table.
<subframe>, <allocation ID>, <codeword>, <modulation>, <# of
symbols/bits>, <hexadecimal/binary numbers>,...
All values have no unit. The format of the bitstream depends on Bit Stream Format.
The <allocation ID>, <codeword> and <modulation> are encoded. For the
code assignment see chapter 9.6.1.20, "Return Value Codes", on page 139.
For symbols or bits that are not transmitted, the command returns
●
"FFF" if the bit stream format is "Symbols"
User Manual 1308.9135.42 ─ 15
132
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
●
"9" if the bit stream format is "Bits".
For symbols or bits that could not be decoded because the number of layer exceeds
the number of receive antennas, the command returns
●
"FFE" if the bit stream format is "Symbols"
●
"8" if the bit stream format is "Bits".
Note that the data format of the return values is always ASCII.
Example:
TRAC:DATA? TRACE1 would return:
0, -40, 0, 2, 0, 03, 01, 02, 03, 03, 00, 00, 00, 01, 02, 02, ...
<continues like this until the next data block starts or the end of data is
reached>
0, -40, 0, 2, 32, 03, 03, 00, 00, 03, 01, 02, 00, 01, 00, ...
9.6.1.4
Capture Buffer
For the Capture Buffer result display, the command returns one value for each I/Q
sample in the capture buffer.
<absolute power>, ...
The unit is always dBm.
The following parameters are supported.
●
9.6.1.5
TRACE1
CCDF
For the CCDF result display, the type of return values depends on the parameter.
●
TRACE1
Returns the probability values (y-axis).
<# of values>, <probability>, ...
The unit is always %.
The first value that is returned is the number of the following values.
●
TRACE2
Returns the corresponding power levels (x-axis).
<# of values>, <relative power>, ...
The unit is always dB.
The first value that is returned is the number of the following values.
User Manual 1308.9135.42 ─ 15
133
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
9.6.1.6
Channel and Spectrum Flatness
For the Channel Flatness result display, the command returns one value for each trace
point.
<relative power>, ...
The unit is always dB.
The following parameters are supported.
9.6.1.7
●
TRACE1
Returns the average power over all subframes.
●
TRACE2
Returns the minimum power found over all subframes. If you are analyzing a particular subframe, it returns nothing.
●
TRACE3
Returns the maximum power found over all subframes. If you are analyzing a particular subframe, it returns nothing.
Channel and Spectrum Flatness Difference
For the Channel Flatness Difference result display, the command returns one value for
each trace point.
<relative power>, ...
The unit is always dB. The number of values depends on the selected LTE bandwidth.
The following parameters are supported.
9.6.1.8
●
TRACE1
Returns the average power over all subframes.
●
TRACE2
Returns the minimum power found over all subframes. If you are analyzing a particular subframe, it returns nothing.
●
TRACE3
Returns the maximum power found over all subframes. If you are analyzing a particular subframe, it returns nothing.
Channel Flatness SRS
For the Channel Flatness SRS result display, the command returns one value for each
trace point.
<relative power>, ...
The unit is always dB.
The following parameters are supported.
●
TRACE1
Returns the average power over all subframes.
●
TRACE2
User Manual 1308.9135.42 ─ 15
134
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Returns the minimum power found over all subframes. If you are analyzing a particular subframe, it returns nothing.
●
9.6.1.9
TRACE3
Returns the maximum power found over all subframes. If you are analyzing a particular subframe, it returns nothing.
Channel Group Delay
For the Channel Group Delay result display, the command returns one value for each
trace point.
<group delay>, ...
The unit is always ns. The number of values depends on the selected LTE bandwidth.
The following parameters are supported.
9.6.1.10
●
TRACE1
Returns the average group delay over all subframes.
●
TRACE2
Returns the minimum group delay found over all subframes. If you are analyzing a
particular subframe, it returns nothing.
●
TRACE3
Returns the maximum group delay found over all subframes. If you are analyzing a
particular subframe, it returns nothing.
Constellation Diagram
For the Constellation Diagram, the command returns two values for each constellation
point.
<I[SF0][Sym0][Carrier1]>, <Q[SF0][Sym0][Carrier1]>, ..., <I[SF0][Sym0][Carrier(n)]>, <Q[SF0][Sym0][Carrier(n)]>,
<I[SF0][Sym1][Carrier1]>, <Q[SF0][Sym1][Carrier1]>, ..., <I[SF0][Sym1][Carrier(n)]>, <Q[SF0][Sym1][Carrier(n)]>,
<I[SF0][Sym(n)][Carrier1]>, <Q[SF0][Sym(n)][Carrier1]>, ..., <I[SF0][Sym(n)][Carrier(n)]>, <Q[SF0][Sym(n)]
[Carrier(n)]>,
<I[SF1][Sym0][Carrier1]>, <Q[SF1][Sym0][Carrier1]>, ..., <I[SF1][Sym0][Carrier(n)]>, <Q[SF1][Sym0][Carrier(n)]>,
<I[SF1][Sym1][Carrier1]>, <Q[SF1][Sym1][Carrier1]>, ..., <I[SF1][Sym1][Carrier(n)]>, <Q[SF1][Sym1][Carrier(n)]>,
<I[SF(n)][Sym(n)][Carrier1]>, <Q[SF(n)][Sym(n)][Carrier1]>, ..., <I[SF(n)][Sym(n)][Carrier(n)]>, <Q[SF(n)]
[Sym(n)][Carrier(n)]>
With SF = subframe and Sym = symbol of that subframe.
The I and Q values have no unit.
The number of return values depends on the constellation selection. By default, it
returns all resource elements including the DC carrier.
User Manual 1308.9135.42 ─ 15
135
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
The following parameters are supported.
9.6.1.11
●
TRACE1
Returns all constellation points included in the selection.
●
TRACE2
Returns the constellation points of the reference symbols included in the selection.
●
TRACE3
Returns the constellation points of the SRS included in the selection.
EVM vs Carrier
For the EVM vs Carrier result display, the command returns one value for each subcarrier that has been analyzed.
<EVM>, ...
The unit depends on UNIT:​EVM​.
The following parameters are supported.
9.6.1.12
●
TRACE1
Returns the average EVM over all subframes
●
TRACE2
Returns the minimum EVM found over all subframes. If you are analyzing a particular subframe, it returns nothing.
●
TRACE3
Returns the maximum EVM found over all subframes. If you are analyzing a particular subframe, it returns nothing.
EVM vs Subframe
For the EVM vs Subframe result display, the command returns one value for each subframe that has been analyzed.
<EVM>, ...
The unit depends on UNIT:​EVM​.
The following parameters are supported.
●
9.6.1.13
TRACE1
EVM vs Symbol
For the EVM vs Symbol result display, the command returns one value for each OFDM
symbol that has been analyzed.
<EVM>, ...
For measurements on a single subframe, the command returns the symbols of that
subframe only.
The unit depends on UNIT:​EVM​.
User Manual 1308.9135.42 ─ 15
136
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
The following parameters are supported.
●
9.6.1.14
TRACE1
EVM vs Symbol x Carrier
For the EVM vs Symbol x Carrier, the command returns one value for each resource
element.
<EVM[Symbol(0),Carrier(1)]>, ..., <EVM[Symbol(0),Carrier(n)]>,
<EVM[Symbol(1),Carrier(1)]>, ..., <EVM[Symbol(1),Carrier(n)]>,
...
<EVM[Symbol(n),Carrier(1)]>, ..., <EVM[Symbol(n),Carrier(n)]>,
The unit depends on UNIT:​EVM​.
Resource elements that are unused return NAN.
The following parameters are supported.
●
9.6.1.15
TRACE1
Frequency Error vs Symbol
For the Frequency Error vs Symbol result display, the command returns one value for
each OFDM symbol that has been analyzed.
<frequency error>,...
The unit is always Hz.
The following parameters are supported.
●
9.6.1.16
TRACE1
Inband Emission
For the Inband Emission result display, the number and type of returns values depend
on the parameter.
●
TRACE1
Returns the relative resource block indices (x-axis values).
<RB index>, ...
The resource block index has no unit.
●
TRACE2
Returns one value for each resource block index.
<relative power>, ...
The unit of the relative inband emission is dB.
●
TRACE3
Returns the data points of the upper limit line.
<limit>, ...
The unit is always dB.
User Manual 1308.9135.42 ─ 15
137
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Note that you have to select a particular subframe to get results.
9.6.1.17
Power Spectrum
For the Power Spectrum result display, the command returns one value for each trace
point.
<power>,...
The unit is always dBm/Hz.
The following parameters are supported.
●
9.6.1.18
TRACE1
Power vs Symbol x Carrier
For the Power vs Symbol x Carrier, the command returns one value for each resource
element.
<P[Symbol(0),Carrier(1)]>, ..., <P[Symbol(0),Carrier(n)]>,
<P[Symbol(1),Carrier(1)]>, ..., <P[Symbol(1),Carrier(n)]>,
...
<P[Symbol(n),Carrier(1)]>, ..., <P[Symbol(n),Carrier(n)]>,
with P = Power of a resource element.
The unit is always dBm.
Resource elements that are unused return NAN.
The following parameters are supported.
●
9.6.1.19
TRACE1
Spectrum Emission Mask
For the SEM measurement, the number and type of returns values depend on the
parameter.
●
TRACE1
Returns one value for each trace point.
<absolute power>, ...
The unit is always dBm.
●
LIST
Returns the contents of the SEM table. For every frequency in the spectrum emission mask, it returns nine values.
<index>, <start frequency in Hz>, <stop frequency in Hz>,
<RBW in Hz>, <limit fail frequency in Hz>, <absolute power in
dBm>, <relative power in dBc>, <limit distance in dB>, <limit
check result>, ...
The <limit check result> is either a 0 (for PASS) or a 1 (for FAIL).
User Manual 1308.9135.42 ─ 15
138
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
9.6.1.20
Return Value Codes
This chapter contains a list for encoded return values.
<allocation ID>
Represents the allocation ID. The value is a number in the range {1...-70}.
●
1 = Reference symbol
●
0 = Data symbol
●
-1 = Invalid
●
-40 = PUSCH
●
-41 = DMRS PUSCH
●
-42 = SRS PUSCH
●
-50 = PUCCH
●
-51 = DMRS PUCCH
●
-70 = PRACH
<codeword>
Represents the codeword of an allocation. The range is {0...6}.
●
0 = 1/1
●
1 = 1/2
●
2 = 2/2
●
3 = 1/4
●
4 = 2/4
●
5 = 3/4
●
6 = 4/4
<modulation>
Represents the modulation scheme. The range is {0...14}.
●
0 = unrecognized
●
1 = RBPSK
●
2 = QPSK
●
3 = 16QAM
●
4 = 64QAM
●
5 = 8PSK
●
6 = PSK
●
7 = mixed modulation
●
8 = BPSK
<number of symbols or bits>
In hexadecimal mode, this represents the number of symbols to be transmitted. In
binary mode, it represents the number of bits to be transmitted.
User Manual 1308.9135.42 ─ 15
139
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
TRACe[:DATA]? <Result>
This command returns the trace data for the current measurement or result display.
For more information see chapter 9.6.1, "Using the TRACe[:DATA] Command",
on page 130.
Query parameters:
TRACE1 | TRACE2 |
TRACE3
LIST
Usage:
Query only
9.6.2 Reading Out Limit Check Results
●
●
9.6.2.1
Checking Limits for Graphical Result Displays..................................................... 140
Checking Limits for Numerical Result Display...................................................... 142
Checking Limits for Graphical Result Displays
CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult?.......................................................140
CALCulate<n>:LIMit<k>:ACPower:ALTernate:RESult?...................................................... 141
CALCulate<n>:LIMit<k>:FAIL?........................................................................................ 141
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult[:CURRent]?................................... 141
CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult? <Result>
This command queries the limit check results for the adjacent channels during ACLR
measurements.
Query parameters:
<Result>
ALL
Queries the overall limit check results.
REL
Queries the channel power limit check results.
ABS
Queries the distance to the limit line.
Return values:
<LimitCheck>
Returns two values, one for the upper and one for the lower
adjacent channel.
PASSED
Limit check has passed.
FAILED
Limit check has failed.
Example:
User Manual 1308.9135.42 ─ 15
CALC:LIM:ACP:ACH:RES? ALL
Queries the results of the adjacent channel limit check.
140
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Usage:
Query only
CALCulate<n>:LIMit<k>:ACPower:ALTernate:RESult? <Result>
This command queries the limit check results for the alternate channels during ACLR
measurements.
Query parameters:
<Result>
ALL
Queries the overall limit check results.
REL
Queries the channel power limit check results.
ABS
Queries the distance to the limit line.
Return values:
<LimitCheck>
Returns two values, one for the upper and one for the lower
alternate channel.
PASSED
Limit check has passed.
FAILED
Limit check has failed.
Example:
CALC:LIM:ACP:ALT:RES? ALL
Queries the results of the alternate channel limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:FAIL?
This command queries the limit check results for all measurements that feature a limit
check.
Return values:
<LimitCheck>
Returns two values, one for the upper and one for the lower
adjacent or alternate channel.
0
Limit check has passed.
1
Limit check has failed.
Example:
CALC:LIM:FAIL?
Queries the limit check of the active result display.
