Download 140128 学位論文表紙

Transcript
IL-1
Th17
(The mechanism of Th17 cell development induced
by excess IL-1 signaling)
23
12
(Il1rn-/-)
IL-1
IL-17
Th17
TGF-β
IL-6
Il1rn-/-
IL-6
Il1rn-/-Il6-/IL-6
naïve CD4+T
Il6-/-
naïve T
Th17
TCR
TGF-β IL-1
TGF-β+IL-1+IL-21
Th17
IL-21
TGF+IL-21
TGF-β
IL-1
Th17
Th17
Th17
Th17
IL-1
IL-1
TGF-β
TGF-β
Foxp3
Th17
IL-6
IL-1
IL-1
Nfkbiz
IL-6
Batf
Th17
Th17
2
IL-21
Abstract
IL-1 receptor antagonist-deficient (Il1rn-/-) mice spontaneously develop autoimmune
arthritis and that IL-17 is crucial for the onset of the disease. Although many studies have
shown that the Th17 cell differentiation is dependent on TGF-β and IL-6, we found that IL-6
deficiency does not affect the development of arthritis in Il1rn-/- mice at all. In vivo, Th17
cells developed normally in Il1rn-/-Il6-/- mice. To elucidate the mechanisms of IL-6
independent Th17 cell differentiation, we purified naïve CD4+ T cells from Il6-/- mice and
cultured with TCR stimulation, TGF-β, IL-1 and/or IL-21. We found that naïve CD4+ cells
efficiently differentiated into Th17 cells when cultured with TGF-β, IL-21 and IL-1 than the
combination of TGF-β and IL-21, however, these cells did not differentiate with TGF-β and
IL-1. In addition, IL-1 maintained Th17 lineage synergistically with TGF-β. Interestingly, we
found that IL-1 inhibited TGF-β-induced Foxp3 expression to promote Th17 cell
differentiation in a proliferation, IL-6 and IL-21 independent manner. Furthermore, IL-1
augments Th17 transcription factors expression such as Nfkbiz and Batf. These results
indicate that IL-1 plays an important role in the Th17 cell differentiation in an IL-6
independent manner.
3
1-1
2-3
1-2
5-8
1-3
9-17
1-4
18-27
1-5
28-37
1-6
38
39-41
42-51
1-7
52-76
4
(McInnes and Schett, 2007)
(McInnes and Schett, 2007) IL-6
IL-6
CIA
HTLV-1 transgenic (Tg)
SKG
(Figure 0-1a)(Ishihara et al., 2004; Iwakura et al., 2008)
IL-6R
(Figure 0-1b) (Jones et al.,
2010; Nishimoto et al., 2009)
IL-1
(Il1rn-/- mouse)
IL-1
IL-1Ra
(Horai et al., 2000)( Figure 0-2a b)
IL-1
CIA HTLV-I Tg
Figure 0-1a
SKG
K/BxN
(Iwakura et al., 2008)
IL-1
IL-1Ra
2002; Furst, 2004)
Th17
IL-1
(Cohen et al.,
IL-1
IL-17
et al., 2009)(Figure 0-3) Th17
IL-6
CD4+
CIA
5
T
(Korn
EAE (experimental autoimmune
encephalomyelitis)
(Iwakura et al., 2011)
IL-17
Th17
(Genovese et al., 2010; Hueber et al., 2010)
naïve T
TGF β IL-6
2007) TGF β
Foxp3
IL-21
(Figure 0-3)(Zhou et al.,
Th17
retinoic
acid receptor-related orphan receptor (ROR)-γt
Zhou et al., 2008) IL-6 IL-21 IL-23
IL-17
STAT3
RORγt
RORγt
(Ichiyama et al., 2008;
(Figure 0-4) STAT3
IL-17
IRF-4
IL-17
(Hirahara et al., 2010) STAT3
Nfkbiz Hif1a Ahr
Th17
(Figure 0-4) (Dang et al., 2011; Kimura et al., 2008;
Okamoto et al., 2010) STAT3
CD4+T
Th17
IL-21
STAT3
IL-23R
Th17
(Durant et al., 2010; Zhou and Littman, 2009)
IL-23
Th17
IL-17A IL-17F IL-22
IL-1β
IL-17
IL-1
PKCθ
T
IL-17
al., 2009; Sutton et al., 2006; Yang et al., 2008a)
(Chung et al., 2009)
IL-1
(Kryczek et al., 2007) IL-6
IL-1R1
mTOR
PI3K NF-κB
IL-2
IL-6
IRF-4
Th17
SIGIRR
Th17
6
(Korn et
IL-1R
(Gulen et al., 2010)
Foxp3
IL-1
Th17
T(Treg)
IRF-4
Blimp-1
IL-10
CTLA-4
ICOS GITR
Treg
(Cretney et al., 2011; de Lafaille and Lafaille,
2009)
Foxp3+T Induced Foxp3+ Treg:iTreg
(de Lafaille and
Lafaille, 2009) TCR
IL-2 TGF-β
Th17
Foxp3
TGF β
TGF-β
Foxp3
IL-6
Foxp3
RORγt
IL-21
Treg
RORγt
RORγt
IL-23
Th17
Foxp3
Th17
RORγt
(Ahern et al., 2010; Ichiyama et
al., 2008; Zhou et al., 2008)(Figure 0-5)
Th17
Treg
(Bettelli et al., 2006)
(Figure 0-2 and Figure 0-3)
Foxp3
RORγt
IL-17
Il1rn-/-
IL-6
Il1rn-/-Il6-/-
IL-6
/
Il1rn-/-Il6-/-
Il1rn-/-
IL-1
IL-6
IL-1
IL-1
IL-6
IL-6
Th17
Th17
Th17
Th17
IL-1
TGF-β
7
Foxp3
Th17
Th17
IL-6
IL-1
8
Il1rn-/- (Il1rntm1Yiw)
Il1ab-/- (Il1atm1Yiw/Il1btm1Yiw)
(Horai et al., 1998; Horai et al., 2000) Il1rn-/-Il6-/(Il6tm1Kopf M. Kopf
Il1rn-/-
Il6-/-
)(Kopf et al., 1994)
Il1r1-/-
Immunex Corporation
Rag2-/-
(Glaccum et al., 1997)
(Shinkai et al., 1992)
8
BALB/cA (
Il1rn-/-
)
Il1rn-/-Il6-/MyD88-/- (MyD88tm1Aki)
C57BL/6J
(Adachi et al., 1998)
C57BL/6J (Nihon SLC; Shizuoka, Japan)
BALB/cA (CLEA Japan, Inc.)
