Download Mosbaek CEV flow regulator

Transcript
Mosbaek CEV flow regulator
Verification Report
Verification Report
February 2015
This report has been prepared under the DHI Business Management System
certified by DNV to comply with ISO 9001 (Quality Management)
Approvedby
StenLindberg(Headofdepartment,DHI)
Approvedby
PeterFritzel(Verificationresponsible,ETADanmark)
Mosbaek CEV flow regulator
Verification Report
Prepared for
Mosbaek A/S
Represented by Torben Krejberg, Technical Director
Test facility
ProjectNo
Classification
Version
11530013
Public
Final
Authors
MetteTjenerAndersson,DHI
Contents
1 1.1 1.2 1.3 1.4 1.5 1.6 Introduction...................................................................................................................................................3 Nameoftechnology.............................................................................................................................................................3 Nameandcontactofproposer.......................................................................................................................................3 Nameofverificationbodyandresponsibleofverification...............................................................................3 Verificationorganisationincludingexperts.............................................................................................................4 Verificationprocess............................................................................................................................................................4 Deviationsfromtheverificationprotocol.................................................................................................................6 2 2.1 2.2 2.2.1 2.2.2 2.3 2.3.1 2.3.2 Descriptionoftechnologyandapplication..........................................................................................8 Summarydescription.........................................................................................................................................................8 Intendedapplication...........................................................................................................................................................9 Matrix/matrices....................................................................................................................................................................9 Purpose(s)...............................................................................................................................................................................9 Verificationparametersdefinition............................................................................................................................10 FlowatHbumpandHdesign.................................................................................................................................................10 FlowreductionatHdesign.................................................................................................................................................10 3 3.1 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.5.1 3.3.5.2 3.3.5.3 3.4 3.4.1 3.4.2 3.4.2.1 3.4.2.2 3.4.2.3 3.4.2.4 3.4.3 3.4.3.1 3.4.3.2 3.4.3.3 3.4.3.4 3.4.3.5 3.4.4 3.4.4.1 3.4.4.2 3.4.4.3 3.4.4.4 3.4.5 3.4.6 Evaluation.....................................................................................................................................................11 Calculationofverificationparametersperformance........................................................................................11 Evaluationoftestquality...............................................................................................................................................11 Controldata.........................................................................................................................................................................11 Audits.....................................................................................................................................................................................11 Deviations.............................................................................................................................................................................12 Verificationresults...........................................................................................................................................................12 Performanceparameters...............................................................................................................................................12 FlowatHbumpandHdesign.................................................................................................................................................12 FlowreductionatHdesign.................................................................................................................................................13 Operationalparameters.................................................................................................................................................13 Additionalparameters....................................................................................................................................................14 Usermanual.........................................................................................................................................................................14 Requiredresources..........................................................................................................................................................15 Occupationalhealthandenvironmentalimpact.................................................................................................17 RecommendationfortheStatementofVerification..........................................................................................17 Technologydescription..................................................................................................................................................17 Application...........................................................................................................................................................................18 Matrix.....................................................................................................................................................................................18 Purpose..................................................................................................................................................................................18 Conditionsofoperationanduse................................................................................................................................18 Verificationparametersdefinitionsummary.......................................................................................................18 Testandanalysisdesign................................................................................................................................................18 Laboratoryorfieldconditions....................................................................................................................................18 Matrixcomposition..........................................................................................................................................................20 Testandanalysisparameters......................................................................................................................................20 Testandanalysismethodssummary.......................................................................................................................20 Parametersmeasured.....................................................................................................................................................20 Verificationresults...........................................................................................................................................................21 Performanceparameters...............................................................................................................................................21 Operationalparameters.................................................................................................................................................21 Environmentalparameters..........................................................................................................................................21 Additionalparameters....................................................................................................................................................21 Additionalinformation...................................................................................................................................................22 Qualityassuranceanddeviations..............................................................................................................................22 Verification Report Mosbaek
i
4 Qualityassurance.......................................................................................................................................23 5 References....................................................................................................................................................25 Figures
Figure1‐1 Figure2‐1 Figure2‐2 Figure3‐1 Figure3‐2 Figure3‐3 Organisationoftheverificationandtest.......................................................................................................................................4 SketchofCEVflowregulatorinstalledinwell.SketchprovidedbyMosbaek...............................................................8 Graphicshowingthegeneralvortexbrakeeffectonwateroutflow,withCEVsoperatingat78%and100%
efficiencyandwaterinflowtowelllargerthanoutflowthoughCEV(wellisfillingup).Graphprovidedby
Mosbaek.......................................................................................................................................................................................................9 CorrelationbetweenQinflowandQbumpgivenforalltestedCEVs........................................................................................13 A)SketchofCEVflowregulatorinstalledinwell.B)Graphicshowingthegeneralvortexbrakeeffecton
wateroutflow,withCEVsoperatingat78%and100%efficiencyandwaterinflowtowelllargerthan
outflowthoughCEV(wellisfillingup).BothprovidedbyMosbaek..............................................................................17 Sketchoftestset‐up.............................................................................................................................................................................19 Tables
Table1‐1 Table2‐1 Table2‐2 Table3‐1 Table3‐2 Table3‐2 Table3‐3 Table3‐4 Table4‐1 Simplifiedoverviewoftheverificationprocess.........................................................................................................................6 SpecificperformanceclaimsfromtheproposeronQbumpandQdesign..............................................................................10 SpecificperformanceclaimsbytheproposeronflowreductioncomparedtonoCEVinstalledinwell.........10 VerifiedperformanceonQbump.+)BeawarethattheresultsofQbumpareuniquelyinfluencedbyQinflow,see
later.............................................................................................................................................................................................................12 VerifiedperformanceonQdesign.*)basedontwotestsonly................................................................................................13 VerifiedperformanceonflowreductioncomparedtonoCEVinstalledinwell.........................................................13 Evaluationofusermanual.................................................................................................................................................................14 Listofcapitalcostitemsandoperationandmaintenancecostitemsperproductunit..........................................16 QAplanfortheverification...............................................................................................................................................................23 Appendices
A
B
C
D
E
Termsanddefinitions
SpecificVerificationProtocol
Testplan
Testreport
Auditreports
Archiving:Allstandardprojectfiles(documents,etc)arearchivedatETADanmark.Anyotherprojectfiles(set‐upfiles,forcingdata,model
output,etc.)arearchivedwiththeinstituteperformingthetestsoranalysis.
ii
Verification Report Mosbaek
1
Introduction
Environmentaltechnologyverification(ETV)isanindependent(thirdparty)assessmentofthe
performanceofatechnologyoraproductforaspecifiedapplicationunderdefinedconditions
andqualityassurance.
Theobjectiveofthisverificationistoevaluatetheperformanceofaverticalcentrifugalflow
regulatorforstormwater.
ThisVerificationReportandtheverificationofthetechnologyarebasedontheSpecificVerifica‐
tionProtocol,TestPlanandTestReportfortheMosbaekCEVflowregulator,includedasAp‐
pendixB,DandE.
1.1
Name of technology
Verticalcentrifugalflowregulator,CEV(CEntrifugalVertical),producedbyMosbaekA/S.
MosbaekproducesCEVsforflowcapacitiesfrom0.2l/sto80l/s.Theverificationwillcoverver‐
ificationtestoffourspecificCEVdimensionswithinthisrange.
MosbaekhaveselectedfourspecificCEV‐modelstorepresenttheirCEVtechnology,namely:

CEV1.4l/[email protected]–100%

CEV4.9l/[email protected]–100%

CEV10.5/[email protected]–78%

CEV10.5l/[email protected]–100%
ThenameoftheCEVindicatesthedesignedmaximumflowofforexample1.4l/sandthecorre‐
latingmaximumpressureheightofforexample1.00m.Thepercentage(100%and78%)indi‐
catesthepercentageofthedesignflowatthepoint/bumpwherethevortexisformed.
1.2
Name and contact of proposer
MosbaekA/S
Værkstedsvej20
4600Køge
Denmark
Contact:TorbenKrejberg,e‐mail:[email protected],phone:+4556638580
Mosbaekwebsite:www.mosbaek.dk
1.3
Name of verification body and responsible of verification
ETADanmarkA/S
GöteborgPlads1
2150Nordhavn
Denmark
Verificationresponsible:
PeterFritzel(PF),email:[email protected],phone+4572245900
Verification Report Mosbaek
3
Appointedverificationexpert:
MetteTjenerAndersson(MTA),e‐mail:[email protected],phone:+4545169148
1.4
Verification organisation including experts
TheverificationwasconductedbyETADanmarkA/SincooperationwithDanishCentreforVer‐
ificationofClimateandEnvironmentalTechnologies,DANETV,whichperformsindependent
verificationoftechnologiesandproductsforthereductionofclimatechangesandpollution.
TheverificationisconductedtosatisfytherequirementsoftheETVschemeestablishedbythe
EuropeanUnion(EUETVPilotProgramme)[1].
TheverificationwascoordinatedandsupervisedbyETADanmark,assistedbyanappointed
verificationexpert,whiletestswerecoordinatedandsupervisedbyDHIwiththeparticipation
oftheproposer,Mosbaek.ThetestingwasconductedatthepremisesofMosbaekinKøge,where
atestfacilityhasbeenconstructed.
Aninternalandanexternalexpertareassignedtoprovideindependentexpertreviewofthe
planning,conductingandreportingoftheverificationandtests:

Internaltechnicalexpert:MortenJustKjølby(MJK),DHI,UrbanandIndustryDept.,
e‐[email protected]