Usage:
Query only
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult[:CURRent]? <ResultType>
This command queries the current results of the ACLR measurement or the total signal
power level of the SEM measurement.
User Manual 1308.9135.42 ─ 15
141
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible
for single sweeps.
Suffix:
<m>
Query parameters:
<ResultType>
Return values:
<Result>
.
1
CPOW
This parameter queries the signal power of the SEM measurement.
SEMResults
Power level in dBm.
ACLRResults
Relative power levels of the ACLR channels. The number of
return values depends on the number of transmission and adjacent channels. The order of return values is:
• <TXChannelPower> is the power of the transmission channel
in dBm
• <LowerAdjChannelPower> is the relative power of the lower
adjacent channel in dB
• <UpperAdjChannelPower> is the relative power of the upper
adjacent channel in dB
• <1stLowerAltChannelPower> is the relative power of the first
lower alternate channel in dB
• <1stUpperAltChannelPower> is the relative power of the first
lower alternate channel in dB
(...)
• <nthLowerAltChannelPower> is the relative power of a subsequent lower alternate channel in dB
• <nthUpperAltChannelPower> is the relative power of a subsequent lower alternate channel in dB
9.6.2.2
Example:
CALC1:MARK:FUNC:POW:RES?
Returns the current ACLR measurement results.
Usage:
Query only
Checking Limits for Numerical Result Display
CALCulate<n>:LIMit<k>:SUMMary:EVM[:ALL]:MAXimum:RESult?..................................... 143
CALCulate<n>:LIMit<k>:SUMMary:EVM[:ALL][:AVERage]:RESult?.................................... 143
CALCulate<n>:LIMit<k>:SUMMary:EVM:PCHannel:MAXimum:RESult?.............................. 143
CALCulate<n>:LIMit<k>:SUMMary:EVM:PCHannel[:AVERage]:RESult?............................. 143
CALCulate<n>:LIMit<k>:SUMMary:EVM:PSIGnal:MAXimum:RESult?.................................144
CALCulate<n>:LIMit<k>:SUMMary:EVM:PSIGnal[:AVERage]:RESult?................................144
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDQP[:AVERage]:RESult?...................................144
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDSF[:AVERage]:RESult?................................... 145
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDST[:AVERage]:RESult?................................... 145
User Manual 1308.9135.42 ─ 15
142
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
CALCulate<n>:LIMit<k>:SUMMary:EVM:UCCD[:AVERage]:RESult?.................................. 145
CALCulate<n>:LIMit<k>:SUMMary:EVM:UCCH[:AVERage]:RESult?.................................. 146
CALCulate<n>:LIMit<k>:SUMMary:EVM:UPRA[:AVERage]:RESult?...................................146
CALCulate<n>:LIMit<k>:SUMMary:EVM:USQP[:AVERage]:RESult?...................................146
CALCulate<n>:LIMit<k>:SUMMary:EVM:USSF[:AVERage]:RESult?................................... 147
CALCulate<n>:LIMit<k>:SUMMary:EVM:USST[:AVERage]:RESult?................................... 147
CALCulate<n>:LIMit<k>:SUMMary:FERRor:MAXimum:RESult?......................................... 148
CALCulate<n>:LIMit<k>:SUMMary:FERRor[:AVERage]:RESult?........................................ 148
CALCulate<n>:LIMit<k>:SUMMary:GIMBalance:MAXimum:RESult?................................... 148
CALCulate<n>:LIMit<k>:SUMMary:GIMBalance[:AVERage]:RESult?.................................. 148
CALCulate<n>:LIMit<k>:SUMMary:IQOFfset:MAXimum:RESult?........................................148
CALCulate<n>:LIMit<k>:SUMMary:IQOFfset[:AVERage]:RESult?.......................................148
CALCulate<n>:LIMit<k>:SUMMary:QUADerror:MAXimum:RESult?.....................................149
CALCulate<n>:LIMit<k>:SUMMary:QUADerror[:AVERage]:RESult?....................................149
CALCulate<n>:LIMit<k>:SUMMary:SERRor:MAXimum:RESult?......................................... 149
CALCulate<n>:LIMit<k>:SUMMary:SERRor[:AVERage]:RESult?........................................ 149
CALCulate<n>:LIMit<k>:SUMMary:EVM[:ALL]:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:EVM[:ALL][:AVERage]:RESult?
This command queries the results of the EVM limit check of all resource elements.
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:PCHannel:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:EVM:PCHannel[:AVERage]:RESult?
This command queries the results of the EVM limit check of all physical channel
resource elements.
User Manual 1308.9135.42 ─ 15
143
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:PCH:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:PSIGnal:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:EVM:PSIGnal[:AVERage]:RESult?
This command queries the results of the EVM limit check of all physical signal resource
elements.
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:PSIG:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDQP[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUSCH DMRS
resource elements with a QPSK modulation.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
User Manual 1308.9135.42 ─ 15
CALC:LIM:SUMM:EVM:SDQP:RES?
Queries the limit check.
144
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDSF[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUSCH DMRS
resource elements with a 64QAM modulation.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:SDSF:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDST[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUSCH DMRS
resource elements with a 16QAM modulation.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:SDST:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:UCCD[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUCCH DMRS
resource elements.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
User Manual 1308.9135.42 ─ 15
145
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Example:
CALC:LIM:SUMM:EVM:UCCD:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:UCCH[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUCCH resource elements.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:UCCH:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:UPRA[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PRACH resource elements.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:UPRA:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:USQP[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUSCH resource elements with a QPSK modulation
User Manual 1308.9135.42 ─ 15
146
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:USQP:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:USSF[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUSCH resource elements with a 64QAM modulation.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:USSF:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:EVM:USST[:AVERage]:RESult?
This command queries the results of the EVM limit check of all PUSCH resource elements with a 16QAM modulation.
Return values:
<LimitCheck>
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:EVM:USST:RES?
Queries the limit check.
Usage:
Query only
User Manual 1308.9135.42 ─ 15
147
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
CALCulate<n>:LIMit<k>:SUMMary:FERRor:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:FERRor[:AVERage]:RESult?
This command queries the result of the frequency error limit check.
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:SERR:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:GIMBalance:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:GIMBalance[:AVERage]:RESult?
This command queries the result of the gain imbalance limit check.
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:GIMB:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:IQOFfset:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:IQOFfset[:AVERage]:RESult?
This command queries the result of the I/Q offset limit check.
User Manual 1308.9135.42 ─ 15
148
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Read Trace Data
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:IQOF:MAX:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:QUADerror:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:QUADerror[:AVERage]:RESult?
This command queries the result of the quadrature error limit check.
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
Example:
CALC:LIM:SUMM:QUAD:RES?
Queries the limit check.
Usage:
Query only
CALCulate<n>:LIMit<k>:SUMMary:SERRor:MAXimum:RESult?
CALCulate<n>:LIMit<k>:SUMMary:SERRor[:AVERage]:RESult?
This command queries the results of the sampling error limit check.
Return values:
<LimitCheck>
The type of limit (average or maximum) that is queried depends
on the last syntax element.
FAILED
Limit check has failed.
PASSED
Limit check has passed.
NOTEVALUATED
Limits have not been evaluated.
User Manual 1308.9135.42 ─ 15
149
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Example:
CALC:LIM:SUMM:SERR:RES?
Queries the limit check.
Usage:
Query only
9.7 Remote Commands to Configure General Settings
●
●
●
●
●
Remote Commands for General Settings............................................................. 150
Configuring MIMO Measurement Setups..............................................................157
Using a Trigger......................................................................................................160
Configuring Spectrum Measurements...................................................................161
Remote Commands for Advanced Settings.......................................................... 164
9.7.1 Remote Commands for General Settings
This chapter contains remote control commands necessary to control the general measurement settings.
For more information see chapter 4.1, "Configuring the Measurement", on page 52.
●
●
●
●
●
●
9.7.1.1
Defining General Signal Characteristics............................................................... 150
Selecting the Input Source....................................................................................151
Configuring the Input Level................................................................................... 152
Configuring the Data Capture............................................................................... 153
Configuring Measurement Results........................................................................154
Configuring Time Alignment Measurements......................................................... 157
Defining General Signal Characteristics
CONFigure[:LTE]:DUPLexing.......................................................................................... 150
CONFigure[:LTE]:LDIRection.......................................................................................... 151
[SENSe]:FREQuency:CENTer[:CC<cci>]..........................................................................151
CONFigure[:LTE]:DUPLexing <Duplexing>
This command selects the duplexing mode.
Parameters:
<Duplexing>
TDD
Time division duplex
FDD
Frequency division duplex
*RST:
Example:
User Manual 1308.9135.42 ─ 15
FDD
CONF:DUPL TDD
Activates time division duplex.
150
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
CONFigure[:LTE]:LDIRection <Direction>
This command selects the link direction
Parameters:
<Direction>
DL
Downlink
UL
Uplink
Example:
CONF:LDIR DL
EUTRA/LTE option is configured to analyze downlink signals.
[SENSe]:FREQuency:CENTer[:CC<cci>] <Frequency>
This command sets the center frequency for RF measurements.
Parameters:
<Frequency>
<numeric value>
Range:
fmin to fmax
*RST:
1 GHz
Default unit: Hz
9.7.1.2
Example:
Measurement on one carrier:
FREQ:CENT 1GHZ
Defines a center frequency of 1 GHz
Example:
Measurement on aggregated carriers:
FREQ:CENT:CC1 850MHZ
Defines a center frequency of 850 MHz for the first carrier.
Selecting the Input Source
SENSe:INPut.................................................................................................................151
SENSe:INPut <Source>
This command selects the signal source.
Parameters:
<Source>
RF
Select radio frequency input as signal source.
AIQ
Select analog I/Q input (baseband) as signal source.
DIQ
Select digital I/Q input as signal source.
Example:
User Manual 1308.9135.42 ─ 15
INP DIQ
Select digital I/Q as signal source.
151
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
9.7.1.3
Configuring the Input Level
[SENSe]:POWer:AUTO<instrument>[:STATe]...................................................................152
CONFigure:POWer:EXPected:RF<instrument>................................................................. 152
CONFigure:POWer:EXPected:IQ<instrument>..................................................................152
INPut<n>:ATTenuation<instrument>................................................................................ 153
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet........................................... 153
[SENSe]:POWer:AUTO<instrument>[:STATe] <State>
This command initiates a measurement that determines the ideal reference level.
Parameters:
<State>
OFF
Performs no automatic reference level detection.
ON
Performs an automatic reference level detection before each
measurement.
ONCE
Performs an automatic reference level once.
*RST:
Example:
ON
POW:AUTO2 ON
Activate auto level for analyzer number 2.
CONFigure:POWer:EXPected:RF<instrument> <RefLevel>
This command defines the reference level when the input source is RF.
Parameters:
<RefLevel>
Example:
*RST:
-30 dBm
Default unit: DBM
CONF:POW:EXP:RF3 -20
Sets the radio frequency reference level used by analyzer 3 to
-20 dBm.
CONFigure:POWer:EXPected:IQ<instrument> <RefLevel>
This command defines the reference level when the input source is baseband.
Parameters:
<RefLevel>
<numeric value>
Range:
31.6 mV to 5.62 V
*RST:
1V
Default unit: V
Example:
User Manual 1308.9135.42 ─ 15
CONF:POW:EXP:IQ2 3.61
Sets the baseband-reference level used by analyzer 2 to 3.61 V.
152
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
INPut<n>:ATTenuation<instrument> <Attenuation>
This command sets the RF attenuation level.
Parameters:
<Attenuation>
<numeric value>
*RST:
5 dB
Default unit: dB
Example:
INP:ATT 10
Defines an RF attenuation of 10 dB.
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet <Attenuation>
This command selects the external attenuation or gain applied to the RF signal.
Parameters:
<Attenuation>
<numeric value>
*RST:
0
Default unit: dB
Example:
9.7.1.4
DISP:TRAC:Y:RLEV:OFFS 10
Sets an external attenuation of 10 dB.
Configuring the Data Capture
[SENSe]:SWEep:TIME................................................................................................... 153
[SENSe][:LTE]:FRAMe:COUNt:STATe............................................................................. 153
[SENSe][:LTE]:FRAMe:COUNt........................................................................................ 154
[SENSe][:LTE]:FRAMe:COUNt:AUTO.............................................................................. 154
[SENSe]:SWEep:TIME <CaptLength>
This command sets the capture time.
Parameters:
<CaptLength>
Numeric value in seconds.
Default unit: s
Example:
SWE:TIME 40ms
Defines a capture time of 40 milliseconds.
[SENSe][:LTE]:FRAMe:COUNt:STATe <State>
This command turns manual selection of the number of frames you want to analyze on
and off.
User Manual 1308.9135.42 ─ 15
153
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Parameters:
<State>
ON
You can set the number of frames to analyze.
OFF
The analyzer analyzes a single sweep.
*RST:
Example:
ON
FRAM:COUN:STAT ON
Turns manual setting of number of frames to analyze on.
[SENSe][:LTE]:FRAMe:COUNt <Subframes>
This command sets the number of frames you want to analyze.
Parameters:
<Subframes>
<numeric value>
*RST:
Example:
1
FRAM:COUN:STAT ON
FRAM:COUN:AUTO OFF
Activates manual input of frames to be analyzed.