SPF (specific pathogen-free
conditions)
10% FBS RPMI1640:
50 U/ml penicillin
invitrogen
)
50 mM 2-mercaptoethanol (GIBCO;
50 µg/ml streptomycin
10% FBS (w/v)
RPMI1640 (nakarai tesque; Kyoto, Japan)
9
10% FBS RPMI1640
FBS
Hemolysis Buffer: 1.4 M NH4Cl
T
Th17
0.45 mm
Tris-HCl (pH7.2)
170 mM
17mM Tris-HCl (pH7.2)
mM NH4Cl
140
Hemolysis Buffer
MACS Buffer:
(
)
g
1L
5
0.45 µm
MACS Buffer
FACS Buffer: HBSS (Hanks' Balanced Salt Solutions) (Nissui, Tokyo)
FBS 0.1% NaN3(Nakarai tesque, Tokyo)
2%
FACS Buffer
anti-CD3
anti-CD3(clone 145-2C11;
)
48 well/ Flat Bottom (Asahi glass)
PBS
anti-IL-4
37
PBS
4
2
anti-IFN-γ
anti-IL-4
(clone 11B11)
anti-IFN-γ
11B11
(clone R4-6A2)
CeLLine
BD Biosciences
Freund’s Incomplete Adjuvant
0.5 ml
BALB/cA-nu/nu
10
PIERCE Biotechnology
R4-6A2
1
106 cells/
mouse
1~2
1
37
2000rpm
Cleanascite BIOTECH SUPPORT GROUP
0.45 µm
11B11 R4-6A2
HiTrap Protein G
GE Healthcare
Slide-A-Lyzer 10,000 MWCO Dialysis Cassette PIERCE; Thermo Fisher
Scientific
PBS
BCA
Protein Assay Reagent
PIERCE; Thermo Fisher Scientific
CD4+
Il6-/-
10% FBS RPMI1640
cm
3.5
(FALCON; BECTON DICKINSON)
(on ice)
108 µm
1300 rpm
MACS
Buffer
MACS Buffer
Micro beads
CD4
(Miltenyi Biotec GmbH; Bergisch, German)
15
Auto MACS possel program (Miltenyi Biotec GmbH; Bergisch, German)
CD4+
anti-CD3
5
105 cells
(clone 145-2C11)
GLASS; Tokyo, Japan)
San Jose, CA, USA)
500 µl/48well
4 µg/ml
48well/ Flat Bottom (ASAHI
anti-CD28
(1 µg/ml) (clone 37.51; Biolegend;
10 µg/ml anti-IFN-γ (clone R4-6A2) 10 µg/ml anti-IL-4 (clone
X-VIVOTM 20 (Lonza; Basel, Switzerland)
11B11)
CD4+
5
37
/5% CO2
10 ng/ml rmIL-1α (PeproTech; Rocky Hill,
NJ, USA) 10 ng/ml rmIL-1β (PeproTech)
11
naïve T
T
Naive CD4+ T
Il1rn-/-
BALB/cA BALB/cA
Il6-/-
Il1rn-/-Il6-/-
Il1ab-/- C57BL/6J
/
MyD88+/-
MyD88-/-
1300 rpm
Hemolysis Buffer (1~2 ml)
5
10% FBS RPMI1640
MACS Buffer
anti-mouse B220
anti-mouse CD8α anti-mouse CD11b
Biosciences; San Jose, CA, USA)
BlueTM-
anti-mouse DX5 anti-mouse Ter119
PE-Cy7
anti-mouse CD4 (Biolegend)
anti-mouse CD62L (Biolegend) PE
San Diego, CA, USA)
4
Micro beads
(BD
anti-mouse CD25
20
Pacific
(eBioscience,
MACS Buffer
anti-Biotin
4
15
deplete program
AutoMACS (Miltenyi Biotec GmbH)
selection
negative
FACS Aria(BD bioscience)
CD4+CD62L+CD25-
naïve T
FACS Aria
FACS
naïve T
X-VIVOTM 20 (Lonza)
naïve CD4+ T
4
µg/ml anti-CD3 (clone 145-2C11) 1 µg/ml anti-CD28 (clone 37.51; Biolegend)
96 well Flat Bottom(FALCON; BECTON DICKINSON
well
11B11)
(PeproTech)
)
10 µg/ml anti-IFN-γ (clone R4-6A2)
2x105 cells 250 µl/
10 µg/ml anti-IL-4 (clone
3 ng/ml CHO cell derived rhTGF-β1 (PeproTech), 40 ng/ml rmIL-6
10 ng/ml rmIL-1α (PeproTech)
12
10 ng/ml rmIL-1β (PeproTech)
100 ng/ml
rmIL-21 (PeproTech)
Laboratories
10 ng/ml rmIL-23(R&D systems)
)
50 ng/ml Rapamycin (LC
IL-21R Subunit/Fc Chimera
R&D systems (Minneapolis, MN, USA)
CFSE
T
(1x106 to 1x107 cells/ml)
5 µM CFSE (5- and
6-carboxyfluorescein diacetate succinimidyl ester; invitrogen; Carlsbad , CA, USA) / PBS
6
37
8x105
/ml
FACS