Externaltechnicalexpert:Verificationprotocol:ProfessorTorbenLarsen(TL),Aalborg
University,DepartmentofCivilEngineering,e‐[email protected]:
IanWalker(IW),WRcplc,e‐[email protected]
Thetasksassignedtoeachexpertaregiveninmoredetailinsection4Qualityassurance.
Therelationshipsbetweentheorganisationsrelatedtothisverificationandtestaregivenin
Figure1‐1.
Figure 1-1
1.5
Organisation of the verification and test.
Verification process
TheprinciplesofoperationoftheDANETVverificationprocessaregiveninTable1‐1
4
Verification Report Mosbaek
Table1‐1.Asitcanbeseen,verificationandtestingaredividedbetweentheverificationandthe
testbody.
Verification Report Mosbaek
5
Table 1-1
Simplified overview of the verification process.
Phase
Responsible
Document
Preliminaryphase
Verificationbody
QuickScan
Contract
Specificverificationprotocol
Testingphase
Testbody
Testplan
Testreport
Assessmentphase
Verificationbody
Verificationreport
StatementofVerification
Qualityassuranceiscarriedoutbyanexpertgroupofinternalandexternaltechnicalexperts.
Twoauditsofthetestsystemwereperformed,startingwithaninternalauditbythetestbody
followedbyanexternalauditbytheDANETVverificationbodyunderETADanmark.Reference
fortheverificationprocessistheEUETVGeneralVerificationProtocol[1]andETADanmarks
internalprocedure[2].AStatementofVerificationwillbeissuedbyETADanmarkaftercomple‐
tionoftheverification.Thisverificationreportwillincludetheotherdocumentspreparedas
appendices.
1.6
Deviations from the verification protocol
Therewerenodeviationstotheverificationprotocol.
6
Verification Report Mosbaek
Verification Report Mosbaek
7
2
Description of technology and application
2.1
Summary description
Theflowregulatortechnologyforextremerainfalleventsisbasedonquicklyreachingthemax‐
imumdischargeflowandstayingatorbelowthisvalue.Themaximumdischargeflowistheal‐
lowableamountofwaterpassingthroughtheregulatorwithoutcausinganyproblemstothe
downstreampipenetwork.
Thetechnologyverifiedistheverticalcentrifugalflowregulator,CEV(CEntrifugalVertical)from
Mosbaek.Itisawetmountedvortexflowregulatorforstormwaterwithdesignflowsbetween
0.2and80l/s.
TheCEVregulatesthewaterduetothevortexcreatedwhensufficientwaterflowisgoing
throughtheunit.Thevortexiscreatedwhenthewaterflowreachesacertainflowrate.Thevor‐
texslowsdownthewaterflowthroughtheCEV.Inthiswaythewaterisstoredinthewelland
thewaterflowisthenkeptalmostconstant.AschematicviewoftheCEVinoperationisshown
inFigure2‐1.
TheCEVcanbedesignedtofulfildifferentdesigncriteria.Thespecificdesigncriteriaarede‐
finedbytheclientandMosbaekincooperationaccordingtothedesignoftheexistingor
plannedpipingnetwork.
Figure 2-1
Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek.
TheCEVsverifiedhaveinflowinthebottomoftheregulator,asshowninFigure2‐1.Thisisto
ensureproperandequalhydraulicconditions.Furthermore,inastandardinstallationMosbaek
willensurethatinletandoutletarelocatedatthesamelevelinthewell(asdepictedonFigure
2‐1)inordertobeabletocontrolthewaterlevelriseinthewelloptimally.
Figure2‐2showstheflowthroughaCEV.Inthe100%casethemaximumoutlet(Qdesign)ismet
twice‐firstwherethevortexisformed(thebumponthegraph)andthenatthespecifiedHdesign,
whereHdesigniscalculatedfromtheinvertofthedischargepipetothemaximumwaterlevelin
thewell.A78%case(asmallerCEVinawellwithsameheight)withthesameHdesignisalso
shown;herethebumpoccursataflowof78%ofQdesign.
8
Verification Report Mosbaek
Figure 2-2
Graphic showing the general vortex brake effect on water outflow, with CEVs operating at 78% and 100%
efficiency and water inflow to well larger than outflow though CEV (well is filling up). Graph provided by
Mosbaek.
Theoptimalsolution(100%),whereQbumpequalsQdesign,giveslessrestrictionatlowheadsal‐
lowingabetterflowduringnormaloperatingsituationsandtherebylessriskofblockingdown‐
stream.
2.2
Intended application
Theintendedapplicationofthetechnologyforverificationisdefinedintermsofthematrixand
thepurpose.
2.2.1
Matrix/matrices
TheCEVisforstormwaterandcertaintypesofindustrialwastewaters.TheCEVisinstalledbe‐
forethecombinedsystem(withstormwaterandwastewater),andistherebyrestrictingthe
amountofstormwaterintothecombinedsystem.Theverificationthereforeonlycoversthema‐
trixstormwater.
2.2.2
Purpose(s)
Thepurposeofthetechnologyistostorestormwateratappropriateplacesbeforeenteringthe
pipingsystemduringstormwaterevents.TheCEVisinstalledinwellsandbasinsdependingon
thepipingnetwork.
Verification Report Mosbaek
9
2.3
Verification parameters definition
Thereisnoregulationtofulfilforthistechnology.Theinitialclaimsfromtheproposerare
matchingtheclaimsfromothervendors.Noneedhasbeenfoundtoaddanyadditionalperfor‐
manceparameterstothoseinitiallyselectedbytheproposer.
MosbaekhastwotypesofclaimsfortheirCEVs,bothdescribedbelow.
2.3.1
Flow at Hbump and Hdesign
MosbaekhasspecifiedtheperformanceoffourselectedmodelsoftheCEVthroughperformance
graphsandspecifiedthefollowingspecificclaims(fordetails,pleaseconsultAppendixB):
100%model:
Qdesign±5%ismetatHbumpandHdesign
X%model:
X%ofQdesign±5%ismetatHbump
Qdesign±5%ismetatHdesign
SpecificvaluesforeachofthefourselectedCEVsarelistedinTable2‐1.
Table 2-1
Specific performance claims from the proposer on Qbump and Qdesign.
CEV model
Qbump (l/s)
Qdesign (l/s)
CEV1.4l/[email protected]–100%
1.4±5%
1.4±5%
CEV4.9l/[email protected]–100%
4.9±5%
4.9±5%
CEV10.5l/[email protected]–78%
8.2±5%
10.5±5%
CEV10.5l/[email protected]–100%
10.5±5%
10.5±5%
2.3.2
Flow reduction at Hdesign
MosbaekhasfurtherspecifiedtheirclaimedreductionoftheflowatHdesigncomparedtoawell
withnoflowregulator(equaltoaholeinastraightwall,withnoadditionalpiping).
Mosbaekclaimsthefollowing:
AMosbaekCEV100%modelcanreducetheflowbyafactorof4.25atQdesign
PerformingtestswherethetestwellisfilleduptoHdesignwithnoCEVwillrequireveryhigh
waterflow.ThereforthisclaimwillbeverifiedusingonlythesmallestofthefourCEVsusedin
thetests.SpecificperformanceclaimislistedinTable2‐2.
Table 2-2
Specific performance claims by the proposer on flow reduction compared to no CEV installed in well.
CEV model
Orifice diameter (Ø)
Flow reduction factor at Hdesign
(mm)
CEV1.4l/[email protected]–100%
DiametercorrespondingtoCEV
4.25
1.4l/[email protected]–100%outlet
10
Verification Report Mosbaek
3 Evaluation
DetaileddescriptionsofthetestdesignandtestresultsarefoundintheTestPlan(AppendixC)
andTestReport(AppendixD).
3.1
Calculation of verification parameters performance