FRAM:COUN 20
Analyzes 20 frames.
[SENSe][:LTE]:FRAMe:COUNt:AUTO <State>
This command turns automatic selection of the number of frames to analyze on and
off.
Parameters:
<State>
ON
Selects the number of frames to analyze according to the LTE
standard.
OFF
Turns manual selection of the frame number on.
Example:
9.7.1.5
FRAM:COUN:AUTO ON
Turns automatic selection of the analyzed frames on.
Configuring Measurement Results
UNIT:EVM.....................................................................................................................155
UNIT:BSTR................................................................................................................... 155
UNIT:CAXes..................................................................................................................155
[SENSe][:LTE]:ANTenna:SELect..................................................................................... 155
[SENSe][:LTE]:SLOT:SELect.......................................................................................... 156
[SENSe][:LTE]:PREamble:SELect................................................................................... 156
[SENSe][:LTE]:SUBFrame:SELect................................................................................... 156
User Manual 1308.9135.42 ─ 15
154
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
UNIT:EVM <Unit>
This command selects the EVM unit.
Parameters:
<Unit>
DB
EVM results returned in dB
PCT
EVM results returned in %
*RST:
Example:
PCT
UNIT:EVM PCT
EVM results to be returned in %.
UNIT:BSTR <Unit>
This command selects the way the bit stream is displayed.
Parameters:
<Unit>
SYMbols
Displays the bit stream using symbols
BITs
Displays the bit stream using bits
*RST:
Example:
SYMbols
UNIT:BSTR BIT
Bit stream gets displayed using Bits.
UNIT:CAXes <Unit>
This command selects the scale of the x-axis for result displays that show subcarrier
results.
Parameters:
<Unit>
CARR
Shows the number of the subcarriers on the x-axis.
HZ
Shows the frequency of the subcarriers on the x-axis.
Example:
UNIT:CAX HZ
Selects frequency scale for the x-axis.
[SENSe][:LTE]:ANTenna:SELect <Antenna>
This command selects the antenna for which the results are shown.
User Manual 1308.9135.42 ─ 15
155
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Parameters:
<Antenna>
Number of the antenna.
1|2|3|4
Number of the antenna.
ALL
Shows the results for all antennas.
*RST:
Example:
1
SENS:ANT:SEL 2
Selects antenna 2.
[SENSe][:LTE]:SLOT:SELect <Slot>
This command selects the slot to analyze.
Parameters:
<Slot>
S0
Slot 0
S1
Slot 1
ALL
Both slots
*RST:
Example:
ALL
SLOT:SEL S1
Selects slot 1 for analysis.
[SENSe][:LTE]:PREamble:SELect <Subframe>
This command selects a particular preamble for measurements that analyze individual
preambles.
The command is available in PRACH analysis mode.
Parameters:
<Subframe>
ALL
Analyzes all preambles.
<numeric value>
Selects the premable to analyze.
*RST:
Example:
ALL
PRE:SEL ALL
Analyzes all preambles.
[SENSe][:LTE]:SUBFrame:SELect <Subframe>
This command selects the subframe to be analyzed.
User Manual 1308.9135.42 ─ 15
156
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Parameters:
<Subframe>
ALL | <numeric value>
ALL
Select all subframes
0...39
Select a single subframe
*RST:
Example:
9.7.1.6
ALL
SUBF:SEL ALL
Select all subframes for analysis.
Configuring Time Alignment Measurements
Remote commands to configure Time Alignment measurements described elsewhere:
●
[SENSe]:​FREQuency:​CENTer[:​CC<cci>]​ on page 151
chapter 9.8, "Remote Commands to Configure the Demodulation", on page 167
CONFigure:NOCC......................................................................................................... 157
CONFigure:NOCC <Carriers>
This command selects the number of component carriers evaluated in the Time Alignment measurement.
Parameters:
<Carriers>
1|2
*RST:
Example:
1
CONF:NOCC 2
Selects 2 carriers.
9.7.2 Configuring MIMO Measurement Setups
CONFigure:ACONfig<instrument>:ADDRess.................................................................... 157
CONFigure:ACONfig<instrument>:ICSequence.................................................................158
CONFigure:ACONfig<instrument>:NCHannels..................................................................158
CONFigure[:LTE]:UL:MIMO:ASELection...........................................................................158
CONFigure[:LTE]:UL:MIMO:PUCCh:CONFig.................................................................... 159
CONFigure[:LTE]:UL:MIMO:PUSCh:CONFig.................................................................... 159
CONFigure[:LTE]:UL:MIMO:SRS:CONFig........................................................................ 159
CONFigure:ACONfig<instrument>:ADDRess <Address>
This command defines the network address of an analyzer or oscilloscope in the test
setup.
User Manual 1308.9135.42 ─ 15
157
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Parameters:
<Address>
Example:
String containing the address of the analyzer.
Connections are possible via TCP/IP or GPIB. Depending on the
type of connection, the string has the following syntax.
'GPIB[board]::<PrimaryAddress>[::
<SecondaryAddress>][::INSTR]'
'TCPIP[board]::<HostAddress>[::
<LANDeviceName>][::INSTR]'
Elements in square brackets are optional.
CONF:ACON:ADDR 'TCPIP::192.168.0.1'
Defines a TCP/IP connection for the first analyzer in the test
setup.
CONF:ACON:ADDR 'GPIB::28'
Defines a GPIB connection for the first analyzer in the test
setup.
CONFigure:ACONfig<instrument>:ICSequence <ICSequence>
This command defines the sequence in which the oscilloscope channels are accessed.
Parameters:
<ICSequence>
Example:
String containing a sequence of four numbers between 1 and 4.
Each number represents an input channel.
CONF:ACON:ICS '1,3,2,4'
Defines the sequence for an oscilloscope with four channels.
The channels are subsequently accessed in the order 1 ➙ 3 ➙
2 ➙ 4.
CONFigure:ACONfig<instrument>:NCHannels <NCHannels>
This command defines the number of oscilloscope channels you want to use.
Parameters:
<NCHannels>
1|2|3|4
The maximum number you can select depends on the number of
channels of the oscilloscope you are using.
Example:
CONF:ACON:NCH 2
Defines a measurement on 2 channels.
CONFigure[:LTE]:UL:MIMO:ASELection <Antenna>
This command selects the antenna for measurements with MIMO setups.
In case of Time Alignment measurements, the command selects the reference
antenna.
User Manual 1308.9135.42 ─ 15
158
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Parameters:
<Antenna>
ANT1 | ANT2 | ANT3 | ANT4
Select a single antenna to be analyzed
ALL
Select all antennas to be analyzed
Example:
CONF:UL:MIMO:ASEL ANT2
Selects antenna 2 to be analyzed.
CONFigure[:LTE]:UL:MIMO:PUCCh:CONFig <NofAntennas>
This command selects the number of antennas for the PUCCH in a MIMO setup.
Parameters:
<NofAntennas>
TX1
Use 1 antenna.
TX2
Use 2 antennas.
Example:
CONF:UL:MIMO:PUCC:CONF TX1
The PUCCH is transmitted on one antenna.
CONFigure[:LTE]:UL:MIMO:PUSCh:CONFig <NofAntennas>
This command selects the number of antennas for the PUSCH in a MIMO setup.
Parameters:
<NofAntennas>
TX1
Use 1 antenna.
TX2
Use 2 antennas.
TX4
Use 4 antennas.
Example:
CONF:UL:MIMO:PUSC:CONF TX1
The PUSCH is transmitted on one antenna.
CONFigure[:LTE]:UL:MIMO:SRS:CONFig <NofAntennas>
This command selects the number of antennas for the sounding reference signal in a
MIMO setup.
Parameters:
<NofAntennas>
TX1
Use 1 antenna.
TX2
Use 2 antennas.
TX4
Use 4 antennas.
User Manual 1308.9135.42 ─ 15
159
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Example:
CONF:UL:MIMO:SRS:CONF TX1
The sounding reference signal is transmitted on one antenna.
9.7.3 Using a Trigger
TRIGger[:SEQuence]:MODE...........................................................................................160
TRIGger[:SEQuence]:HOLDoff<instrument>..................................................................... 160
TRIGger[:SEQuence]:LEVel<instrument>[:EXTernal].........................................................160
TRIGger[:SEQuence]:LEVel<instrument>:POWer............................................................. 161
TRIGger[:SEQuence]:PORT<instrument>.........................................................................161
TRIGger[:SEQuence]:SLOPe.......................................................................................... 161
TRIGger[:SEQuence]:MODE <Source>
This command selects the trigger source.
Parameters:
<Source>
EXTernal
Selects external trigger source.
IMMediate
Selects free run trigger source.
POWer
Selects IF power trigger source.
*RST:
Example:
IMMediate
TRIG:MODE EXT
Selects an external trigger source.
TRIGger[:SEQuence]:HOLDoff<instrument> <Offset>
This command defines the trigger offset.
Parameters:
<Offset>
<numeric value>
*RST:
0s
Default unit: s
Example:
TRIG:HOLD 5MS
Sets the trigger offset to 5 ms.
TRIGger[:SEQuence]:LEVel<instrument>[:EXTernal] <Level>
This command defines the level for an external trigger.
Parameters:
<Level>
User Manual 1308.9135.42 ─ 15
Range:
0.5 V to 3.5 V
*RST:
1.4 V
Default unit: V
160
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Example:
TRIG:LEV 2V
Defines a trigger level of 2 V.
TRIGger[:SEQuence]:LEVel<instrument>:POWer <Level>
This command defines the trigger level for an IF power trigger.
Parameters:
<Level>
Example:
Default unit: DBM
TRIG:LEV:POW 10
Defines a trigger level of 10 dBm.
TRIGger[:SEQuence]:PORT<instrument> <Port>
This command selects the trigger port for measurements with devices that have several trigger ports.
(The R&S FSW, for example has several trigger ports.)
Parameters:
<Port>
PORT1
PORT2
PORT3
Example:
TRIG:PORT PORT1
Selects trigger port 1.
TRIGger[:SEQuence]:SLOPe <Slope>
This command selects the trigger slope.
Parameters:
<Slope>
POSitive
Triggers a measurement when the signal rises to the trigger
level.
NEGative
Triggers a measurement when the signal falls to the trigger
level.
Example:
TRIG:SLOP POS
Selects a positive trigger slope.
9.7.4 Configuring Spectrum Measurements
●
●
Configuring SEM and ACLR Measurements.........................................................162
Configuring Spectrum Flatness Measurements.................................................... 164
User Manual 1308.9135.42 ─ 15
161
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
9.7.4.1
Configuring SEM and ACLR Measurements
CONFigure[:LTE]:UL:CABW............................................................................................162
[SENSe]:POWer:SEM:UL:REQuirement...........................................................................162
[SENSe]:POWer:ACHannel:AACHannel...........................................................................163
[SENSe]:POWer:NCORrection........................................................................................ 163
[SENSe]:SWEep:EGATe:AUTO.......................................................................................163
CONFigure[:LTE]:UL:CABW <Bandwidth>
This command selects the channel bandwidth(s) of the carriers in MC ACLR measurements.
Parameters:
<Bandwidth>
B520
First carrier: 5 MHz, second carrier: 20 MHz bandwidth.
B1020
First carrier: 10 MHz, second carrier: 20 MHz bandwidth.
B1515
First carrier: 15 MHz, second carrier: 15 MHz bandwidth.
B1520
First carrier: 15 MHz, second carrier: 20 MHz bandwidth.
B2020
First carrier: 20 MHz, second carrier: 20 MHz bandwidth.
USER
Custom combination of bandwidths. Define the bandwidths of
both carriers with CONFigure[:​LTE]:​UL[:​CC<cci>]:​BW​
on page 171.
Example:
CONF:UL:CABW USER
CONF:UL:CC1:BW BW5_00
CONF:UL:CC2:BW BW5_00
Custom bandwidth combination: first carrier 5 MHz, second carrier 5 MHz.
[SENSe]:POWer:SEM:UL:REQuirement <Requirement>
This command selects the requirements for a spectrum emission mask.
Parameters:
<Requirement>
GEN | NS3 | NS4 | NS67
GEN
General spectrum emission mask.
NS3 | NS4 | NS67
Spectrum emission masks with additional requirements.
Example:
User Manual 1308.9135.42 ─ 15
POW:SEM:UL:REQ NS3
Selects a spectrum emission mask with requirement for network
signalled value NS3.
162
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
[SENSe]:POWer:ACHannel:AACHannel <Channel>
This command selects the assumed adjacent channel carrier for ACLR measurements.
Parameters:
<Channel>
EUTRA
Selects an EUTRA signal of the same bandwidth like the TX
channel as assumed adjacent channel carrier.
UTRA128
Selects an UTRA signal with a bandwidth of 1.28MHz as
assumed adjacent channel carrier.
UTRA384
Selects an UTRA signal with a bandwidth of 3.84MHz as
assumed adjacent channel carrier.
UTRA768
Selects an UTRA signal with a bandwidth of 7.68MHz as
assumed adjacent channel carrier.
*RST:
Example:
EUTRA
POW:ACH:AACH UTRA384
Selects an UTRA signal with a bandwidth of 3.84MHz as
assumed adjacent channel carrier.