CantoIITM (BD Biosciences)
FlowJo software (TreeStar;
Ashland, OR, USA)
50 ng/ml PMA (Sigma) 500 ng/ml
ionomycin (Sigma) 2 µM monensin (Sigma) 37
5% CO2
anti-FcγRII/III receptor mAb (2.4G2)
5
4
10
2 µg/ml 7AAD (Sigma)
FACS Buffer
4% paraformaldehyde 200 µl
20
permeabilization buffer (0.1% saponin containing FACS
solution)
2
2
FACS Buffer
40
70 µm
13
/4
FACSCalibur™
FACSCantII
APC-
anti-CD4 (BD Bioscience)
PE-Cy7-
(eBiosciece) APC-Cy7PE-
anti-CD4 (Biolegend)
anti-B220 (Biolegend) FITC-
FITC-
anti-TCRβ (Biolegend)
anti-IL-1R1 (Biolegend)
Pacific Blue-
: FITC or PE or
anti-IFN-γ (Biolegend), FITC or APC or Pacific Blue-
(Biolegend), APC or PE(eBioscience)
anti-CD8a
anti-Foxp3 (BD Biosciences), APC-
Foxp3
anti-IL-17
RORγ(t)
Foxp3 staining Kit (eBioscience)
STAT3
Pacific Blue-
BD phosflow Technology
STAT3 (pY705)
(BD bioscience
)
PBS
1.5 cm
PBS
EDTA/10% FCS RPMI 20 ml
20
37
5 mM
50 ml
(
)
1~2
cm
5 mM EDTA/10% FCS RPMI 20 ml
EDTA
PBS
50 ml
20
10% FCS/2 mg/ml Collagenase/ 5 ml RPMI
37
Collagenase
Collagenase
15 ml
200 µm
1300 rpm 5
14
45%
GE healthcare
1:9
10% FBS RPMI1640
20
r.t
10xPBS
2200 rpm
10% FBS RPMI1640
2
lamina proprial lymphocytes; LPL
PMA/ionomycin
CD4+CD45RBhiCD25BALB/c
Il1r1-/-
BALB/c
Il17a-/CD4+CD45RBhiCD25-
naïve T
FACS Aria
2
2x106 cells/ml PBS
(BALB/c
200 µl
PBS
(4x105 cells/mouse) Rag2-/-
)
MCM
4% (w/v)
(Nissui; Tokyo, Japan)
2 ml
0.5 % EDTA
PBS
10 % FBS RPMI1640
Japana
4%
none treated 10
5x106 cells/ml
37
3
PBS
glass)
15
5% CO2
Asahi glass, Tokyo,
4
(Asahi
5x105 cells/ml
24 well-plate (Asahi glass)
10% FBS RPMI1640
1 ml
2
LPS 5 µg/ml Zymosan 50 µg/ml
2
MCM
LPS (Escherichia coli O55:B5)
cerevisiae )
T
Zymosan A (Saccharomyces
SIGMA (St Louis, MO, USA)
Real-Time RT-PCR
RNA
GenEluteTM Mammalian Total RNA Miniprep Kit (Sigma)
RNA
the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Inc.; CA, USA)
real-time RT PCRs
SYBER® Premix Ex TaqTM (TaKaRa; Shiga, Japan)
iCyclerTM System (Bio-Rad; Hercules,
CA, USA)
50
3:00
95
2:00
(95
0:15
60
1:00)x44
70
89.2
0.5
:
Gapdh 5’-TTCACCACCATGGAGAAGGC-3’ 5’-GGCATGGACTGTGGTCATGA-3’
Foxp3 5’-AGAAGCTGGGAGCTATGCAG-3’ 5’-TACTGGTGGCTACGATGCAG-3’;
Il17a 5’-CTCCAGAAGGCCCTCAGACTAC-3’ 5’-GGGTCTTCATTGCGGTGG-3’
Rorc 5’-AGCAGTGTAATGTGGCCTAC-3’ 5’-GCACTTCTGCATGTAGACTG-3’
Il1r1 5’-ACCTTCCCACAGCGGCTCCACATT-3’
5’-TTGTCAAGAAGCAGAGGTTTACAG-3’
Gata3 5’-CTTATCAAGCCCAAGCGAAG-3’ 5’-CATTAGCGTTCCTCCTCCAG-3’
Tbx21 5’-GGTGTCTGGGAAGCTGAGAG-3’ 5’-CCACATCCACAAACATCCTG-3’
16
Il21 5’-GCCAGATCGCCTCCTGATTA-3’ 5’-CATGCTCACAGTGCCCCTTT-3’
Il22 5’-TGACGACCAGAACATCCAGA-3’ 5’-AGCTTCTTCTCGCTCAGACG-3’
Batf 5’-CCAGAAGAGCCGACAGAGAC-3’ 5’-GAGCTGCGTTCTGTTTCTCC-3’
Nfkbiz 5’-CCTCCGATTTCTCCTCCACT-3’ 5’-GTTCTTCACGCGAACACCTT-3’
1
4
0;
1;
2;
t-
3;
P<0.05
17
Il1rn-/-
IL-6
Th17
Il1rn-/IL-1β IL-6
IL-17
TNF-α
Il1rn-/-
(Horai et al., 2004; Nakae et al., 2003)
Il1rn-/-Il6-/-
IL-6
Il1rn-/-Il6-/-
Il1rn-/-
(Figure 1a)
Il1rn-/-
IL-6
B220+
CD4
Il1rn-/-Il6-/-
CD8+
Il1rn-/-
(Figure 2) Il1rn-/-Il6-/CD4+
Th17
Th17
Il1rn-/-
Il1rn-/-
(Figure 1b 3)