DetailedinformationonhowtocalculatetheverificationparametersareincludedintheSpecific
VerificationProtocolinAppendixB.
3.2
Evaluation of test quality
3.2.1
Control data
TestsystemcontrolincludedleakagetestandforCEV1.4l/s@H=1.00m–100%investigationof
thevariationwasincludedfortestscarriedoutwithidenticalinletflows.Thevariationwasmin‐
imalandfarlessthan10%,whichmeans‐accordingtotheVerificationProtocol(AppendixB),
section5.1.4‐thattriplicatetestswerenotneededfortheremainingCEVs.
Testperformanceauditincludedreviewofcalibrationcertificatesforpressuretransducersand
flowmeters.TheyarevalidandcanbefoundinAppendixtotheTestPlan(AppendixC).Inaddi‐
tioncalibrationtestswereperformedofpressuretransducersonbothinletandoutletside.
Theoutflowcouldnotbemeasureddirectlyduetoairandcirculationintheoutlet.Instead
measurementofheadintheoutlettankandoftheoverflowfromtheoutlettankwheremeas‐
ured.Thecalculationtwodifferentmethodswerelisted,seeAppendixBsection6.1Calculation
ofperformanceparameters.Method2wasexpectedtomostprecise,whilemethodshouldbe
usedforcontrol.Formethod1thetimeserieshadtobesubjectedtointensiveaveragingtoget
readableresults.Acomparisonbetweentheresultsobtainedbymeansofmethod1andmethod
2foroneofthemodeltestshasbeenperformed.TheresultsareshownintheAppendixDofthe
TestReport(AppendixDtothisreport).Itappearsthatthereis,apartfromthefluctuations,a
goodagreementbetweenthetwomethods.However,sincethequalityoftheresultswithmeth‐
od2wasveryreliableand,whiletheresultsobtainedbymeansofmethod1aresubjecttolarge
fluctuations,itwaschosentousemethod2only.
3.2.2
Audits
Duringtestingandinternaltest,asystemauditwasperformedbyJesperFuchsfromDHIon29
September2014.TheverificationbodyETADenmark,representedbyPeterFritzel,performeda
testsystemauditon2October2014.
Conclusionsoftheinternalaudit(JesperFuchs):
“Thetestisperformedinaccordancewiththetestplanandcarriedoutinasafemanner.Han‐
dlingandstorageofdataissafe”.
ConclusionsoftheauditbyETADenmark(PeterFritzel):
“Thereisconsistencywiththetestplanandhandlingofmeasurementsiscarriedoutinasafe
manner”.
ThefullauditreportscanbefoundinAppendixE.
Verification Report Mosbaek
11
3.2.3
Deviations
Therewerefourdeviationstothetestplan.ThedescriptionofthesecanbefoundinfullinAp‐
pendixCoftheTestReportincludedasAppendixEtothisreport.Asummaryofthedeviations
isasfollows:
1.
Insteadofestablishingthezerolevelintheinlettankforeachtest,acommonzeroscan
wasperformedforeachCEVtype.Thiszeroscanwascarriedoutasanindividualtest
insteadofanintegratedpartofeachtest.
2.
ThelowestinflowinthetestswithCEV1.4l/[email protected]‐
flow,1.79l/sinsteadof1.9l/s.Withgoodaccuracytheinletflow,whichwillresultina
waterlevelriseof0.5mm/s,canbefoundbyinterpolation.Suchinterpolationshows
thataninflowofapproximately2.8l/swillresultinawaterlevelriseof0.5mm/s.The
correspondingQbumpwouldbeapproximately1.28l/s(seeFigure3.8inTestReport
(AppendixE)).
3.
Forall100%CEVsthelargestinflowsgavelargerwaterlevelrisethan1.5mm/s,which
wasthelargestwaterlevelrisetobetestedandapredefinedoperationalparameter.
Duringthetestattemptwasmadetocomecloseto1.5mm/s,butduetothecharacter
ofthecurve,withtherapidbump,itwasdifficultinadvancetoestimatethewaterlevel
rise.Withgoodaccuracytheinletflows,whichwillresultinawaterlevelriseof
1.5mm/s,canbefoundbyinterpolation.Doingthisisitnicetohaveameasuredvalues
ofwaterlevelriseisabove1.5mm/s.Interpolationsshowfor:
4.
•
CEV1.4l/[email protected]
ofapproximately6.1l/s.ThecorrespondingQbumpwouldbeapproximately
1.44l/s(seeFigure3.8intheTestReport(AppendixE))
•
CEV4.9l/[email protected]
ofapproximately9.2l/s.ThecorrespondingQbumpwouldbeapproximately
4.93l/s(seeFigure3.12inTestReport(AppendixE))
•
CEV10.5l/[email protected]‐
flowofapproximately13.9l/s.ThecorrespondingQbumpwouldbeapproxi‐
mately10.4l/s(seeFigure3.16inTestReport(AppendixE))
Thetestwiththeorificewascarriedoutwithalargerinflowthanpredefined.Thiswas
done,astheQ–Hrelationforanorificeisindependentofthewaterlevelincrease,
whichalsoisdocumentedbycomparingwiththetheoreticalrelation,seeFigure3.23in
theTestReport(AppendixE).
3.3
Verification results
3.3.1
Performance parameters
Theverifiedperformanceforthetwoparametersislistedbelow.Theresultsaretransferreddi‐
rectlyfromtheTestReport(AppendixE).
3.3.2
Flow at Hbump and Hdesign
SpecificperformanceforeachofthefourselectedCEVsislistedinTable3‐1andTable3‐2.
Table 3-1
Verified performance on Qbump. +) Be aware that the results of Qbump are uniquely influenced by Qinflow, see
later.*) For this flow the water level rise was only 0.19 mm/s, while the operational requirement was >0.5
mm/s, this is an explanation for the deviation from the expected.
CEV model
12
Inflow in test
Qbump
Deviation from model
(l/s)
(l/s)
characteristics (%)
Verification Report Mosbaek
Mean+
Range
CEV1.4l/[email protected]–100%
1.79to6.31
1.34
1.22*–1.45
CEV4.9l/[email protected]–100%
5.89to9.99
4.74
4.50–5.04
‐4.3(‐13*–3.6)
‐3.3(‐8.2–2.9)
CEV10.5l/[email protected]–78%
8.60to12.97
8.17
7.57–8.74
‐0.2(‐7.6–6.7)
CEV10.5l/[email protected]–100%
11.32to15.24
10.18
9.75–10.67
‐3.0(‐7.1–1.6)
Table 3-2
Verified performance on Qdesign. *) based on two tests only.
CEV model
Inflow in test
Qdesign
Deviation from model
(l/s)
(l/s)
characteristics (%)
Mean
Range
CEV1.4l/[email protected]–100%
1.79to6.31
1.43
1.42–1.45
2.1(1.4–3.6)
CEV4.9l/[email protected]–100%
5.89to9.99
4.78
4‐76–4.80
‐2.4(‐2.9–(‐2.0))
CEV10.5l/[email protected]–78%
8.60to12.97
10.11
10.09–10.12*
‐3.7(‐3.9–(‐3.6))
CEV10.5l/[email protected]–100%
11.32to15.24
10.56
10.55–10.56
0.6(0.5–0.6)
13.72
6.36
N/A
N/A
Orifice
PleasebeawarethatthereisauniqueinfluenceofQbumbbyQinflow,seeFigure3‐1.
12
Qbump (l/s)
10
8
CEV 1.4 ‐ 100 %
6
CEV 4.9 ‐ 100 %
CEV 10.5 ‐ 78 %
4
CEV 10.5 ‐ 100 %
2
0
0
5
10
15
20
Qinflow (l/s)
Figure 3-1
3.3.3
Correlation between Qinflow and Qbump given for all tested CEVs.
Flow reduction at Hdesign
PerformancecomparedtoawellwithnoflowregulatorislistedinTable3‐3.
Table 3-3
Verified performance on flow reduction compared to no CEV installed in well.
CEV model
Orifice diameter (Ø)
Flow reduction factor at Hdesign
(mm)
CEV1.4l/[email protected]–100%
DiametercorrespondingtoCEV
4.45
1.4l/[email protected]–100%outlet
MosbaekCEV1.4l/[email protected]‐100%isverifiedtoreducetheflowbyafactorof4.45atQdesign.
3.3.4
Operational parameters
Duringoperationthefollowingparametersweremeasured:
Verification Report Mosbaek
13