[SENSe]:POWer:NCORrection <State>
This command turns noise correction for ACLR measurements on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
POW:NCOR ON
Activates noise correction.
[SENSe]:SWEep:EGATe:AUTO <State>
This command turns auto gating for SEM and ACLR measurements on and off.
This command is available for TDD measurements in combination with an external or
IF power trigger.
Parameters:
<State>
ON
Evaluates the on-period of the LTE signal only.
OFF
Evaluates the complete signal.
Example:
User Manual 1308.9135.42 ─ 15
SWE:EGAT:AUTO ON
Turns auto gating on.
163
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
9.7.4.2
Configuring Spectrum Flatness Measurements
[SENSe][:LTE]:SFLatness:ECONditions........................................................................... 164
[SENSe][:LTE]:SFLatness:OBANd................................................................................... 164
[SENSe][:LTE]:SFLatness:ECONditions <State>
This command turns extreme conditions for spectrum flatness measurements on and
off.
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
SFL:ECON ON
Turns extreme conditions on.
[SENSe][:LTE]:SFLatness:OBANd <NofSubbands>
This command selects the operating band for spectrum flatness Measurements.
Parameters:
<NofSubbands>
<numeric value>
Range:
*RST:
Example:
1 to 40
1
SFL:OBAN 10
Selects operating band 10.
9.7.5 Remote Commands for Advanced Settings
This chapter contains all remote control commands to control the advanced settings.
For more information on advanced settings see chapter 4.5, "Advanced Settings",
on page 66.
●
●
●
●
9.7.5.1
Controlling I/Q Data...............................................................................................164
Configuring the Baseband Input............................................................................165
Using Advanced Input Settings............................................................................. 166
Configuring the Digital I/Q Input............................................................................ 166
Controlling I/Q Data
[SENSe]:SWAPiq...........................................................................................................164
INPut:IQ:FSOFfset......................................................................................................... 165
[SENSe]:SWAPiq <State>
This command turns a swap of the I and Q branches on and off.
User Manual 1308.9135.42 ─ 15
164
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
SWAP ON
Turns a swap of the I and Q branches on.
INPut:IQ:FSOFfset <Offset>
This command defines the location in an I/Q data file where the analysis starts.
Parameters:
<Offset>
Time offset relative to the start offset of the I/Q data.
Default unit: S
Example:
9.7.5.2
INP:IQ:FSOF 0.2
Defines an offset of 0.2 seconds.
Configuring the Baseband Input
INPut:IQ:IMPedance.......................................................................................................165
INPut:IQ:BALanced[:STATe]........................................................................................... 165
[SENSe]:IQ:LPASs[:STATe]............................................................................................ 166
[SENSe]:IQ:DITHer[:STATe]........................................................................................... 166
INPut:IQ:IMPedance <Impedance>
This command selects the input impedance for I/Q inputs.
Parameters:
<Impedance>
LOW | HIGH
*RST:
Example:
LOW
INP:IQ:IMP LOW
Selects low input impedance for I/Q input.
INPut:IQ:BALanced[:STATe] <State>
This command selects if the I/Q inputs are symmetrical (balanced) or asymmetrical
(unbalanced)
Parameters:
<State>
ON | OFF
*RST:
Example:
User Manual 1308.9135.42 ─ 15
ON
INP:IQ:BAL ON
Specifies symmetrical (balanced) IQ inputs.
165
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure General Settings
[SENSe]:IQ:LPASs[:STATe] <State>
This command turns a baseband input lowpass filter on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
ON
IQ:LPAS ON
Activate the input lowpass.
[SENSe]:IQ:DITHer[:STATe] <State>
This command adds or removes a noise signal into the signal path (dithering).
Parameters:
<State>
ON | OFF
*RST:
Example:
9.7.5.3
OFF
IQ:DITH ON
Activate input dithering.
Using Advanced Input Settings
[SENSe]:POWer:AUTO<instrument>:TIME.......................................................................166
[SENSe]:POWer:AUTO<instrument>:TIME <Time>
This command defines the track time for the auto level process.
Parameters:
<Time>
<numeric value>
*RST:
100 ms
Default unit: s
Example:
9.7.5.4
POW:AUTO:TIME 200ms
An auto level track time of 200 ms gets set.
Configuring the Digital I/Q Input
The digital I/Q input is available with option R&S FSQ-B17 or R&S FSV-B17.
INPut<n>:DIQ:RANGe[:UPPer]........................................................................................166
INPut<n>:DIQ:SRATe.....................................................................................................167
INPut<n>:DIQ:RANGe[:UPPer] <ScaleLevel>
This command defines the full scale level for a digital I/Q signal source.
Parameters:
<ScaleLevel>
User Manual 1308.9135.42 ─ 15
*RST:
1V
Default unit: V
166
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Example:
INP:DIQ:RANG 0.7
Sets the full scale level to 0.7 V.
INPut<n>:DIQ:SRATe <SampleRate>
This command defines the sampling rate for a digital I/Q signal source.
Parameters:
<SampleRate>
Example:
*RST:
10 MHz
Default unit: Hz
INP:DIQ:SRAT 10MHZ
Defines a sampling rate of 10 MHz.
9.8 Remote Commands to Configure the Demodulation
Configuring component carriers
If you want to configure the second component carrier (CC2), make sure to include the
[:CC2] part of the syntax.
Example: CONF:UL:CC2:BW 10
●
●
●
Remote Commands for UL Demodulation Settings.............................................. 167
Remote Commands for UL Signal Characteristics................................................171
Remote Commands for UL Advanced Signal Characteristics...............................178
9.8.1 Remote Commands for UL Demodulation Settings
This chapter contains remote commands necessary to define PDSCH demodulation.
For more information see chapter 5.1, "Configuring Uplink Signal Demodulation",
on page 71.
●
●
9.8.1.1
Configuring the Data Analysis...............................................................................167
Compensating Measurement Errors..................................................................... 170
Configuring the Data Analysis
[SENSe][:LTE]:UL:DEMod:ATTSlots................................................................................ 168
[SENSe][:LTE]:UL:DEMod:MODE....................................................................................168
[SENSe][:LTE]:UL:DEMod:CESTimation.......................................................................... 168
[SENSe][:LTE]:UL:DEMod:EEPeriod................................................................................168
[SENSe][:LTE]:UL:DEMod:CDCoffset...............................................................................169
[SENSe][:LTE]:UL:DEMod:CBSCrambling........................................................................ 169
[SENSe][:LTE]:UL:DEMod:ACON.................................................................................... 169
User Manual 1308.9135.42 ─ 15
167
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
[SENSe][:LTE]:UL:FORMat:SCD..................................................................................... 169
[SENSe][:LTE]:UL:DEMod:SISYnc...................................................................................170
[SENSe][:LTE]:UL:DEMod:MCFilter................................................................................. 170
[SENSe][:LTE]:UL:DEMod:ATTSlots <State>
This command includes or excludes the transient slots present after a switch from
downlink to uplink in the analysis.
Parameters:
<State>
Example:
ON | OFF
UL:DEM:ATTS ON
Includes the transient slots in the analysis.
[SENSe][:LTE]:UL:DEMod:MODE <Reference>
This command selects the uplink analysis mode.
Parameters:
<Reference>
PUSCh
Analyzes the PUSCH and PUCCH.
PRACh
Analyzes the PRACH.
*RST:
Example:
PUSCh
UL:DEM:MODE PRAC
Selects PRACH analysis mode.
[SENSe][:LTE]:UL:DEMod:CESTimation <Type>
This command selects the channel estimation type for uplink signals.
Parameters:
<Type>
PIL | PILPAY
PIL
Pilot only
PILP
Pilot and payload
*RST:
Example:
PILP
UL:DEM:CEST PIL
Uses only the pilot signal for channel estimation.
[SENSe][:LTE]:UL:DEMod:EEPeriod <State>
This command includes or excludes the exclusion period from EVM results.
Parameters:
<State>
User Manual 1308.9135.42 ─ 15
ON | OFF
168
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Example:
UL:DEM:EEP ON
Turns the exclusion periods for EVM calculation on.
[SENSe][:LTE]:UL:DEMod:CDCoffset <State>
This command turns DC offset compensation for uplink signals on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
ON
UL:DEM:CDC OFF
Deactivates DC offset compensation.
[SENSe][:LTE]:UL:DEMod:CBSCrambling <State>
This command turns scrambling of coded bits for uplink signals on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
ON
UL:DEM:CBSC OFF
Deactivates the scrambling.
[SENSe][:LTE]:UL:DEMod:ACON <Type>
This command selects the method of automatic demodulation for uplink signals.
Parameters:
<Type>
ALL
Automatically detects and demodulates the PUSCH and SRS.
OFF
Automatic demodulation is off.
SCON
Automatically detects and demodulates the values available in
the subframe configuration table.
Example:
UL:DEM:ACON OFF
Turns automatic demodulation off.
[SENSe][:LTE]:UL:FORMat:SCD <State>
This command turns detection of the subframe configuration on and off.
The command is available if "Auto Demodulation" is turned off.
Parameters:
<State>
ON | OFF
*RST:
User Manual 1308.9135.42 ─ 15
OFF
169
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Example:
UL:FORM:SCD ON
Turns detection of the subframe configuration on.
[SENSe][:LTE]:UL:DEMod:SISYnc <State>
This command turns suppressed interference synchronization on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
UL:DEM:SISY ON
Turns suppressed interference synchronization on.
[SENSe][:LTE]:UL:DEMod:MCFilter <State>
This command turns suppression of interfering neighboring carriers on and off (e.g.
LTE, WCDMA, GSM etc).
Parameters:
<State>
ON | OFF
*RST:
Example:
9.8.1.2
OFF
UL:DEM:MCF ON
Turns suppression on of neighboring carriers on.
Compensating Measurement Errors
[SENSe][:LTE]:UL:TRACking:PHASe............................................................................... 170
[SENSe][:LTE]:UL:TRACking:TIME..................................................................................170
[SENSe][:LTE]:UL:TRACking:PHASe <Type>
This command selects the phase tracking type for uplink signals.
Parameters:
<Type>
OFF
Deactivate phase tracking
PIL
Pilot only
PILP
Pilot and payload
*RST:
Example:
OFF
SENS:UL:TRAC:PHAS PILP
Use pilots and payload for channel estimation.
[SENSe][:LTE]:UL:TRACking:TIME <State>
This command turns timing tracking for uplink signals on and off.
User Manual 1308.9135.42 ─ 15
170
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
UL:TRAC:TIME ON
Activates timing tracking.
9.8.2 Remote Commands for UL Signal Characteristics
This chapter contains remote commands necessary to define uplink signal characteristics.
For more information see chapter 5.2, "Defining Uplink Signal Characteristics",
on page 75.
●
●
●
9.8.2.1
Defining the Physical Signal Characteristics.........................................................171
Configuring the Physical Layer Cell Identity..........................................................173
Configuring Subframes......................................................................................... 174
Defining the Physical Signal Characteristics
CONFigure[:LTE]:UL[:CC<cci>]:BW................................................................................. 171
CONFigure[:LTE]:UL[:CC<cci>]:CYCPrefix....................................................................... 171
CONFigure[:LTE]:UL[:CC<cci>]:TDD:SPSC......................................................................172
CONFigure[:LTE]:UL[:CC<cci>]:TDD:UDConf................................................................... 172
FETCh[:CC<cci>]:CYCPrefix?......................................................................................... 172
FETCh[:CC<cci>]:OSUBcarriers?.................................................................................... 173
CONFigure[:LTE]:UL[:CC<cci>]:BW <Bandwidth>
This command selects the channel bandwidth.
Parameters:
<Bandwidth>
BW1_40 | BW3_00 | BW5_00 | BW10_00 | BW15_00 |
BW20_00
Example:
Single carrier measurement:
CONF:UL:BW BW1_40
Defines a channel bandwidth of 1.4 MHz.
Example:
Aggregated carrier measurement:
CONF:UL:CC1:BW BW5_00
Defines a channel bandwidth of 5 MHz for the first carrier.
CONFigure[:LTE]:UL[:CC<cci>]:CYCPrefix <PrefixLength>
This command selects the cyclic prefix.
User Manual 1308.9135.42 ─ 15
171
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<PrefixLength>
NORM
Normal cyclic prefix length
EXT
Extended cyclic prefix length
AUTO
Automatic cyclic prefix length detection
*RST:
AUTO
Example:
Single carrier measurements:
CONF:UL:CYCP EXT
Selects an extended cyclic prefix.
Example:
Aggregated carrier measurements:
CONF:UL:CC1:CYCP EXT
Selects an extended cyclic prefix for the first carrier.
CONFigure[:LTE]:UL[:CC<cci>]:TDD:SPSC <Configuration>
This command selects the special TDD subframe configuration.
Parameters:
<Configuration>
<numeric value>
Example:
Single carrier measurements:
CONF:UL:TDD:SPSC 2
Selects special subframe configuration 2.
Example:
Carrier aggregation measurements:
CONF:UL:CC1:TDD:SPSC 2
Selects special subframe configuration 2 for the first carrier.
CONFigure[:LTE]:UL[:CC<cci>]:TDD:UDConf <Configuration>
This command selects the subframe configuration for TDD signals.