Th17
IL-6
IL-1
IL-6
Il1rn-/-Il6-/IL-6
Th17
Th17
IL-1
Th17
Il6-/-
Th17
Il1rn-/-Il6-/-
CD4+
Il6-/-
IL-1
IL-1
IL-6
(Figure 4) (Kryczek et al., 2007)
18
CD4+IL-17+
in vitro
CD4+
IL-6
IL-21
TGF-β
Il1rn-/-Il6-/-
Th17
IL-6
Th17
IL-21
Il1rn-/- Il6-/- Il1rn-/-Il6-/IL-21 mRNA
Il1rn-/-
PCR
Il1rn-/-Il6-/-
Il6-/-
Il21
(Figure 5)
IL-1
IL-21
IL-1
IL-21
Th17
naïve CD4+ T
T
in vitro
naïve T
(CD4+CD62LhiCD25-
Th17
IL-1
CD4
/TGF-β
TGF-β+IL-6
/IL-1+TGF-β
TGF-β+IL-21
Th17
Th17
Th17
(Figure 6a c Figure 7)
Th17
IL-1
IL-17
Figure 6c
naïve CD4+ T
naïve CD4+
Th17
T
IL-1R1
FACS
IL-6
IL-1
IL-22
IL-21
IL-1
)
naïve T
PCR
IL-1R1
IL-21
IL-1R1
(Figure 6b c Figure 8)
Th17
IL-1
IL-6
IL-21
IL-1R1
naïve T
Th17
Th17
19
IL-1R
IL-1
Th17
in vitro
Th17
Th1
TGF-β
(Lee et al., 2009)
IL-1
IL-17
IFN-γ
IL-17A
IL-17F
Th17
Th17
(Chung et al., 2009)
Th17
IL-1
TGF-β+IL-21
round
naïve T
2nd
5
10
3rd round
(Lee et al., 2009) TGF-β
TGF-β
IL-1
(Figure 9)
IL-1
IL-1
TGF-β
Th17
IL-17
Th17
IL-21
IL-1
TGF-β
Th17
IL-17
IL-17
exogenous
Th17
IL-17
Th17
Th17
IL-1
Th17
TGF-β+IL-21
naïve T
Th17
IL-1
naïve T
IL-1
IL-1
IL-6
IL-6
IL-1
IL-17A
Th17
IL-6
IL-22
20
mRNA
Th17
T
(Figure 10a)
IL-1
IL-21
IL-1
Th17
Rorc
IL-1
IL-1
Foxp3
Nfkbiz
Batf
Foxp3
(Figure 10b)
Foxp3
IL-1
Foxp3
Th17
Th
IL-1
T
Tbx21
Th1 Th2 Th17 Treg
Figure 9
Gata3 Rorc
Il17a
TGF-β
Gata3
Rorc Foxp3
mRNA
2nd round
IL-1
Tbx21
IL-1
IL-1
Foxp3
(Figure 10c)
IL-1
Foxp3
FACS
Foxp3
(Figure 10d)
Foxp3
IL-1
IL-1
MyD88
naïve T
CD3
MyD88+/-
FACS
Th17
CD28
(TGF-β+IL-21)
TGF-β IL-1
2
MyD88
(Figure 10e)
IL-1
IL-1
MyD88
Th17
IL-17+
Foxp3
Foxp3
21
Foxp3
Foxp3
Foxp3
IL-1R1
(Figure 11)
Th17
4
FACS
T
MyD88-/-
IL-1
IL-1
T
(Sims and Smith, 2010)
IL-1
Foxp3-
Foxp3+
Foxp3
naïve T
Th17
IL-1
Foxp3
MFI
PE-
TGF-β/IL-1/IL-21
T
TGF-β/IL-21
Foxp3+
(Figure 12a b)
TGF-β
iTreg
96
Foxp3
Foxp3
CFSE
TGF-β+IL-21 TGF-β+IL-1+IL-21 TGF-β+IL-6
IL-1
Foxp3
IL-1
Foxp3
IL-1
Foxp3
IL-1
Foxp3
IL-6
(Figure 12c)
IL-21
et al., 2007)
IL-6
STAT3
IL-1
IL-21
Foxp3
Foxp3
(Huehn et al., 2009; Wei
IL-6
IL-6
naïve T
IL-1
(Figure 13a)
TGF-β+IL-21
IL-21R-Fc
Foxp3
IL-21
IL-6
Th17
Foxp3
IL-1
Foxp3-
IL-1
T
IL-21
22
IL-17
IL-1
Il6-/- naïve T
IL-21
IL-6
(Figure 13b)
IL-21
autocrine
IL-21
IL-1
Foxp3
IL-1
IL-21R-Fc (20 µg/ml)
(Figure 13c)
Foxp3
IL-21R-Fc
Foxp3
IL-21
STAT3(pY705)
IL-1
STAT3
IL-21R-Fc
STAT3
IL-21R-Fc
Foxp3
IL-1
IL-21
IL-21
IL-1
STAT3
Foxp3
(Figure 13d)
IL-1
Foxp3
IL-6
IL-21
IL-1
T
IL-6
IL-6
Foxp3
IL-1Ra IL-1
IL-1
Foxp3
(Horai et al., 2004; Li and He, 2006;
Il6-/-
Van Kooten et al., 1991)
CD4+T
T
Il1rn-/-Il6-/-
Th17
(TGF-β+IL-21)
anti-CD3/anti-CD28/IL-1
2
Foxp3
Foxp3
TGF-β
Foxp3
Il6-/-
TGF β
naïve T
Foxp3+
Th17
FACS
23
Il1ab-/IL-1
IL-6
IL-1
Il1ab-/-
IL-17
Il1rn-/-Il6-/-
Figure 13e
Foxp3
naïve
4
IL-1
Foxp3
IL-21
Il1ab-/-
Il1ab-/-
naïve T
T
IL-6
Figure 14
IL-1Ra
Th17
T
IL-1
IL-1
IL-6 IL-21
Foxp3
IL-6 IL-1
Foxp3
Th17
IL-1
IL-21
IL-21
Foxp3
IL-1
IL-21
IL-1
IL-21
/
IL-21
Il6-/-naïve T
TCR
IL-21R-Fc
IL-1
TGF-β/IL-21
2nd round
2nd round
24
mRNA
Real time PCR
Rorc
Il21
IL-1
IL-21
15
IL-1