Inflow(l/s)

Waterlevel/pressureinregulatorwell(mH2O/Pa)

Waterlevel/pressureintheoutlettank(mH2O/Pa)

Outletfromtheoutlettank(l/s)
ThesedatahavecreatedcurvesshownintheTestReport,section3Testresults(AppendixE).
Duringthetesttheaveragewaterlevelmustbewithin0.5and1.5mm/s,sincethisiscommon
valuesinrunoffsystems.
3.3.5
Additional parameters
3.3.5.1
User manual
Theverificationcriterionfortheusermanualisthatthemanualdescribestheuseoftheequip‐
mentadequatelyandisunderstandableforthetypicaltestcoordinatorandtesttechnician.This
criterionwasbasedonanumberofspecificpointsofimportance,seeTable3‐4fortheparame‐
terstobeincluded.
Adescriptioniscompleteifallessentialstepsaredescribed,iftheyareillustratedbyafigureor
aphoto,whererelevant,andifthedescriptionsareunderstandablewithoutreferencetoother
guidance.
Mosbaekhasprovided:

CentrifugalvalveCE/Vwetmounted(Generalinformation)

InstallationInstruction.MosbaekFlowRegulators.TypeCEV‐KPS–Sealing

MaintenanceandInspectionInstructions.MosbaekFlowRegulators.TypeCEV‐KPS–
Sealing
Table 3-4
Evaluation of user manual.
Parameter
Product
Principleofoperation
Intendeduse
Performanceexpected
Limitations
Preparations
Unpacking
Transport
Assembly
Installation
Functiontest
Operation
Stepsofoperation
Pointsofcaution
Accessories
Maintenance
Troubleshooting
Safety
Chemicals
Power
14
Complete
description
Summary
description
No description
Not relevant
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
Verification Report Mosbaek
3.3.5.2
Required resources
Thecapitalinvestmentandtheresourcesforoperationandmaintenancecouldbeseenasthe
sustainabilityoftheproductandwillbeitemizedbaseduponadetermineddesign[3],seeTable
3‐5fortheitemsthatwillbeincluded.
ThedesignbasisconsistsofoneinstalledCEVinanexistingwell.Allcostitemsrelevantforthe
MosbaekCEVsarelisted.Notethattheactualcostforeachitemisnotcompiledandreported.
Verification Report Mosbaek
15
Table 3-5
List of capital cost items and operation and maintenance cost items per product unit.
Item type
Capital
Sitepreparation
Buildingsandland
Equipment
Utilityconnections
Installation
Startup/training
Permits
Operationandmaintenance
Materials,includingchemicals
Utilities,includingwaterandenergy
Labor
Wastemanagement
Permitcompliance
Item
Number/duration
None
None
TheCEVandmountingfromMosbaek
Tighteningmaterialandbolts
Rainwatersewersystemandwells
Tobeinstalledbysewercontractor
None
None
None
Regularinspectionanddrainageof
sump/sandcatcher
Sump/sand
None
1
1
1day
1day
AsforotherwellswithnoCEV
Evaluationofthefollowingsubjectshasbeenperformedbasedoninformationgainedfrom
Mosbaek:
• Resourcesusedduringproductionoftheequipmentinthetechnology
TheCEVandtheirmountingareproducedfromstainlesssteel,grade1.4404/316L.
Forthetestedproductsincl.mountingtheweightsare:
CEV1.4l/[email protected]%:5.9kg
CEV4.9l/[email protected]%:11.5kg
CEV10.5l/[email protected]%:21.5kg
CEV10.5l/[email protected]%:25.1kg
80%ofthesteelontheworldmarketisreusedmaterial.Themainpartofthesteelin
DenmarkisimportedfromotherEuropeancountries,whiletherestismainlyfrom
Taiwan,IndiaandChina.Dependingonthedistancethefreightisbyshiporbytruck.
FortheEuropeanmarkedthetransportismainlybytruck.Mosbaekpurchasessteel
fromDanishdistributorssuchas:DacapoStainless,Lemvigh‐Müller,SanistålandDam‐
stahl.
Theaverageenergyconsumptionforthefinalproductis4.1kWh/kg.
•
Longevityoftheequipment
Theregulatorsaredesignedtolastaslongastheothercomponentsinasewagesystem,
approx.50years.Aregulatorwillnotneedtobereplacedunlessinspectionshowscon‐
siderablewearandtear.
•
Robustness/vulnerabilitytochangingconditionsofuseormaintenance
Theregulatorisrobusttochangesintemperatureandenvironment.Asteeperslopeon
thecharacteristiccurvegivesrobustnesstowardschangesinpressurehead.Largerori‐
ficeopening,comparedtoothercompetingsolutions,giverobustnesswithrespectto
clogging.Maintenanceschemeshouldbeadjustedaccordingtochangesincondition
concerningthequalityofthewater.Maintenanceisavisualcheckoftheconditionofthe
regulatorandtoremovesignsofclogging.
16
Verification Report Mosbaek
Reusability,recyclability(fullyorpartly)andendoflifedecommissioninganddisposal
•
Aregulatorcanbereusedinanotherlocationwithsimilarconditionsoradjustedtofit
otherconditions.Ifreuseisnotpossible,theregulatorcanbesoldasscrapandmolten
intonewsteel.Itis100%isrecyclable.
3.3.5.3
Occupational health and environmental impact
Therisksforoccupationalhealthandfortheenvironmentassociatedwiththeuseoftheprod‐
uctswillbeidentified.Alistofchemicalsclassifiedastoxic(T)orverytoxic(Tx)forhuman
healthand/orenvironmentallyhazardous(N)(inaccordancewiththedirectiveonclassification
ofdangeroussubstances[4])willbecompiled.Thetighteningmaterialusedforinstallationis
chosenbythesewercontractor.Themainlyusedmaterialissealanttapeorwaterproofsilicone,
whicharebothunclassified.
Alloperationsinwellsaresubjecttosafetyrisk,andstandardsafetyprecautionshavetobetak‐
enaccordingly.
3.4
Recommendation for the Statement of Verification
3.4.1
Technology description
Thetechnologyverifiedistheverticalcentrifugalflowregulator,CEV(CEntrifugalVertical)from
Mosbaek.Theflowregulatortechnologyforextremerainfalleventsisbasedonquicklyreaching
themaximumdischargeflow,whereitcreatesavortexmakingitstayatorbelowthisdischarge
flowwhiletheremainingwaterisstoredinthewell.AschematicviewoftheCEVwithinflowin
thebottomisshowninFigure3‐2a.
Figure 3-2
A) Sketch of CEV flow regulator installed in well. B) Graphic showing the general vortex brake effect on
water outflow, with CEVs operating at 78% and 100% efficiency and water inflow to well larger than
outflow though CEV (well is filling up). Both provided by Mosbaek.
Figure3‐2bshowstheflowthroughaCEV.Witha100%model,themaximumoutlet(Qdesign)is
mettwice,firstwherethevortexisformed(thebumponthegraph)andthenatthespecified
Hdesign,whereHdesigniscalculatedfromtheinvertofthedischargepipetothemaximumwater
levelinthewell.A78%modelisalsoshown;herethebumpoccursataflowof78%ofQdesign.
MosbaekhasselectedfourmodelstorepresenttheirCEV‐series.Themodelsare;
Verification Report Mosbaek