Parameters:
<Configuration>
Range:
*RST:
0 to 6
0
Example:
Single carrier measurements:
CONF:UL:TDD:UDC 4
Selects allocation configuration number 4.
Example:
Carrier aggregation measurements:
CONF:UL:CC1:TDD:UDC 4
Selects allocation configuration number 4 for the first carrier.
FETCh[:CC<cci>]:CYCPrefix?
This command queries the cyclic prefix type that has been detected.
User Manual 1308.9135.42 ─ 15
172
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Return values:
<PrefixType>
The command returns -1 if no valid result has been detected yet.
NORM
Normal cyclic prefix length detected
EXT
Extended cyclic prefix length detected
Example:
FETC:CYCP?
Returns the current cyclic prefix length type.
Usage:
Query only
FETCh[:CC<cci>]:OSUBcarriers?
This command queries the number of occupied carriers as shown in the "Signal Characteristics" dialog box.
Return values:
<Subcarriers>
9.8.2.2
Number of occupied subcarriers.
Example:
FETC:OSUB?
Queries the number of occupied carriers.
Usage:
Query only
Configuring the Physical Layer Cell Identity
CONFigure[:LTE]:UL[:CC<cci>]:PLC:CID......................................................................... 173
CONFigure[:LTE]:UL[:CC<cci>]:PLC:CIDGroup................................................................ 173
CONFigure[:LTE]:UL[:CC<cci>]:PLC:PLID........................................................................174
CONFigure[:LTE]:UL[:CC<cci>]:PLC:CID <CellId>
This command defines the cell ID.
Parameters:
<CellId>
AUTO
Automatically defines the cell ID.
<numeric value>
Number of the cell ID.
Range:
Example:
0 to 503
CONF:UL:PLC:CID AUTO
Automatically detects the cell ID.
CONFigure[:LTE]:UL[:CC<cci>]:PLC:CIDGroup <GroupNumber>
This command selects the cell identity group for uplink signals.
User Manual 1308.9135.42 ─ 15
173
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<GroupNumber>
Example:
Range:
*RST:
1 to 167
0
CONF:UL:PLCI:CIDG 12
Selects cell identity group 12.
CONFigure[:LTE]:UL[:CC<cci>]:PLC:PLID <Identity>
This command selects the physical layer identity for uplink signals.
Parameters:
<Identity>
0...2
Manual selection
*RST:
Example:
9.8.2.3
AUTO
CONF:DL:PLC:PLID 2
Sets the physical layer identity to 2.
Configuring Subframes
CONFigure[:LTE]:UL:SFNO............................................................................................ 174
CONFigure[:LTE]:UL:CSUBframes.................................................................................. 175
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc[:CLUSter<cluster>]:
RBCount.............................................................................................................175
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc[:CLUSter<cluster>]:
RBOFfset............................................................................................................175
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:CONT.................................175
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:MODulation.........................176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PRECoding:CBINdex........... 176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PRECoding:CLMapping....... 176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUCCh:FORMat..................176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUCCh:NPAR..................... 177
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUSCh:CSField...................177
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUSCh:NDMRs...................177
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:RATO.................................178
CONFigure[:LTE]:UL:SFNO <Offset>
This command defines the system frame number offset.
The application uses the offset to demodulate the frame.
Parameters:
<Offset>
<numeric value>
*RST:
Example:
User Manual 1308.9135.42 ─ 15
0
CONF:UL:SFNO 2
Selects frame number offset 2.
174
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
CONFigure[:LTE]:UL:CSUBframes <NofSubframes>
This command selects the number of configurable subframes in the uplink signal.
Parameters:
<NofSubframes>
Example:
Range:
*RST:
1 to 10
1
CONF:UL:CSUB 5
Sets the number of configurable subframes to 5.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc[:
CLUSter<cluster>]:RBCount <ResourceBlocks>
This command selects the number of resource blocks in an uplink subframe.
Parameters:
<NofRBs>
<numeric value>
*RST:
Example:
11
CONF:UL:SUBF8:ALL:RBC 8
Subframe 8 consists of 8 resource blocks.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc[:
CLUSter<cluster>]:RBOFfset <Offset>
This command defines the resource block offset in an uplink subframe.
Parameters:
<RBOffset>
<numeric value>
*RST:
Example:
2
CONF:UL:SUBF8:ALL:RBOF 5
Subframe 8 has a resource block offset of 5.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:CONT <Content>
This command allocates a PUCCH or PUSCH to an uplink allocation.
Parameters:
<Content>
NONE
Turns off the PUSCH and the PUCCH.
PUCCh
Turns on the PUCCH.
PUSCh
Turns on the PUSCH.
PSCC
Turns on the PUCCH as well as the PUSCH.
*RST:
User Manual 1308.9135.42 ─ 15
PUSC
175
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Example:
CONF:UL:SUBF8:ALL:CONT PUCC
Subframe 8 contains a PUCCH.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:MODulation
<Modulation>
This command selects the modulation of an uplink allocation.
Parameters:
<Modulation>
QPSK | QAM16 | QAM64
*RST:
Example:
QPSK
CONF:UL:SUBF8:ALL:MOD QPSK
The modulation of the allocation in subframe 8 is QPSK.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PRECoding:
CBINdex <CBIndex>
This command selects the codebook index for a PUSCH allocation.
Parameters:
<CBIndex>
Example:
Range:
*RST:
0 to 5
0
CONF:UL:SUBF:ALL:PREC:CBIN 1
Selects codebook index 1 for the PUSCH allocation.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PRECoding:
CLMapping <Mapping>
This command selects the codeword to layer mapping for a PUSCH allocation.
Parameters:
<Mapping>
Example:
LC11 | LC21 | LC22
CONF:UL:SUBF2:ALL:PREC:CLM LC11
Assigns codeword-to-layer mapping 1/1 to subframe 2.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUCCh:FORMat
<Format>
This command selects the PUCCH format for a particular subframe.
The command is available if you have selected PUCCH format selection on subframe
basis with CONFigure[:​LTE]:​UL:​PUCCh:​FORMat​.
User Manual 1308.9135.42 ─ 15
176
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<Format>
F1N (F1 normal)
F1S (F1 shortened)
F1AN (F1a normal)
F1AS (F1a shortened)
F1BN (F1b normal)
F1BS (F1b shortened)
F2 (F2)
F2A (F2a)
F2B (F2b)
F3 (F3)
Example:
CONF:UL:SUBF4:ALL:PUCC:FORM F3
Selects format F3 for the PUCCH in subframe 4.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUCCh:NPAR
<Parameter>
This command defines N_PUCCH on a subframe basis.
The command is available if CONFigure[:​LTE]:​UL:​PUCCh:​NPAR​ on page 186 is
turned on.
Parameters:
<Parameter>
Example:
<numeric value>
CONF:UL:SUBF:ALL:PUCC:NPAR 2
Sets N_PUCCH to 2.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUSCh:CSField
<CyclicShiftField>
This command defines the cyclic shift field of the demodulation reference signal.
Available if CONFigure[:​LTE]:​UL[:​CC<cci>]:​DRS:​AOCC​ on page 178 has been
turned on.
Parameters:
<CyclicShiftField>
Example:
Range:
*RST:
0 to 7
0
CONF:UL:SUBF:ALL:PUSC:CSF 4
Defines cyclic shift field 4.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUSCh:NDMRs
<PuschNDMRS>
This command defines the part of the DMRS index that is used for the uplink scheduling assignment.
User Manual 1308.9135.42 ─ 15
177
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<PuschNDMRS>
<numeric value>
Range:
*RST:
Example:
0 to 11
0
CONF:UL:SUBF:ALL:PUSC:NDMR 2
Defines index 2.
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:RATO <State>
This command turns the resource allocation type 1 on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
CONF:UL:SUBF:ALL:RATO ON
Turns resource allocation type 1 on.
9.8.3 Remote Commands for UL Advanced Signal Characteristics
This chapter contains remote commands necessary to define advanced uplink signal
characteristics.
For more information see chapter 5.3, "Defining Advanced Signal Characteristics",
on page 83.
●
●
●
●
●
●
9.8.3.1
Configuring the Demodulation Reference Signal.................................................. 178
Configuring the Sounding Reference Signal.........................................................180
Defining the PUSCH Structure..............................................................................183
Defining the PUCCH Structure..............................................................................185
Defining the PRACH Structure..............................................................................187
Defining Global Signal Characteristics..................................................................189
Configuring the Demodulation Reference Signal
CONFigure[:LTE]:UL[:CC<cci>]:DRS:AOCC..................................................................... 178
CONFigure[:LTE]:UL[:CC<cci>]:DRS:DSSHift................................................................... 179
CONFigure[:LTE]:UL[:CC<cci>]:DRS:GRPHopping........................................................... 179
CONFigure[:LTE]:UL[:CC<cci>]:DRS:NDMRs................................................................... 179
CONFigure[:LTE]:UL[:CC<cci>]:DRS:PUCCh:POWer........................................................ 179
CONFigure[:LTE]:UL[:CC<cci>]:DRS[:PUSCh]:POWer...................................................... 180
CONFigure[:LTE]:UL[:CC<cci>]:DRS:SEQuence...............................................................180
CONFigure[:LTE]:UL[:CC<cci>]:DRS:SEQHopping............................................................180
CONFigure[:LTE]:UL[:CC<cci>]:DRS:AOCC <State>
This command turns the configuration of the demodulation reference signal on a subframe basis via the "Cyclic Field Shift" on and off.
User Manual 1308.9135.42 ─ 15
178
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<State>
Example:
ON | OFF
CONF:UL:DRS:AOCC ON
Turns Activate-DMRS-with OCC on.
CONFigure[:LTE]:UL[:CC<cci>]:DRS:DSSHift <Shift>
This command selects the delta sequence shift of the uplink signal.
Parameters:
<Shift>
<numeric value>
*RST:
Example:
0
CONF:UL:DRS:DSSH 3
Sets the delta sequence shift to 3.
CONFigure[:LTE]:UL[:CC<cci>]:DRS:GRPHopping <State>
This command turns group hopping for uplink signals on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
CONF:UL:DRS:GRPHopping ON
Activates group hopping.
CONFigure[:LTE]:UL[:CC<cci>]:DRS:NDMRs <nDMRS>
This command defines the nDMRS.
Parameters:
<nDMRS>
Example:
<numeric value>
CONF:UL:DRS:NDMR 0
Selects nDMRS 0.
CONFigure[:LTE]:UL[:CC<cci>]:DRS:PUCCh:POWer <Power>
This command sets the relative power of the PUCCH.
Parameters:
<Power>
Example:
User Manual 1308.9135.42 ─ 15
*RST:
0
Default unit: DB
CONF:UL:DRS:PUCC:POW 2
Sets the power of the PUCCH to 2 dB.
179
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
CONFigure[:LTE]:UL[:CC<cci>]:DRS[:PUSCh]:POWer <Power>
This command sets the relative power of the PUSCH.
Parameters:
<Power>
Example:
*RST:
0
Default unit: DB
CONF:UL:DRS:POW 2
Sets the relative power of the PUSCH to 2 dB.
CONFigure[:LTE]:UL[:CC<cci>]:DRS:SEQuence <Sequence>
This command selects the modulation for the reference signal.
Parameters:
<Sequence>
IQF
For use of a customized reference signal. The data has to come
from a file.
TGPP
For use of a reference signal according to 3GPP.
Example:
CONF:UL:DRS:SEQ IQF
Activates the IQF type of sequence.
CONFigure[:LTE]:UL[:CC<cci>]:DRS:SEQHopping <State>
This command turns sequence hopping for uplink signals on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
9.8.3.2
OFF
CONF:UL:DRS:SEQH ON
Activates sequence hopping.
Configuring the Sounding Reference Signal
CONFigure[:LTE]:UL:SRS:ANST..................................................................................... 181
CONFigure[:LTE]:UL:SRS:BHOP.....................................................................................181
CONFigure[:LTE]:UL:SRS:BSRS.....................................................................................181
CONFigure[:LTE]:UL:SRS:CSRS.....................................................................................181
CONFigure[:LTE]:UL:SRS:CYCS.....................................................................................182
CONFigure[:LTE]:UL:SRS:ISRS...................................................................................... 182
CONFigure[:LTE]:UL:SRS:MUPT.....................................................................................182
CONFigure[:LTE]:UL:SRS:NRRC.................................................................................... 182
CONFigure[:LTE]:UL:SRS:POWer................................................................................... 182
CONFigure[:LTE]:UL:SRS:STAT..................................................................................... 183
CONFigure[:LTE]:UL:SRS:SUConfig................................................................................183
CONFigure[:LTE]:UL:SRS:TRComb.................................................................................183
User Manual 1308.9135.42 ─ 15
180
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
CONFigure[:LTE]:UL:SRS:ANST <State>
This command turns simultaneous transmission of the Sounding Reference Signal
(SRS) and ACK/NACK messages (via PUCCH) on and off.
Simultaneous transmission works only if the PUCCH format ist either 1, 1a, 1b or 3.
Parameters:
<State>
ON
Allows simultaneous transmission of SRS and PUCCH.
OFF
SRS not transmitted in the subframe for which you have configured simultaneous transmission of PUCCH and SRS.
Example:
CONF:UL:SRS:ANST ON
Turns simultaneous transmission of the SRS and PUCCH in one
subframe on.