Figure
IL-21
Foxp3 Batf Il17 Il22
IL-21
IL-1
Foxp3
IL-1
IL-21
IL-21
Nfkbiz
IL-1
Nfkbiz
IL-1
IL-21
IL-1R1
IL-21
IL-1
IL-21
IL-1R1
Th17
IL-1R1
24
IL-1
IL-1Ra
IL-21
Th17
Th17
Th17
IL-6
IL-6
Th17
(Ivanov et al., 2006)
Il1rn-/-
(Abdollahi-Roodsaz et al., 2008)
Il1rn-/-
Il1rn-/-Il6-/-
Th17
Il1rn-/Th1
Il6-/-
Il1rn-/-Il6-/-
Treg
Il6-/-
Th17
Th17
(Figure 16)
Il1rn-/-
Th17
Th17
Treg
IL-6
IL-1Ra
in vivo
In vivo
Il1rn-/-
Treg
IL-1
IL-1
Th17
Th17
Il1r1-/- CD4+CD45RBhiCD25CD4+CD45RBhiCD25-
Th17
iTreg
iTreg
Rag2-/Rag2-/-
naïve T
25
Th17
Foxp3+
iTreg
(Ahern et al., 2010)
の Il17a-/-
CD4+CD45RBhiCD25-
Il1r1-/-
CD4+CD45RBhiCD25-
(Figure
Il1r1-/-
17a)
(Figure 17b)
mesenteric lymph nodes
Th1
Th1 Th17 Treg
Treg
Th17
Figure 17c
Th17
T
IL-17
IL-1
IL-1
IL-6
Th17
LPS
zymosan
Il6-/-MCM
(MCM)
LPS
CD4+
Th17
Il1rn-/-
TLR4
(Abdollahi-Roodsaz et al., 2008)
zymosan
Th17
(LeibundGut-Landmann et al., 2007; Veldhoen et al., 2006)
CD3 CD28 IL-4 IFN-γ
MCM
Il6-/-
FACS
(Figure 18a)
CD4+
Th17
MCM
LPL
zymosan
Il1rn-/-Il6-/-
Th17
MCM
Il6-/-
Il6-/-
MCM
Th17
IL-1
IL 6
naïve T
26
TGF β
Th17
Il6-/-
MCM
naïve T
Th17
Il6-/-
(Figure 18b)
Th17
MCM
Th17
Foxp3
Th17
Th17
IL-6
27
HTLV-1 Tg
SKG
CIA
IL-6
human TNF-α Tg
(CAIA)
T
IL-6
(Iwakura et al., 2008)
IL-6
IL-17
IL-6
in vivo
in vitro
Il1rn-/-
Th17
IL-17
Il1rn-/-Il6-/-
T
Il1rn-/Il1rn-/-Il6-/-
(Horai et al., 2004; Nakajima et al., 2010)
Th17
Il1rn-/-
IL-6
IL-1
Foxp3
TGF-β
IL-1
Th17
Th17
Th17
Th17
Th17
IL-1
β
TGF
Th17
IL-6
1; IL-1R
IL-21
IL-1R1
naïve T
IL-1
Foxp3
naïve T
TGF β+IL-21
naïve T
Il1rn-/-
naïve T
IL-1R1
IL-21
Il1rn-/IL-1
IL-6
IL-21
IL-6
T
STAT3
28
IL-1Ra
IL-21
IL-1R1
IL-1R1
(Chung et al., 2009) IL-21
IL-21
IL-1R1
TGF β
STAT3
IL-1R1
IL-21
mRNA
CD4
FACS
IL-21
(data not shown)
CD4+
IL-21
CD4+
IL-21
NKT
CD4+Th17
CD4 Tfh
CD4+
(Monteleone et al., 2008)
IL-21
IL-21
IL-6
IL-12
IL-21
(Nakayamada et al., 2011; Schmitt et al., 2009)
IL-21
al., 2012)
(Puga et
IL-21
(Bubier et al.,
2009; Spolski and Leonard, 2010)
Th17
Th17
IL-1
IL-21
IL-1R1
IL-1
(Figure 6)
IL-17
IL-1R1
STAT3
IL-1R1
IL-1R1
Th17
IL-1
Nfkbiz
IL-1R1
29
Batf
IL-1R1
2; Foxp3
Th17
IL-6
STAT3
STAT3
IL-17
TGF β
Th17
RORγt
Th17
IL-21
IL-6
Foxp3
TGF β
et al., 2007)
IL-1
IL-6
IL-6
(Yang et al., 2008b)
(Korn
Th17
IL-1
IL-1
IL-1
T
RORα
Th17
IL-21
Foxp3
Foxp3
Th17
STAT3
IL-21
IL-6
Foxp3
IL-6
IL-21R-Fc
IL-21
IL-1
IL-21R-Fc
IL-21
IL-21
IL-21
IL-1
IL-21R-Fc
IL-21R-Fc
Fc
IL-6
IL-21
Foxp3
IL-1
Foxp3
IL-21
Foxp3
IL-1
Foxp3+
Foxp3
IL-1α/β
IL-6
Foxp3-
Foxp3
IL-1
Foxp3
Foxp3 EGFP
IL-1
Foxp3
30
IL-2
Th17
IL-1
(Huehn et al., 2009) IL-2
Th17
STAT5
Foxp3
IL-1
(Huehn et al., 2009)
IL-2
Foxp3
IL-1
Akt-mTOR
mTOR
(Delgoffe et al., 2011)
Smad2
IL-1
Smad7
Foxp3
TGF βR2
TGF β
(Bauge et al., 2007; Ishida et al., 2006)
IL-1
Foxp3
Rapamycin
mTOR
Foxp3+
Figure 19
IL-1
Foxp3
mTOR
MFI
IL-1
IL-1
Foxp3
IL-1
Foxp3
Foxp3
(Huehn et al., 2009)
IL-1
Nfkbiz
IL-1
Foxp3
Batf
Th17
Il17a
Il22
IL-6
IL-1
IL-21
Th17
(Chung et al., 2009; Guo et al., 2009)
Th17
IL-1
TGF-β
Th17
(Lee et al., 2009) ILStriteski et al.