CEV1.4l/[email protected]–100%

CEV4.9l/[email protected]–100%

CEV10.5l/[email protected]–78%
17

CEV10.5l/[email protected]–100%
3.4.2
Application
3.4.2.1
Matrix
TheCEVisinstalledbeforethecombinedsystem(withstormwaterandwastewater)andisre‐
strictingstormwaterinflowtothecombinedsystem.Theverificationcoversstormwater.
3.4.2.2
Purpose
Thepurposeofthetechnologyistostorestormwateratappropriateplacesbeforeenteringthe
pipingsystemduringstormwaterevents.TheCEVisinstalledinwellsandbasinsdependingon
thepipingnetwork.
3.4.2.3
Conditions of operation and use
Maintenanceisneededregularlyasavisualcheckoftheconditionoftheregulatorandtore‐
movesignsofclogging.
3.4.2.4
Verification parameters definition summary
Twotypesofparametershavebeenverified:
3.4.3
1.
Outflow(l/s)atHbumpandHdesign
2.
FlowreductionatHdesign
Test and analysis design
Thetestwasdesignedforthisverification.Noexistingdatahavebeenincluded.
3.4.3.1
Laboratory or field conditions
Thetestwasperformedatatestset‐upatMosbaek’spremisesinKoege,Denmark,seeFigure
3‐3.
ThefigureissuggestedtobeanappendixtotheStatementofVerification.
18
Verification Report Mosbaek
Figure 3-3
Sketch of test set-up.
Theset‐upconsistsofawell(regulatorwell)placedonabase;theCEVregulatorismountedin
thiswell.Theregulatorwellisindirectconnectionwithalargediametertank(inlettank),
throughapipe,positionedjustoppositetheCEVoutlet.Thewaterlevelsintheregulatorwell
andtheinlettankareaccordinglyidentical.Thisset‐upisestablishedinordertosecurethatthe
Verification Report Mosbaek
19
increaseofthewaterlevelintheregulatorwellcanbecontrolledandlimitedstillwithareason‐
ablehighflowratetothewell.TheoutletconnectiongoesthroughtheCEVintheregulatorwell
totheoutlettank.Apressuretransducerismountedinthebaseoftheregulatorwell.Onthe
baseoftheregulatorwell,aPlexiglasriserismountedinordertofollowthewaterlevelinthe
wellduringtesting.
Theflowtotheinlettankisfedatthetopofthetankthroughapipeplacedinternallyinthetank
bymeansofapump,whichispumpingwaterfromafeedingtank.Theflowfromthefeeding
tanktotheinlettankismeasuredbymeansoftheflowmeter.Thewaterlevelinthefeeding
tankiskeptconstantbypumpingwaterfromacentralreservoirtothefeedingtank;anoverflow
weirensuresthatthewaterlevelinthistankiskeptalmostconstant.Inthisway,itispossible
tokeepanalmostconstantpressureheadatthepumpandthusanalmostconstantflow.
Fromtheregulatorwell,thewaterflowsthroughtheCEVtotheoutlettank.Theoutlettankhas
apressuretransducermonitoringthewaterlevelinthistank.Theoutletflowfromtheoutlet
tankismeasuredbymeansofaflowmeter.
3.4.3.2
Matrix composition
Theusedwaterisfromanoutdoorreservoir.
3.4.3.3
Test and analysis parameters
Thefollowingtest‐runswereperformed.
CEV model
Flow 1
Flow 2
Flow 3
Flow 4
Flow 4’
Flow 4’’
CEV1.4l/[email protected]–100%
1.79
3.12
4.80
6.31
6.18
6.25
CEV4.9l/[email protected]–100%
5.89
6.52
8.20
9.99
CEV10.5l/[email protected]–78%
8.60
9.77
11.40
12.97
CEV10.5l/[email protected]–100%
11.32
12.07
13.75
15.24
Orifice
13.72
TestsoftheperformanceatHbumpandHdesignaremarkedinlightorange.
TestoftheflowreductionatHdesignisdonebycomparingtheresultsfromthehatchedtestruns.
TherepetitionofCEV1.4l/[email protected]–100%(darkbluemarking)isdonetoseeifthereismore
than10%variationbetweenrunswiththesameflow.Therewasverylimitedvariation;there‐
foretherepetitionwasnotdoneforothertestruns.
3.4.3.4
Test and analysis methods summary
TheinflowandoutflowfromtheCEVwasmeasuredbytheuseofflowmetersandpressure
transducersasdescribedabove.
3.4.3.5
Parameters measured
 Inflow(l/s)

Waterlevel/pressureinregulatorwell(mH2O/Pa)

Waterlevel/pressureintheoutlettank(mH2O/Pa)