CONFigure[:LTE]:UL:SRS:BHOP <Bandwidth>
This command defines the frequency hopping bandwidth bhop.
Parameters:
<Bandwidth>
<numeric value>
*RST:
Example:
0
CONF:UL:SRS:BHOP 1
Sets the frequency hopping bandwidth to 1.
CONFigure[:LTE]:UL:SRS:BSRS <Bandwidth>
This command defines the bandwidth of the SRS (BSRS).
Parameters:
<Bandwidth>
<numeric value>
*RST:
Example:
0
CONF:UL:SRS:BSRS 1
Sets the SRS bandwidth to 1.
CONFigure[:LTE]:UL:SRS:CSRS <Configuration>
This command defines the SRS bandwidth configuration (CSRS).
Parameters:
<Configuration>
<numeric value>
*RST:
Example:
User Manual 1308.9135.42 ─ 15
0
CONF:UL:SRS:CSRS 2
Sets the SRS bandwidth configuration to 2.
181
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
CONFigure[:LTE]:UL:SRS:CYCS <CyclicShift>
Sets the cyclic shift n_CS used for the generation of the sounding reference signal
CAZAC sequence.
Parameters:
<CyclicShift>
<numeric value>
*RST:
Example:
0
CONF:UL:SRS:CYCS 2
Sets the cyclic shift to 2.
CONFigure[:LTE]:UL:SRS:ISRS <ConfIndex>
This command defines the SRS configuration index (ISRS).
Parameters:
<ConfIndex>
<numeric value>
*RST:
Example:
0
CONF:UL:SRS:ISRS 1
Sets the configuration index to 1.
CONFigure[:LTE]:UL:SRS:MUPT <State>
This command turns SRS MaxUpPts on and off.
Parameters:
<State>
ON | OFF
*RST:
OFF
CONFigure[:LTE]:UL:SRS:NRRC <FreqDomPos>
Sets the UE specific parameter Freq. Domain Position nRRC.
Parameters:
<FreqDomPos>
<numeric value>
*RST:
Example:
0
CONF:UL:SRS:NRRC 1
Sets nRRC to 1.
CONFigure[:LTE]:UL:SRS:POWer <Power>
Defines the relative power of the sounding reference signal.
Parameters:
<Power>
<numeric value>
*RST:
0
Default unit: DB
User Manual 1308.9135.42 ─ 15
182
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Example:
CONF:UL:SRS:POW -1.2
Sets the power to -1.2 dB.
CONFigure[:LTE]:UL:SRS:STAT <State>
Activates or deactivates the sounding reference signal.
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
CONF:UL:SRS:STAT ON
Activates the sounding reference signal.
CONFigure[:LTE]:UL:SRS:SUConfig <Configuration>
This command defines the SRS subframe configuration.
Parameters:
<Configuration>
<numeric value>
*RST:
Example:
0
CONF:UL:SRS:SUC 4
Sets SRS subframe configuration to 4.
CONFigure[:LTE]:UL:SRS:TRComb <TransComb>
This command defines the transmission comb (kTC).
Parameters:
<TransComb>
<numeric value>
*RST:
Example:
9.8.3.3
0
CONF:UL:SRS:TRC 1
Sets transmission comb to 1.
Defining the PUSCH Structure
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHMode.............................................................. 183
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHOFfset............................................................ 184
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHOP:IIHB.......................................................... 184
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:NOSM.................................................................184
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHMode <HoppingMode>
This command selects the frequency hopping mode in the PUSCH structure.
User Manual 1308.9135.42 ─ 15
183
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<HoppingMode>
NONE
No hopping
INTer
Inter subframe hopping
INTRa
Intra subframe hopping
*RST:
Example:
NONE
CONF:UL:PUSC:FHM NONE
Deactivates frequency hopping for the PUSCH.
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHOFfset <Offset>
This command defines the frequency hopping offset for the PUSCH.
Parameters:
<Offset>
<numeric value>
*RST:
Example:
4
CONF:UL:PUSC:FHOF 5
Sets the hopping offset to 5.
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHOP:IIHB <HBInfo>
This command defines the information in hopping bits of the PUSCH.
Parameters:
<HBInfo>
<numeric value>
Range:
*RST:
Example:
0 to 3
0
CONF:UL:PUSC:FHOP:IIHB 1
Defines type 1 as the information in hopping bits.
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:NOSM <NofSubbands>
This command defines the number of subbands/M of the PUSCH.
Parameters:
<NofSubbands>
<numeric value>
*RST:
Example:
User Manual 1308.9135.42 ─ 15
4
CONF:UL:PUSC:NOSM 2
Sets the number of subbands to 2.
184
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
9.8.3.4
Defining the PUCCH Structure
CONFigure[:LTE]:UL:PUCCh:NORB................................................................................ 185
CONFigure[:LTE]:UL:PUCCh:DESHift..............................................................................185
CONFigure[:LTE]:UL:PUCCh:N1CS.................................................................................185
CONFigure[:LTE]:UL:PUCCh:N2RB.................................................................................185
CONFigure[:LTE]:UL:PUCCh:FORMat............................................................................. 186
CONFigure[:LTE]:UL:PUCCh:NPAR................................................................................ 186
CONFigure[:LTE]:UL:PUCCh:NORB <ResourceBlocks>
This command selects the number of resource blocks for the PUCCH.
Parameters:
<ResourceBlocks>
<numeric value>
Selects the number of RBs.
AUTO
Detects the number of RBs automatically.
*RST:
Example:
0
CONF:UL:PUCC:NORB 6
Sets the number of resource blocks to 6.
CONFigure[:LTE]:UL:PUCCh:DESHift <Shift>
This command defines the delta shift of the PUCCH.
Parameters:
<Shift>
<numeric value>
Range:
*RST:
Example:
1 to 3
2
CONF:UL:PUCC:DESH 3
Sets the delta shift of the PUCCH to 3.
CONFigure[:LTE]:UL:PUCCh:N1CS <N1cs>
This command defines the N(1)_cs of the PUCCH.
Parameters:
<N1cs>
<numeric value>
*RST:
Example:
6
CONF:UL:PUCC:N1CS 4
Sets N(1)_cs to 4.
CONFigure[:LTE]:UL:PUCCh:N2RB <N2RB>
This command defines the N(2)_RB of the PUCCH.
User Manual 1308.9135.42 ─ 15
185
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Parameters:
<N2RB>
<numeric value>
*RST:
Example:
1
CONF:UL:PUCC:N2RB 2
Sets N2_RB to 2.
CONFigure[:LTE]:UL:PUCCh:FORMat <Format>
This command selects the PUCCH format.
Note that formats 2a and 2b are available for normal cyclic prefix length only.
Parameters:
<Format>
F1 (F1)
F1A (F1a)
F1B (F1b)
F2 (F2)
F2A (F2a)
F2B (F2b)
F3 (F3)
SUBF
Allows you to define the PUCCH format for each subframe separately with .
*RST:
Example:
F1
CONF:UL:PUCC:FORM F1B
Sets the PUCCH format to F1B.
CONFigure[:LTE]:UL:PUCCh:NPAR <Format>
This command defines the N_PUCCH parameter in the PUCCH structure settings.
Parameters:
<Format>
<numeric value>
<numeric value>
AUTO
Determines the N_PUCCH based on the measurement.
SUBF
Selects the definition of N_PUCCH on subframe level.
*RST:
Example:
User Manual 1308.9135.42 ─ 15
0
CONF:UL:PUCC:NPAR 2
Sets N_PUCCH to 2.
186
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
9.8.3.5
Defining the PRACH Structure
CONFigure[:LTE]:UL:PRACh:APM...................................................................................187
CONFigure[:LTE]:UL:PRACh:CONF................................................................................ 187
CONFigure[:LTE]:UL:PRACh:RSET................................................................................. 187
CONFigure[:LTE]:UL:PRACh:FOFFset.............................................................................187
CONFigure[:LTE]:UL:PRACh:NCSC................................................................................ 188
CONFigure[:LTE]:UL:PRACh:RSEQ................................................................................ 188
CONFigure[:LTE]:UL:PRACh:SINDex.............................................................................. 188
CONFigure[:LTE]:UL:PRACh:FRINdex.............................................................................188
CONFigure[:LTE]:UL:PRACh:HFINdicator........................................................................ 188
CONFigure[:LTE]:UL:PRACh:APM <State>
This command turns automatic preamble mapping for the PRACH on and off.
Parameters:
<State>
Example:
ON | OFF
CONF:UL:PRAC:APM ON
Turns automatic preamble mapping on.
CONFigure[:LTE]:UL:PRACh:CONF <Configuration>
This command selects the PRACH preamble format.
Parameters:
<Configuration>
Example:
<numeric value>
CONF:UL:PRAC:CONF 2
Selects PRACH configuration 2.
CONFigure[:LTE]:UL:PRACh:RSET <State>
This command turns the restricted preamble set for PRACH on and off.
Parameters:
<State>
ON | OFF
*RST:
Example:
OFF
CONF:UL:PRAC:RSET ON
Turns the restricted set on.
CONFigure[:LTE]:UL:PRACh:FOFFset <Offset>
This command defines the PRACH frequency offset.
The command is available for preamble formats 0 to 3.
Parameters:
<Offset>
User Manual 1308.9135.42 ─ 15
Resource block offset.
187
R&S®FS‑K101/103/105PC
Remote Commands
Remote Commands to Configure the Demodulation
Example:
CONF:UL:PRAC:FOFF 5
Defines a frequency offset of 5 resource blocks.
CONFigure[:LTE]:UL:PRACh:NCSC <Configuration>
This command defines the Ncs configuration for the PRACH.
Parameters:
<Configuration>
Example:
<numeric value>
CONF:UL:PRAC:NCSC 1
Selects Ncs configuration 1.
CONFigure[:LTE]:UL:PRACh:RSEQ <RootSeqIdx>
This command defines the PRACH logical root sequence index.
Parameters:
<RootSeqIdx>
Example:
<numeric value>
CONF:UL:PRAC:RSEQ 2
Selects logical root sequence index 2.
CONFigure[:LTE]:UL:PRACh:SINDex <Index>
This command selects the PRACH sequence index.
Parameters:
<Index>
<IndexValue>
Number that defines the index manually.
AUTO
Automatcailly determines the index.
Example:
CONF:UL:PRAC:SIND 2
Selects sequence index 2.
CONFigure[:LTE]:UL:PRACh:FRINdex <FRINdex>
This command selects the PRACH frequency index.
Parameters:
<FRINdex>
Example:
<numeric value>
CONF:UL:PRAC:FRIN 10
Selects the frequency index 10.
CONFigure[:LTE]:UL:PRACh:HFINdicator <HFINdicator>
This command defines the PRACH half frame indicator.
Parameters:
<HFINdicator>
User Manual 1308.9135.42 ─ 15
<numeric value>
188
R&S®FS‑K101/103/105PC
Remote Commands
Configuring the Software
Example:
9.8.3.6
CONF:UL:PRAC:HFIN 5
Selects half frame indicator 5.
Defining Global Signal Characteristics
CONFigure[:LTE]:UL:UEID..............................................................................................189
CONFigure[:LTE]:UL:UEID <ID>
Sets the radio network temporary identifier (RNTI) of the UE.
Parameters:
<ID>
<numeric value>
*RST:
Example:
0
CONF:UL:UEID 2
Sets the UE ID to 2.
9.9 Configuring the Software
CONFigure:PRESet....................................................................................................... 189
DISPlay[:WINDow<n>]:SELect........................................................................................ 189
CONFigure:PRESet
Initiates a preset to the default state of the software, and, if connected to an analyzer,
also presets the analyzer.
Example:
CONF:PRES
Presets the software.
Usage:
Event
DISPlay[:WINDow<n>]:SELect
This command selects the measurement window.
Example:
DISP:WIND2:SEL
Selects screen B.
Usage:
Event
User Manual 1308.9135.42 ─ 15
189
R&S®FS‑K101/103/105PC
Remote Commands
Managing Files
9.10 Managing Files
FORMat[:DATA].............................................................................................................190
MMEMory:LOAD:DEModsetting.......................................................................................190
MMEMory:LOAD:IQ:STATe............................................................................................ 190
MMEMory:STORe:DEModsetting.....................................................................................191
MMEMory:STORe:IQ:STATe.......................................................................................... 191
FORMat[:DATA] [<Format>]
This command specifies the data format for the data transmission between the LTE
measurement application and the remote client. Supported formats are ASCII or
REAL32.
Parameters:
<Format>
ASCii | REAL
*RST:
Example:
ASCii
FORM REAL
The software will send binary data in Real32 data format.
MMEMory:LOAD:DEModsetting <Path>
This command restores previously saved demodulation settings.
The file must be of type "*.allocation" and depends on the link direction that was currently selected when the file was saved. You can load only files with correct link directions.
Setting parameters:
<Path>
String containing the path and name of the file.
Example:
MMEM:LOAD:DEM 'D:\USER\Settingsfile.allocation'
Usage:
Setting only
MMEMory:LOAD:IQ:STATe <Path>
This command restores I/Q data from a file.
Setting parameters:
<Path>
String containing the path and name of the source file.
Example:
MMEM:LOAD:IQ:STAT 'C:
\R_S\Instr\user\data.iq.tar'
Loads I/Q data from the specified file.