31
TGF-β
Th17
IL-1
IL-23
Th17
(Stritesky et al., 2008)
IL-1
Th17
Th17
IL-1R1
Rag2-/-
naïve T
Th17
in vivo
Foxp3
(Figure 17)
IL-1
Th17
Foxp3+
Foxp3+
iTreg
Il1r1-/-
Foxp3+
T
IL-1
IL-6
IL-21
nTreg
Foxp3
IL-17
IL-1
IL-17
2008b)
Foxp3
(Chung et al., 2009; Yang et al.,
IL-1
Foxp3
Foxp3
IL-1
nTreg
naïve T
IL-1
IL-6
Foxp3+
iTreg
Th17
Foxp3+
Foxp3
IL-1R1
Foxp3+
Th17
IL-21
Th17
IL-1R1
Foxp3+
nTreg
Foxp3
(de Lafaille and Lafaille, 2009)
Foxp3
IL-1
32
Foxp3
T
(Zhou et al., 2009)
3; Il1rn-/-
IL-6
TNF-α
(Tak and Kalden, 2011)
al., 2009)
IL-1
IL-6R
(Jones et al., 2010; Nishimoto et
(Cohen et al., 2002; Furst, 2004)
IL-17
(Genovese et al., 2010; Hueber et al., 2010)
anti-IL-6R
anti-IL-6R
30%
Il1rn-/-
(Jones et al., 2010)
IL-6
Il1rn-/-
IL-6
IL-17
(Nakajima et al., 2010)
psoriatic arthritis
(Ramonda et al., 2011)
(Ramonda et al., 2011) Il1rn-/(Alexander et al., 2012)
IL-6
IL-17
IL-1
33
Il1rn-/TNF-α
4;
4-1; Il1rn-/Il1rn-/-
Il1rn-/Il1rn-/-
B
B
B
IL-21
anti-CD20
B
B
Il1rn-/-
IL-21
Th17
IL-21
Il1rn-/-
Il1rn-/-
Autoimmune disease
Auto inflammatory disease
(Dinarello, 2009) Human
IL-1Ra
Auto inflammatory disease
(Aksentijevich et al., 2009; Reddy et al., 2009) Auto inflammatory disease
TCR
Il1rn-/)/Rag2-/-
TCR Tg
Il1rn-/-Rag2-/-DO11.10 Tg
IL-6
MHC ClassII
F759
TCR
(Murakami et
al., 2011)
IL-17
DO11.10 (OVA
γδT
Il1rn-/34
Il1rn-/-
(unpublished observation)
T
4-2; IL-1
Th17
IL-1R1
IL-23R
Th17
IL-23R
(McGeachy et al., 2009)
IL-23
IL-7R
et al., 2010)
(Liu
Th17
γδ+T
IL-1R1
CD4+
unpublished observation
IL-23R
naïve T
IL-23
IL-23
IL-1R
IL-1R1
IL-1
IL-1R1
IL-1
IL-1
IL-1
Th17
Akt-mTOR
MAPK
NF-κB
IL-17
NF-kB
IL-17
c-Rel
(Ruan et al., 2011)
c-Rel
Rel-A
IL-17
Rel-A
35
IL-17
αβ+T
IL-17
(Powolny-Budnicka et al., 2011)
4-3; IL-6
IL-1
Th17
IL-6
Th17
al., 2011)
IL-1
IL-6
IL-1
IL-21
(Hu et
Th17
IL-6
IL-1
Th17
(Figure 18b)
IL-6
Th17
IL-6
Th17
(Manel et al., 2008)
Th17
Th17
Il1rn-/-
IL-23
IL-23
(Cho et al., 2006)
IL-6
Th17
IL-23
Th17
4 4; STAT3
STAT3
IL-6/IL-21/IL-23
Th17
STAT3
Th17
STAT3
IL-21
IL-6
Th17
Th17
(figure 6)
Th17
STAT
36
IL-21
2005)
STAT5
STAT3
STAT1 5
STAT3
(Yang et al., 2011) L-6
(Leonard and Spolski,
STAT3
IL-21
Th17
Th17
LIF(Leukemia inhibitory factor)
IL-6
IL-27
gp130
STAT3
(Batten et al., 2006; Cao et al., 2011; Stumhofer et al., 2006)
LIF
STAT3
ERK
IL-27
IL-27
IL-1
IL-1
SOCS3
STAT1
SOCS3
STAT1
STAT3
Th17
STAT3
Th17
IL-6
IL-1
Foxp3
IL-1
Th17
(Figure 20)
37
(Il1rn-/-)
IL-1
IL-1
Th17
Il1rn-/-
IL-6
Il1rn-/-Il6-/-
Il1rn-/-
IL-6
Il1rn-/-Il6-/-
Th17
IL-6
Th17
IL-1
IL-6
naïve CD4+T
Th17
Il6-/-
TCR
naïve T
TGF-β IL-1+IL-21
Th17
TGF-β
TGF-β
Nfkbiz
Batf
IL-1
Th17
naïve T
IL-1R1
Th17
Th17
IL-1
Th17
Th17
IL-21
Rag2-/-
IL-1
IL-1
Th17
Foxp3
IL-6
IL-21
TGF+IL-21
TGF-β
IL-1
IL-1
TGF-β IL-1
Th17
38
naïve T
(Abbreviations)
7AAD; 7-Amino-ActinomycinD
APC; Allophycocyanin
Ahr; Aryl Hydrocarbon Receptor
Batf; Basic leucine zipper transcription factor
Blimp-1; B lymphocyte induced maturation protein 1
CFSE; Carboxyfluorescein succinimidyl ester
CIA; collagen-induced arthritis
CTLA-4; Cytotoxic T-Lymphocyte Antigen 4
EDTA; ethylenediaminetetraacetic acid
FACS; Fluorescence-activated cell sorting
FBS; Fetal Bovine Serum
FITC; fluorescein isothiocyanate
Foxp3; the forkhead box P3
GATA3; GATA-binding protein 3
GITR; Glucocorticoid-induced TNF-receptor
HTLV; Human T-lymphotropic Virus
Hif1a; Hypoxia-inducible factor 1, alpha subunit
ICOS; inducible T-cell co-stimulator
IL-1RI; type I IL-1R
IL-1Ra; IL-1 receptor antagonist
IL; Interleukin
IRF4; Interferon regulatory factor 4
39
LIF; Leukemia inhibitory factor
LPL; lamina proprial lymphocytes
LPS; Lipopolysaccharide
MAPK; mitogen-actiated protein kinase
MCM; Macrophage conditioned media
MFI; Mean Fluorescent Intensity
MHC; major histocompatibility complex