Outletfromtheoutlettank(l/s)
OutflowfromCEViscalculatedbyusingthefollowingequation:
20
∆
1000
∆
Verification Report Mosbaek
Qoutflow:FlowoutofCEV(l/s)
Qoverflow:Overflowfromtheoutlettank(l/s)
Aout:Surfaceareaintheoutlettank+riser(m2)
Hout:Pressureheadintheoutlettank(mH2O)
Δt:TimeforchangingHoutwithΔHout(s)
3.4.4
Verification results
3.4.4.1
Performance parameters
TheresultsoftheverificationwithregardstoflowatHbump(Qbump)andatHdesign(Qdesign)are
listedinthetable.
Basedontheresultsfromatestwith1.4l/[email protected]‐100%andacorrespondingorifice,itcan
bestatedthatMosbaekCEVsareverifiedtoreducetheflowbyafactorof4.45atQdesign.
CEV model
Qbump
Qdesign
Mean and range
Deviation from
Mean and range
Deviation from
(l/s)
model charac-
(l/s)
model character-
1.34(1.22*–1.45)
‐4.3(‐13*–3.6)
1.43(1.42–1.45)
2.1(1.4–3.6)
4.78(4.76–4.80)
‐2.4(‐2.9–(‐2.0))
+
teristics (%)
CEV1.4l/[email protected]–100%
istics (%)
CEV4.9l/[email protected]–100%
4.74(4.50–5.04)
‐3.3(‐8.2–2.9)
CEV10.5l/[email protected]–78%
8.17(7.57–8.74)
‐0.2(‐7.6–6.7)
10.11(10.09–10.12)# ‐3.7(‐3.9–(‐3.6))
CEV10.5l/[email protected]–100%
10.18(9.75–10.67)
‐3.0(‐7.1–1.6)
10.56(10.55–10.56)
0.6(0.5–0.6)
N/A
N/A
6.36
N/A
Orifice
+)
Be aware that the results of Qbump are uniquely influenced by Qinflow
*) For this flow the water level rise was only 0.19 mm/s, while the operational requirement was >0.5 mm/s, this is an
explanation for the deviation from the expected.
#)
3.4.4.2
Based on two tests only.
Operational parameters
Noadditionaloperationalparametersthantheperformanceparametersweremeasured.
ThissubchapterwillthereforenotbeincludedintheStatementofVerification.
3.4.4.3
Environmental parameters
Noadditionalenvironmentalparametersthantheperformanceparametersweremeasured.
ThissubchapterwillthereforenotbeincludedintheStatementofVerification.
3.4.4.4
Additional parameters
Theusermanualandotherdescriptionsweredescribedascomplete.
ApplicationoftheCEVdoesnotgiverisetoanyspecialriskorcontacttohazardoussubstances.
Thoughinstallationinthewellissubjecttosafetyriskasalloperationsinwells,andstandard
safetyprecautionsthereforehavetobetakenaccordingly.
TheCEVsareproducedofstainlesssteel.Today80%ofthestainlesssteelonthemarkedisre‐
cycled.ItisimportedfromEuropeandcertainplacesinAsia.ThetestedCEVscontainfrom6‐25
kgstainlesssteel,and4.1kWh/kgsteelisusedintheproduction.TheCEVsarereusableor100
%recyclable.Theyhavealifetimeof50years.TheaboveinformationisobtainedfromMosbaek
A/S.
Verification Report Mosbaek
21
3.4.5
Additional information
TheCEVisdesignedtobeeffectivewithinaflowrangeuntilacertainamountofwaterisstored
intheconnectedwellorbasin.Thismeansthatifastormwatereventexceedsthedesigncrite‐
ria,thewellorbasinwheretheCEVislocatedwillfloatover.Thissituationisnotincludedinthe
verification.
TheCEVisdesignedwiththelargestpossibleopeningatthegivenhydraulicsituation.TheCEV
ismostofteninstalledasdetachableandifrequired,obstaclescanberemovedinthisway.Atlo‐
cationswithmanyobstaclesinthewater,theCEVcanbeequippedwithagrid.Alltestsarecar‐
riedoutwithwaterwithoutobstacles.
Industrialwastewaterandbackwater(backwardsflowthroughtheCEV)arenotincluded,nor
arerapidchangesinheadandflow.Suchchangesmayoccurinspecialsituations(e.g.ifpumps
arestartedorstopped).
Characteristicsobtainedfromtheexperimentsareonly100%validforapplicationswhichhave
fullgeometricsimilaritywiththesetupdefinedinFigure3‐2a.Forapplicationswithgeometries
whichdifferfromthisfigure,theactualcharacteristiccandeviatefromthecharacteristicfound
fromtheverificationexperiment.
3.4.6
Quality assurance and deviations
Priortotestingwasperformedleakagetestandreviewofcalibrationcertificatesforpressure
transducersandflowmeters.Inaddition,calibrationtestsofpressuretransducerswereper‐
formedonbothinletandoutletside.Duringtesting,internalandexternaltestsystemaudits
wereperformedbyDHIandETADanmark.
22
Verification Report Mosbaek
4
Quality assurance
Thepersonnelandexpertsresponsibleforqualityassuranceaswellasthedifferentqualityas‐
surancetaskscanbeseeninTable4‐1.AllrelevantreviewsarepreparedusingtheDANETVre‐
viewreporttemplate[5].Auditduringtestinghasbeenperformed.
Table 4-1
QA plan for the verification
Internal expert
Initials
Verification body
Proposer
External experts
TL/IW
MJK
MTA
PF
Mosbaek
Review
Reviewandapprove
Review
Testplan
Review
Approve
Reviewandapprove
Testsystemattestsite
Audit
Testreport
Review
Review
Review
Review
Review
Acceptance
Review
Tasks
Specificverificationprotocol
Verificationreport
StatementofVerification
InternalreviewwasconductedbyMortenJustKjølby(MJK)andatestsystemauditwascon‐
ductedfollowinggeneralauditproceduresbycertifiedauditorPeterFritzel(PF).
OnlytheverificationprotocolandverificationreportrequireexternalreviewaccordingtoEU
ETVpilotprogrammeGVP[1].Fortheverificationprotocol,externalreviewwasperformedby
TorbenLarsen(TL),whiletheverificationreportandStatementofVerificationhavebeenre‐
viewedbyIanWalker(IW).
Theverificationbodyhasreviewedandapprovedthetestplanandreviewedthetestreport.The
reviewswereperformedbyMetteTjenerAndersson(MTA),whiletheapprovalwasgivenby
PeterFritzel(PF).
Verification Report Mosbaek
23
24
Verification Report Mosbaek
5
References
1.
EUEnvironmentalTechnologyVerificationpilotprogramme.GeneralVerificationProtocol.
Version1.1–July7th,2014.
ETADanmark.ETV–Verifikation.I30.11,EnvironmentalTechnologyVerification.20‐11‐2013.
Gavaskar,A.andCumming,L.:CostEvaluationStrategiesforTechnologiesTestedunderthe
EnvironmentalTechnologyVerificationProgram.2001.Battelle.
EuropeanCommission:CommissionDirectiveonclassification,packagingandlabellingof