Usage:
Setting only
User Manual 1308.9135.42 ─ 15
190
R&S®FS‑K101/103/105PC
Remote Commands
Managing Files
MMEMory:STORe:DEModsetting <Path>
Stores the current demodulation settings to a file. The resulting file type is "*.allocation". Existing files will be overwritten.
Setting parameters:
<Path>
String containing the path and name of the file.
Example:
MMEM:STOR:DEM 'D:\USER\Settingsfile.allocation'
Usage:
Setting only
MMEMory:STORe:IQ:STATe <Path>
This command saves I/Q data to a file.
Setting parameters:
<Path>
String containing the path and name of the target file.
Example:
MMEM:STOR:IQ:STAT 'C:
\R_S\Instr\user\data.iq.tar'
Saves I/Q data to the specified file.
Usage:
Setting only
User Manual 1308.9135.42 ─ 15
191
R&S®FS‑K101/103/105PC
List of Commands
List of Commands
[SENSe]:FREQuency:CENTer[:CC<cci>]......................................................................................................151
[SENSe]:IQ:DITHer[:STATe]..........................................................................................................................166
[SENSe]:IQ:LPASs[:STATe].......................................................................................................................... 166
[SENSe]:POWer:ACHannel:AACHannel....................................................................................................... 163
[SENSe]:POWer:AUTO<instrument>:TIME...................................................................................................166
[SENSe]:POWer:AUTO<instrument>[:STATe].............................................................................................. 152
[SENSe]:POWer:NCORrection...................................................................................................................... 163
[SENSe]:POWer:SEM:UL:REQuirement....................................................................................................... 162
[SENSe]:SWAPiq...........................................................................................................................................164
[SENSe]:SWEep:EGATe:AUTO.................................................................................................................... 163
[SENSe]:SWEep:TIME.................................................................................................................................. 153
[SENSe]:SYNC[:STATe]?..............................................................................................................................123
[SENSe][:LTE]:ANTenna:SELect...................................................................................................................155
[SENSe][:LTE]:FRAMe:COUNt......................................................................................................................154
[SENSe][:LTE]:FRAMe:COUNt:AUTO...........................................................................................................154
[SENSe][:LTE]:FRAMe:COUNt:STATe..........................................................................................................153
[SENSe][:LTE]:PREamble:SELect.................................................................................................................156
[SENSe][:LTE]:SFLatness:ECONditions........................................................................................................164
[SENSe][:LTE]:SFLatness:OBANd................................................................................................................ 164
[SENSe][:LTE]:SLOT:SELect.........................................................................................................................156
[SENSe][:LTE]:SUBFrame:SELect................................................................................................................ 156
[SENSe][:LTE]:UL:DEMod:ACON..................................................................................................................169
[SENSe][:LTE]:UL:DEMod:ATTSlots............................................................................................................. 168
[SENSe][:LTE]:UL:DEMod:CBSCrambling.................................................................................................... 169
[SENSe][:LTE]:UL:DEMod:CDCoffset........................................................................................................... 169
[SENSe][:LTE]:UL:DEMod:CESTimation.......................................................................................................168
[SENSe][:LTE]:UL:DEMod:EEPeriod.............................................................................................................168
[SENSe][:LTE]:UL:DEMod:MCFilter.............................................................................................................. 170
[SENSe][:LTE]:UL:DEMod:MODE................................................................................................................. 168
[SENSe][:LTE]:UL:DEMod:SISYnc................................................................................................................ 170
[SENSe][:LTE]:UL:FORMat:SCD...................................................................................................................169
[SENSe][:LTE]:UL:TRACking:PHASe............................................................................................................170
[SENSe][:LTE]:UL:TRACking:TIME............................................................................................................... 170
CALCulate<n>:FEED.....................................................................................................................................121
CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult?.................................................................................140
CALCulate<n>:LIMit<k>:ACPower:ALTernate:RESult?................................................................................ 141
CALCulate<n>:LIMit<k>:FAIL?......................................................................................................................141
CALCulate<n>:LIMit<k>:SUMMary:EVM:PCHannel:MAXimum:RESult?......................................................143
CALCulate<n>:LIMit<k>:SUMMary:EVM:PCHannel[:AVERage]:RESult?.................................................... 143
CALCulate<n>:LIMit<k>:SUMMary:EVM:PSIGnal:MAXimum:RESult?.........................................................144
CALCulate<n>:LIMit<k>:SUMMary:EVM:PSIGnal[:AVERage]:RESult?....................................................... 144
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDQP[:AVERage]:RESult?...........................................................144
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDSF[:AVERage]:RESult?........................................................... 145
CALCulate<n>:LIMit<k>:SUMMary:EVM:SDST[:AVERage]:RESult?........................................................... 145
CALCulate<n>:LIMit<k>:SUMMary:EVM:UCCD[:AVERage]:RESult?.......................................................... 145
CALCulate<n>:LIMit<k>:SUMMary:EVM:UCCH[:AVERage]:RESult?.......................................................... 146
CALCulate<n>:LIMit<k>:SUMMary:EVM:UPRA[:AVERage]:RESult?...........................................................146
User Manual 1308.9135.42 ─ 15
192
R&S®FS‑K101/103/105PC
List of Commands
CALCulate<n>:LIMit<k>:SUMMary:EVM:USQP[:AVERage]:RESult?...........................................................146
CALCulate<n>:LIMit<k>:SUMMary:EVM:USSF[:AVERage]:RESult?........................................................... 147
CALCulate<n>:LIMit<k>:SUMMary:EVM:USST[:AVERage]:RESult?........................................................... 147
CALCulate<n>:LIMit<k>:SUMMary:EVM[:ALL]:MAXimum:RESult?..............................................................143
CALCulate<n>:LIMit<k>:SUMMary:EVM[:ALL][:AVERage]:RESult?............................................................ 143
CALCulate<n>:LIMit<k>:SUMMary:FERRor:MAXimum:RESult?..................................................................148
CALCulate<n>:LIMit<k>:SUMMary:FERRor[:AVERage]:RESult?.................................................................148
CALCulate<n>:LIMit<k>:SUMMary:GIMBalance:MAXimum:RESult?........................................................... 148
CALCulate<n>:LIMit<k>:SUMMary:GIMBalance[:AVERage]:RESult?..........................................................148
CALCulate<n>:LIMit<k>:SUMMary:IQOFfset:MAXimum:RESult?................................................................ 148
CALCulate<n>:LIMit<k>:SUMMary:IQOFfset[:AVERage]:RESult?............................................................... 148
CALCulate<n>:LIMit<k>:SUMMary:QUADerror:MAXimum:RESult?.............................................................149
CALCulate<n>:LIMit<k>:SUMMary:QUADerror[:AVERage]:RESult?............................................................149
CALCulate<n>:LIMit<k>:SUMMary:SERRor:MAXimum:RESult?..................................................................149
CALCulate<n>:LIMit<k>:SUMMary:SERRor[:AVERage]:RESult?................................................................ 149
CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult[:CURRent]?........................................................... 141
CONFigure:ACONfig<instrument>:ADDRess................................................................................................157
CONFigure:ACONfig<instrument>:ICSequence............................................................................................158
CONFigure:ACONfig<instrument>:NCHannels............................................................................................. 158
CONFigure:NOCC......................................................................................................................................... 157
CONFigure:POWer:EXPected:IQ<instrument>............................................................................................. 152
CONFigure:POWer:EXPected:RF<instrument>............................................................................................ 152
CONFigure:PRESet.......................................................................................................................................189
CONFigure[:LTE]:DUPLexing........................................................................................................................150
CONFigure[:LTE]:LDIRection........................................................................................................................ 151
CONFigure[:LTE]:UL:CABW..........................................................................................................................162
CONFigure[:LTE]:UL:CSUBframes................................................................................................................175
CONFigure[:LTE]:UL:MIMO:ASELection....................................................................................................... 158
CONFigure[:LTE]:UL:MIMO:PUCCh:CONFig................................................................................................159
CONFigure[:LTE]:UL:MIMO:PUSCh:CONFig................................................................................................159
CONFigure[:LTE]:UL:MIMO:SRS:CONFig.................................................................................................... 159
CONFigure[:LTE]:UL:PRACh:APM................................................................................................................187
CONFigure[:LTE]:UL:PRACh:CONF............................................................................................................. 187
CONFigure[:LTE]:UL:PRACh:FOFFset......................................................................................................... 187
CONFigure[:LTE]:UL:PRACh:FRINdex......................................................................................................... 188
CONFigure[:LTE]:UL:PRACh:HFINdicator.................................................................................................... 188
CONFigure[:LTE]:UL:PRACh:NCSC............................................................................................................. 188
CONFigure[:LTE]:UL:PRACh:RSEQ............................................................................................................. 188
CONFigure[:LTE]:UL:PRACh:RSET.............................................................................................................. 187
CONFigure[:LTE]:UL:PRACh:SINDex........................................................................................................... 188
CONFigure[:LTE]:UL:PUCCh:DESHift...........................................................................................................185
CONFigure[:LTE]:UL:PUCCh:FORMat..........................................................................................................186
CONFigure[:LTE]:UL:PUCCh:N1CS..............................................................................................................185
CONFigure[:LTE]:UL:PUCCh:N2RB..............................................................................................................185
CONFigure[:LTE]:UL:PUCCh:NORB............................................................................................................. 185
CONFigure[:LTE]:UL:PUCCh:NPAR............................................................................................................. 186
CONFigure[:LTE]:UL:SFNO...........................................................................................................................174
CONFigure[:LTE]:UL:SRS:ANST...................................................................................................................181
CONFigure[:LTE]:UL:SRS:BHOP.................................................................................................................. 181
CONFigure[:LTE]:UL:SRS:BSRS.................................................................................................................. 181
User Manual 1308.9135.42 ─ 15
193
R&S®FS‑K101/103/105PC
List of Commands
CONFigure[:LTE]:UL:SRS:CSRS.................................................................................................................. 181
CONFigure[:LTE]:UL:SRS:CYCS.................................................................................................................. 182
CONFigure[:LTE]:UL:SRS:ISRS....................................................................................................................182
CONFigure[:LTE]:UL:SRS:MUPT.................................................................................................................. 182
CONFigure[:LTE]:UL:SRS:NRRC..................................................................................................................182
CONFigure[:LTE]:UL:SRS:POWer................................................................................................................ 182
CONFigure[:LTE]:UL:SRS:STAT................................................................................................................... 183
CONFigure[:LTE]:UL:SRS:SUConfig.............................................................................................................183
CONFigure[:LTE]:UL:SRS:TRComb..............................................................................................................183
CONFigure[:LTE]:UL:UEID............................................................................................................................ 189
CONFigure[:LTE]:UL[:CC<cci>]:BW.............................................................................................................. 171
CONFigure[:LTE]:UL[:CC<cci>]:CYCPrefix................................................................................................... 171
CONFigure[:LTE]:UL[:CC<cci>]:DRS:AOCC.................................................................................................178
CONFigure[:LTE]:UL[:CC<cci>]:DRS:DSSHift.............................................................................................. 179
CONFigure[:LTE]:UL[:CC<cci>]:DRS:GRPHopping...................................................................................... 179
CONFigure[:LTE]:UL[:CC<cci>]:DRS:NDMRs...............................................................................................179
CONFigure[:LTE]:UL[:CC<cci>]:DRS:PUCCh:POWer.................................................................................. 179
CONFigure[:LTE]:UL[:CC<cci>]:DRS:SEQHopping...................................................................................... 180
CONFigure[:LTE]:UL[:CC<cci>]:DRS:SEQuence..........................................................................................180
CONFigure[:LTE]:UL[:CC<cci>]:DRS[:PUSCh]:POWer................................................................................ 180
CONFigure[:LTE]:UL[:CC<cci>]:PLC:CID......................................................................................................173
CONFigure[:LTE]:UL[:CC<cci>]:PLC:CIDGroup............................................................................................173
CONFigure[:LTE]:UL[:CC<cci>]:PLC:PLID....................................................................................................174
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHMode......................................................................................... 183
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHOFfset....................................................................................... 184
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:FHOP:IIHB.....................................................................................184
CONFigure[:LTE]:UL[:CC<cci>]:PUSCh:NOSM............................................................................................ 184
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:CONT........................................................ 175
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:MODulation................................................176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PRECoding:CBINdex................................ 176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PRECoding:CLMapping............................ 176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUCCh:FORMat........................................176
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUCCh:NPAR........................................... 177
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUSCh:CSField.........................................177
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:PUSCh:NDMRs......................................... 177
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc:RATO.........................................................178
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc[:CLUSter<cluster>]:RBCount.................... 175
CONFigure[:LTE]:UL[:CC<cci>]:SUBFrame<subframe>:ALLoc[:CLUSter<cluster>]:RBOFfset................... 175
CONFigure[:LTE]:UL[:CC<cci>]:TDD:SPSC..................................................................................................172
CONFigure[:LTE]:UL[:CC<cci>]:TDD:UDConf...............................................................................................172
DISPlay[:WINDow<n>]:SELect......................................................................................................................189
DISPlay[:WINDow<n>]:TABLe.......................................................................................................................122
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet.................................................................... 153
FETCh:SUMMary:CRESt:MAXimum?........................................................................................................... 124
FETCh:SUMMary:CRESt:MINimum?............................................................................................................ 124
FETCh:SUMMary:CRESt[:AVERage]?..........................................................................................................124
FETCh:SUMMary:EVM:PCHannel:MAXimum?.............................................................................................125
FETCh:SUMMary:EVM:PCHannel:MINimum?.............................................................................................. 125
FETCh:SUMMary:EVM:PCHannel[:AVERage]?............................................................................................125
FETCh:SUMMary:EVM:PSIGnal:MAXimum?................................................................................................125
User Manual 1308.9135.42 ─ 15
194
R&S®FS‑K101/103/105PC
List of Commands
FETCh:SUMMary:EVM:PSIGnal:MINimum?................................................................................................. 125
FETCh:SUMMary:EVM:PSIGnal[:AVERage]?...............................................................................................125
FETCh:SUMMary:EVM:SDQP[:AVERage]?..................................................................................................125
FETCh:SUMMary:EVM:SDSF[:AVERage]?.................................................................................................. 125
FETCh:SUMMary:EVM:SDST[:AVERage]?.................................................................................................. 126
FETCh:SUMMary:EVM:UCCD[:AVERage]?..................................................................................................126
FETCh:SUMMary:EVM:UCCH[:AVERage]?..................................................................................................126
FETCh:SUMMary:EVM:UPRA[:AVERage]?.................................................................................................. 127
FETCh:SUMMary:EVM:USQP[:AVERage]?..................................................................................................127