Myd88; myeloid differentiation factor 88
NF-kB; nuclear factor kappa-light-chain-enhancer of activated B cells
Nfkbiz; NF-kappa-B inhibitor zeta
OVA; ovalbumin
PBS; Phosphate buffered saline
PE; Phycoerythrin
PI3K; Phosphoinositide 3-kinase
PKCθ; Protein kinase C θ
PMA; Phorbol 12-Myristate 13-acetate
R; receptor
RA; rheumatoid arthritis
ROR-γt; retinoic acid receptor-related orphan receptor
Rag2; recombination activating gene 2
Rorc; RORgamma
SIGIRR; Single Ig IL-1-related receptor
SPF; specific pathogen-free conditions
40
STAT; Signal Transduction and Activator of Transcription
T-bet; T box expressed in T cells
TCR; T cell receptor
TGF; transforming growth factor
Tg; transgenic
iTreg; induced regulatory T cell
mTOR; mammalian target of Rapamycin
rpm; rotation per minute
41
Abdollahi-Roodsaz, S., L.A.B. Joosten, M.I. Koenders, I. Devesa, M.F. Roelofs, T.
Radstake,
M.
Heuvelmans-Jacobs,
S.
Akira,
M.J.H.
Nicklin,
F.
Ribeiro-Dias, and W.B. Van den Berg. 2008. Stimulation of TLR2 and
TLR4 differentially skews the balance of T cells in a mouse model of
arthritis. Journal of Clinical Investigation 118:205-216.
Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K.
Nakanishi, and S. Akira. 1998. Targeted disruption of the MyD88 gene
results in loss of IL-1- and IL-18-mediated function. Immunity 9:143-150.
Ahern, P.P., C. Schiering, S. Buonocore, M.J. McGeachy, D.J. Cua, K.J. Maloy,
and F. Powrie. 2010. Interleukin-23 Drives Intestinal Inflammation
through Direct Activity on T Cells. Immunity 33:279-288.
Aksentijevich, I., S.L. Masters, P.J. Ferguson, P. Dancey, J. Frenkel, A. van
Royen-Kerkhoff, R. Laxer, U. Tedgard, E.W. Cowen, T.-H. Pham, M. Booty,
J.D. Estes, N.G. Sandler, N. Plass, D.L. Stone, M.L. Turner, S. Hill, J.A.
Butman, R. Schneider, P. Babyn, H.I. El-Shanti, E. Pope, K. Barron, X.
Bing, A. Laurence, C.-C.R. Lee, D. Chapelle, G.I. Clarke, K. Ohson, M.
Nicholson, M. Gadina, B. Yang, B.D. Korman, P.K. Gregersen, P.M. van
Hagen, A.E. Hak, M. Huizing, P. Rahman, D.C. Douek, E.F. Remmers, D.L.
Kastner, and R. Goldbach-Mansky. 2009. An Autoinflammatory Disease
with Deficiency of the Interleukin-1-Receptor Antagonist. New England
Journal of Medicine 360:2426-2437.
Alexander, M.R., C.W. Moehle, J.L. Johnson, Z. Yang, J.K. Lee, C.L. Jackson, and
G.K. Owens. 2012. Genetic inactivation of IL-1 signaling enhances
atherosclerotic plaque instability and reduces outward vessel remodeling
in advanced atherosclerosis in mice. Journal of Clinical Investigation
122:70-79.
Batten, M., J. Li, S. Yi, N.M. Kljavin, D.M. Danilenko, S. Lucas, J. Lee, F.J. de
Sauvage, and N. Ghilardi. 2006. Interleukin 27 limits autoimmune
encephalomyelitis
by
suppressing
the
development
of
interleukin
17-producing T cells. Nature Immunology 7:929-936.
Bauge, C., F. Legendre, S. Leclercq, J.M. Efissalde, J.P. Pujol, P. Galera, and K.
Boumediene. 2007. Interleukin-1 beta impairment of transforming growth
factor beta 1 signaling by down-regulation of transforming growth factor
42
beta receptor type II and up-regulation of smad7 in human articular
Chondrocytes. Arthritis and Rheumatism 56:3020-3032.
Bettelli, E., Y.J. Carrier, W.D. Gao, T. Korn, T.B. Strom, M. Oukka, H.L. Weiner,
and V.K. Kuchroo. 2006. Reciprocal developmental pathways for the
generation of pathogenic effector T(H)17 and regulatory T cells. Nature
441:235-238.
Bubier, J.A., T.J. Sproule, O. Foreman, R. Spolski, D.J. Shaffer, H.C. Morse, III,
W.J. Leonard, and D.C. Roopenian. 2009. A critical role for IL-21 receptor
signaling in the pathogenesis of systemic lupus erythematosus in
BXSB-Yaa mice. Proceedings of the National Academy of Sciences of the
United States of America 106:1518-1523.