dangeroussubstances.2001/59/EC.2001.
DANETVTestCentreQualityManual,2013.08.13
2.
3.
4.
5.
Verification Report Mosbaek
25
26
Verification Report Mosbaek
A P P E N D I C E S
Verification Report Mosbaek
Verification Report Mosbaek
A P P E N D I X
A
Terms and definitions
Verification Report Mosbaek
Verification Report Mosbaek
ThetermsanddefinitionsusedbytheverificationbodyarederivedfromtheEUETVGeneralVerification
Protocol,ISO9001andISO17020.
Term
DANETV
Comments on the DANETV approach
Accreditation
MeaningasassignedtoitbyRegulation(EC)No
ECNo765/2008isonsettingouttherequire‐
765/2008
mentsforaccreditationandmarketsurveil‐
lancerelatingtothemarketingofproducts
Othereffectsthatwillbedescribedbutare
None
Additionalparameter
consideredsecondary
Amendment
Isachangetoaspecificverificationprotocolor
None
atestplandonebeforetheverificationortest
stepisperformed
Application
DANETV
Theuseofaproductspecifiedwithrespectto
Theapplicationmustbedefinedwithapreci‐
matrix,purpose(targetandeffect)andlimita‐
tions
sionthatallowstheuserofaproductverifica‐
Danishcentreforverificationofenvironmental
None
tiontojudgewhetherhisneedsarecomparable
totheverificationconditions
technologies
Deviation
Isachangetoaspecificverificationprotocolor
None
atestplandoneduringtheverificationortest
stepperformance
Evaluation
Evaluationoftestdataforatechnologyproduct
None
forperformanceanddataquality
Experts
Independentpersonsqualifiedonatechnology
Theseexpertsmaybetechnicalexperts,QA
inverification
expertsforotherETVsystemsorregulatory
experts
Generalverificationprotocol
Descriptionoftheprinciplesandgeneralpro‐
None
(GVP)
ceduretobefollowedbytheEUETVpilotpro‐
grammewhenverifyinganindividualenvi‐
ronmentaltechnology.
Matrix
Operationalparameter
Thetypeofmaterialthatthetechnologyis
Matricescouldbesoil,drinkingwater,ground
intendedfor
water,degreasingbath,exhaustgascondensate
etc.
Measurableparametersthatdefinetheapplica‐
None
tionandtheverificationandtestconditions.
Operationalparameterscouldbeproduction
capacity,concentrationsofnon‐targetcom‐
poundsinmatrixetc.
(Initial)performanceclaim
Proposerclaimedtechnicalspecificationsof
Theproposerclaimsshallbeincludedinthe
product.Shallstatetheconditionsofuseunder
ETVproposal.Theinitialclaimscanbedevel‐
opedaspartofthequickscan.
whichtheclaimisapplicableandmentionany
relevantassumptionmade
Verification Report Mosbaek
A-1
Term
DANETV
Comments on the DANETV approach
Performanceparameters(re‐
Asetofquantifiedtechnicalspecificationsrep‐
Theperformanceparametersmustbeestab‐
visedperformanceclaims)
resentativeofthetechnicalperformanceand
lishedconsideringtheapplication(s)ofthe
potentialenvironmentalimpactsofatechnolo‐
product,therequirementsofsociety(legisla‐
gyinaspecifiedapplicationandunderspeci‐
tiveregulations),customers(needs)andpro‐
poserinitialperformanceclaims
fiedconditionsoftestingoruse(operational
parameters).
Procedure
Proposer
Detaileddescriptionoftheuseofastandardor
Theprocedurespecifiesimplementingastand‐
amethodwithinonebody
ardoramethodintermsofe.g.:equipment
used
Anylegalentityornatural,whichcanbethe
Canbevendororproducer
technologymanufactureroranauthorised
representativeofthetechnologymanufacturer.
Ifthetechnologymanufacturesconcerned
agree,theproposercanbeanotherstakeholder
undertakingaspecificverificationprogramme
involvingseveraltechnologies.
Purpose
(Specific)verificationprotocol
Themeasurablepropertythatisaffectedbythe
Thepurposecouldbereductionofnitratecon‐
productandhowitisaffected.
centration,separationofvolatileorganiccom‐
pounds,reductionofenergyuse(MW/kg)etc.
Protocoldescribingthespecificverificationofa
None
technologyasdevelopedapplyingtheprinci‐
plesandproceduresoftheEUGVPandthe
qualitymanualoftheverificationbody.
Standard
Genericdocumentestablishedbyconsensus
None
andapprovedbyarecognisedstandardization
bodythatprovidesrules,guidelinesorcharac‐
teristicsfortestsoranalysis
Test/testing
Determinationoftheperformanceofaproduct
None
formeasurement/parametersdefinedforthe
application
Testperformanceaudit
Quantitativeevaluationofameasurementsys‐
E.g.evaluationoflaboratorycontroldatafor
temasusedinaspecifictest.
relevantperiod(precisionunderrepeatability
conditions,trueness),evaluationofdatafrom
laboratoryparticipationinproficiencytestand
controlofcalibrationofonlinemeasurement
devises.
Testsystemaudit
Testsystemcontrol
Qualitativeon‐siteevaluationoftest,sampling
E.g.evaluationofthetestingdoneagainstthe
and/ormeasurementsystemsassociatedwith
aspecifictest.
requirementsofthespecificverificationproto‐
Controlofthetestsystemasusedinaspecific
E.g.testofstocksolutions,evaluationofstabil‐
test.
ityofoperationaland/oron‐lineanalytical
col,thetestplanandthequalitymanualofthe
testbody.
equipment,testofblanksandreferencetech‐
A-2
Verification Report Mosbaek
Term
DANETV
Comments on the DANETV approach
nologytests.
Verification
Provisionofobjectiveevidencethatthetech‐
None
nicaldesignofagivenenvironmentaltechnolo‐
gyensuresthefulfilmentofagivenperfor‐
manceclaiminaspecifiedapplication,taking
anymeasurementuncertaintyandrelevant
assumptionsintoconsideration.
Verification Report Mosbaek
A-3
A-4
Verification Report Mosbaek
A P P E N D I X
B
Specific Verification Protocol
Verification Report Mosbaek
Verification Report Mosbaek
A P P E N D I X
C
Test Plan
Verification Report Mosbaek
Verification Report Mosbaek
A P P E N D I X
D
Test Report
Verification Report Mosbaek
Verification Report Mosbaek
A P P E N D I X
E
Audit reports
Verification Report Mosbaek
Verification Report Mosbaek