FETCh:SUMMary:EVM:USSF[:AVERage]?.................................................................................................. 127
FETCh:SUMMary:EVM:USST[:AVERage]?.................................................................................................. 127
FETCh:SUMMary:EVM[:ALL]:MAXimum?.....................................................................................................124
FETCh:SUMMary:EVM[:ALL]:MINimum?...................................................................................................... 124
FETCh:SUMMary:EVM[:ALL][:AVERage]?....................................................................................................124
FETCh:SUMMary:FERRor:MAXimum?......................................................................................................... 128
FETCh:SUMMary:FERRor:MINimum?.......................................................................................................... 128
FETCh:SUMMary:FERRor[:AVERage]?........................................................................................................128
FETCh:SUMMary:GIMBalance:MAXimum?.................................................................................................. 128
FETCh:SUMMary:GIMBalance:MINimum?................................................................................................... 128
FETCh:SUMMary:GIMBalance[:AVERage]?................................................................................................. 128
FETCh:SUMMary:IQOFfset:MAXimum?....................................................................................................... 128
FETCh:SUMMary:IQOFfset:MINimum?.........................................................................................................128
FETCh:SUMMary:IQOFfset[:AVERage]?...................................................................................................... 128
FETCh:SUMMary:POWer:MAXimum?.......................................................................................................... 129
FETCh:SUMMary:POWer:MINimum?........................................................................................................... 129
FETCh:SUMMary:POWer[:AVERage]?......................................................................................................... 129
FETCh:SUMMary:QUADerror:MAXimum?.................................................................................................... 129
FETCh:SUMMary:QUADerror:MINimum?..................................................................................................... 129
FETCh:SUMMary:QUADerror[:AVERage]?...................................................................................................129
FETCh:SUMMary:SERRor:MAXimum?.........................................................................................................129
FETCh:SUMMary:SERRor:MINimum?.......................................................................................................... 129
FETCh:SUMMary:SERRor[:AVERage]?........................................................................................................129
FETCh:SUMMary:TFRame?..........................................................................................................................130
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>:MAXimum?.......................................................................130
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>:MINimum?........................................................................ 130
FETCh:TAERror[:CC<cci>]:ANTenna<antenna>[:AVERage]?......................................................................130
FETCh[:CC<cci>]:CYCPrefix?....................................................................................................................... 172
FETCh[:CC<cci>]:OSUBcarriers?..................................................................................................................173
FORMat[:DATA].............................................................................................................................................190
INITiate:REFResh..........................................................................................................................................122
INITiate[:IMMediate].......................................................................................................................................122
INPut:IQ:BALanced[:STATe]......................................................................................................................... 165
INPut:IQ:FSOFfset.........................................................................................................................................165
INPut:IQ:IMPedance......................................................................................................................................165
INPut<n>:ATTenuation<instrument>............................................................................................................. 153
INPut<n>:DIQ:RANGe[:UPPer]..................................................................................................................... 166
INPut<n>:DIQ:SRATe....................................................................................................................................167
MMEMory:LOAD:DEModsetting.................................................................................................................... 190
MMEMory:LOAD:IQ:STATe...........................................................................................................................190
MMEMory:STORe:DEModsetting.................................................................................................................. 191
User Manual 1308.9135.42 ─ 15
195
R&S®FS‑K101/103/105PC
List of Commands
MMEMory:STORe:IQ:STATe.........................................................................................................................191
SENSe:INPut................................................................................................................................................. 151
TRACe[:DATA]?.............................................................................................................................................140
TRIGger[:SEQuence]:HOLDoff<instrument>.................................................................................................160
TRIGger[:SEQuence]:LEVel<instrument>:POWer........................................................................................ 161
TRIGger[:SEQuence]:LEVel<instrument>[:EXTernal]................................................................................... 160
TRIGger[:SEQuence]:MODE......................................................................................................................... 160
TRIGger[:SEQuence]:PORT<instrument>.....................................................................................................161
TRIGger[:SEQuence]:SLOPe........................................................................................................................ 161
UNIT:BSTR....................................................................................................................................................155
UNIT:CAXes.................................................................................................................................................. 155
UNIT:EVM......................................................................................................................................................155
User Manual 1308.9135.42 ─ 15
196
R&S®FS‑K101/103/105PC
Index
Index
A
ACLR ................................................................................. 40
Allocation summary ........................................................... 48
Auto Demodulation ............................................................ 73
Auto Detection (Cell Identity) ............................................ 78
B
Balanced Input .................................................................. 68
Bit stream .......................................................................... 49
C
Capture buffer ................................................................... 33
Capture Time .................................................................... 56
Carrier aggregation ........................................................... 64
CCDF ................................................................................ 48
Cell ID ............................................................................... 78
Cell Identity Group ............................................................ 78
Channel Bandwidth ........................................................... 75
Channel Estimation Range ............................................... 72
Channel flatness group delay ............................................ 45
Compensate DC Offset ..................................................... 72
Configurable Subframes ................................................... 78
Configuration Table ........................................................... 78
Constellation diagram ....................................................... 46
Constellation Selection ...................................................... 47
D
Demodulation Reference Signal
Delta Sequence Shift .................................................. 85
Group Hopping ........................................................... 84
n_DRMS ..................................................................... 85
Relative Power PUCCH .............................................. 85
Relative Power PUSCH .............................................. 84
Sequence .................................................................... 83
Sequence Hopping ..................................................... 84
DFT precoding constellation ............................................. 46
Digital Input Data Rate ...................................................... 69
Dither ................................................................................. 68
E
EVM vs Carrier .................................................................. 35
EVM vs subframe .............................................................. 38
EVM vs symbol ................................................................. 36
EVM vs symbol x carrier ................................................... 37
External Attenuation .......................................................... 56
F
Frame Number Offset ....................................................... 78
Frequency ......................................................................... 53
Full Scale Level ................................................................. 69
H
Header Table .................................................................... 25
I
Inband emission ................................................................ 42
Input Source ...................................................................... 54
Interface ............................................................................ 23
L
Low Pass ...........................................................................68
M
Measurement
ACLR .......................................................................... 40
allocation summary ..................................................... 48
bit stream .................................................................... 49
capture buffer .............................................................. 33
CCDF .......................................................................... 48
channel flatness grdel ................................................. 45
constellation ................................................................ 46
DFT precod constell .................................................... 46
EVM (error vector magnitude) .................................... 35
EVM vs carrier ............................................................ 35
EVM vs subframe ....................................................... 38
EVM vs sym x carr ...................................................... 37
EVM vs symbol ........................................................... 36
inband emission .......................................................... 42
list ............................................................................... 30
misc ............................................................................ 48
numerical .................................................................... 30
power spectrum .......................................................... 42
power vs sym x carr .................................................... 34
PVT (power over time) ................................................ 33
result summary ........................................................... 30
spectrum ..................................................................... 38
spectrum flatness ........................................................ 43
spectrum flatness difference ....................................... 44
spectrum flatness SRS ............................................... 44
spectrum mask ........................................................... 39
statistics ...................................................................... 48
Multicarrier filter ................................................................. 74
N
Number of RB ................................................................... 75
Numerical results .............................................................. 30
P
Phase Error ....................................................................... 74
Power spectrum ................................................................ 42
Power vs symbol x carrier ................................................. 34
PUCCH Structure
Delta Shift ................................................................... 90
Format ........................................................................ 91
N_PUCCH .................................................................. 91
N(1)_cs ....................................................................... 91
N(2)_RB ...................................................................... 91
Number of RBs for PUCCH ........................................ 90
PUSCH Structure
Frequency Hopping Mode .......................................... 89
Info. in Hopping Bits .................................................... 89
Number of Subbands .................................................. 89
PUSCH Hopping Offset .............................................. 89
Identity (Physical Layer) .................................................... 78
User Manual 1308.9135.42 ─ 15
197
R&S®FS‑K101/103/105PC
R
Reference Level ................................................................ 55
Resource Blocks ............................................................... 75
Result Display
Constellation Selection ............................................... 47
Result summary ................................................................ 30
S
Scrambling of coded bits ................................................... 72
Screen Layout ................................................................... 23
SEM requirement .............................................................. 65
Settings
Auto ............................................................................ 78
Auto Demodulation ..................................................... 73
Balanced ..................................................................... 68
Capture Time .............................................................. 56
Cell ID ......................................................................... 78
Cell Identity Group ...................................................... 78
Channel Bandwidth ..................................................... 75
Channel Estimation Range ......................................... 72
Compensate DC Offset ............................................... 72
Conf. Index I_SRS ...................................................... 86
Configurable Subframes ............................................. 78
Delta Sequence Shift .................................................. 85
Delta Shift ................................................................... 90
Digital Input Data Rate ................................................ 69
Dither .......................................................................... 68
Ext Att ......................................................................... 56
Format ........................................................................ 91
Frame Number Offset ................................................. 78
Freq. Domain Pos. n_RRC ......................................... 88
Frequency ................................................................... 53
Frequency Hopping Mode .......................................... 89
Full Scale Level .......................................................... 69
Group Hopping ........................................................... 84
Hopping BW b_hop ..................................................... 87
Identity ........................................................................ 78
Info. in Hopping Bits .................................................... 89
Low Pass .................................................................... 68
multicarrier filter .......................................................... 74
n_DRMS ..................................................................... 85
N_PUCCH .................................................................. 91
N(1)_cs ....................................................................... 91
N(2)_RB ...................................................................... 91
Number of RB ............................................................. 75
Number of RBs for PUCCH ........................................ 90
Number of Subbands .................................................. 89
Phase .......................................................................... 74
Present ....................................................................... 86
PUSCH Hopping Offset .............................................. 89
Ref Level ..................................................................... 55
Rel Power ................................................................... 87
Relative Power PUCCH .............................................. 85
Relative Power PUSCH .............................................. 84
Scrambling of coded bits ............................................ 72
Sequence .................................................................... 83
Sequence Hopping ..................................................... 84
Source ........................................................................ 54
SRS Bandwidth B_SRS .............................................. 87
SRS BW Conf. C_SRS ............................................... 86
SRS Cyclic Shift N_CS ............................................... 88
SRS Subframe Conf. .................................................. 86
Standard ..................................................................... 52
suppressed interference synchronization ................... 74
Swap I/Q ..................................................................... 67
User Manual 1308.9135.42 ─ 15
Index
TDD UL/DL Allocations ............................................... 76
Timing ......................................................................... 75
Transm. Comb. K_TC ................................................. 87
Trigger level ................................................................ 63
Trigger mode .............................................................. 63
Trigger offset ............................................................... 63
Softkey
Const Selection ........................................................... 47
Software license ................................................................ 14
Sounding Reference Signal
Conf. Index I_SRS ...................................................... 86
Freq. Domain Pos. n_RRC ......................................... 88
Hopping BW b_hop ..................................................... 87
Present ....................................................................... 86
Rel Power ................................................................... 87
SRS Bandwidth B_SRS .............................................. 87
SRS BW Conf. C_SRS ............................................... 86
SRS Cyclic Shift N_CS ............................................... 88
SRS Subframe Conf. .................................................. 86
Transm. Comb. K_TC ................................................. 87
Source (Input) ................................................................... 54
Spectrum flatness ............................................................. 43
Spectrum flatness difference ............................................. 44
Spectrum flatness SRS ..................................................... 44
Spectrum mask ................................................................. 39
Standard Selection ............................................................ 52
Status Bar ......................................................................... 25
Subframe Configuration Table .......................................... 78
Suppressed interference synchronization ......................... 74
Swap I/Q ........................................................................... 67
T
TDD UL/DL Allocations ..................................................... 76
Timing Error ...................................................................... 75
Title Bar ............................................................................. 25
Trigger level ...................................................................... 63
Trigger mode ..................................................................... 63
Trigger offset ..................................................................... 63
198