Cao, W., Y. Yang, Z. Wang, A. Liu, L. Fang, F. Wu, J. Hong, Y. Shi, S. Leung, C.
Dong, and J.Z. Zhang. 2011. Leukemia Inhibitory Factor Inhibits T Helper
17 Cell Differentiation and Confers Treatment Effects of Neural Progenitor
Cell Therapy in Autoimmune Disease. Immunity 35:273-284.
Cho, M.L., J.W. Kang, Y.M. Moon, H.J. Nam, J.Y. Jhun, S.B. Heo, H.T. Jin, S.Y.
Min, J.H. Ju, K.S. Park, Y.G. Cho, C.H. Yoon, S.H. Park, Y.C. Sung, and
H.Y. Kim. 2006. STAT3 and NF-kappa B signal pathway is required for
IL-23-mediated IL-17 production in spontaneous arthritis animal model
IL-1
receptor
antagonist-deficient
mice.
Journal
of
Immunology
176:5652-5661.
Chung, Y., S.H. Chang, G.J. Martinez, X.O. Yang, R. Nurieva, H.S. Kang, L. Ma,
S.S. Watowich, A.M. Jetten, Q. Tian, and C. Dong. 2009. Critical
Regulation of Early Th17 Cell Differentiation by Interleukin-1 Signaling.
Immunity 30:576-587.
Cohen, S., E. Hurd, J. Cush, M. Schiff, M.E. Weinblatt, L.W. Moreland, J. Kremer,
M.B. Bear, W.J. Rich, and D. McCabe. 2002. Treatment of rheumatoid
arthritis with anakinra, a recombinant human interleukin-1 receptor
antagonist,
in
twenty-four-week,
combination
with
multicenter,
methotrexate
-
Results
randomized,
of
a
double-blind,
placebo-controlled trial. Arthritis and Rheumatism 46:614-624.
Cretney, E., A. Xin, W. Shi, M. Minnich, F. Masson, M. Miasari, G.T. Belz, G.K.
Smyth, M. Busslinger, S.L. Nutt, and A. Kallies. 2011. The transcription
factors Blimp-1 and IRF4 jointly control the differentiation and function of
effector regulatory T cells. Nature Immunology 12:304-U353.
43
Dang, E.V., J. Barbi, H.-Y. Yang, D. Jinasena, H. Yu, Y. Zheng, Z. Bordman, J. Fu,
Y. Kim, H.-R. Yen, W. Luo, K. Zeller, L. Shimoda, S.L. Topalian, G.L.
Semenza, C.V. Dang, D.M. Pardoll, and F. Pan. 2011. Control of
T(H)17/T(reg) Balance by Hypoxia-Inducible Factor 1. Cell 146:772-784.
de Lafaille, M.A.C., and J.J. Lafaille. 2009. Natural and Adaptive Foxp3(+)
Regulatory T Cells: More of the Same or a Division of Labor? Immunity
30:626-635.
Delgoffe, G.M., K.N. Pollizzi, A.T. Waickman, E. Heikamp, D.J. Meyers, M.R.
Horton, B. Xiao, P.F. Worley, and J.D. Powell. 2011. The kinase mTOR
regulates the differentiation of helper T cells through the selective
activation of signaling by mTORC1 and mTORC2. Nature Immunology
12:295-U117.
Dinarello, C.A. 2009. Immunological and Inflammatory Functions of the
Interleukin-1 Family. Annual Review of Immunology 27:519-550.
Durant, L., W.T. Watford, H.L. Ramos, A. Laurence, G. Vahedi, L. Wei, H.
Takahashi, H.W. Sun, Y. Kanno, F. Powrie, and J.J. O'Shea. 2010. Diverse
Targets of the Transcription Factor STAT3 Contribute to T Cell
Pathogenicity and Homeostasis. Immunity 32:605-615.
Furst, D.E. 2004. Anakinra: Review of recombinant human interieukin-1 receptor
antagonist in the treatment of rheumatoid arthritis. Clinical Therapeutics
26:1960-1975.
Genovese, M.C., F. Van den Bosch, S.A. Roberson, S. Bojin, I.M. Biagini, P. Ryan,
and
J.
Sloan-Lancaster.
2010.
LY2439821,
a
Humanized
Anti-Interleukin-17 Monoclonal Antibody, in the Treatment of Patients
With Rheumatoid Arthritis A Phase I Randomized, Double-Blind,
Placebo-Controlled, Proof-of-Concept Study. Arthritis and Rheumatism
62:929-939.
Glaccum, M.B., K.L. Stocking, K. Charrier, J.L. Smith, C.R. Willis, C.
Maliszewski, D.J. Livingston, J.J. Peschon, and P.J. Morrissey. 1997.
Phenotypic and functional characterization of mice that lack the type I
receptor for IL-1. Journal of Immunology 159:3364-3371.
Gulen, M.F., Z.Z. Kang, K. Bulek, W. Youzhong, T.W. Kim, Y. Chen, C.Z.
Altuntas, K.S. Bak-Jensen, M.J. McGeachy, J.S. Do, H. Xiao, G.M. Delgoffe,
B.K. Min, J.D. Powell, V.K. Tuohy, D.J. Cua, and X.X. Li. 2010. The
Receptor SIGIRR Suppresses Th17 Cell Proliferation via Inhibition of the
44
Interleukin-1 Receptor Pathway and mTOR Kinase Activation. Immunity
32:54-66.
Guo, L.Y., G. Wei, J.F. Zhu, W. Liao, W.J. Leonard, K.J. Zhao, and W. Paul. 2009.
IL-1 family members and STAT activators induce cytokine production by
Th2, Th17, and Th1 cells. Proceedings of the National Academy of Sciences
of the United States of America 106:13463-13468.
Hirahara, K., K. Ghoreschi, A. Laurence, X.-P. Yang, Y. Kanno, and J.J. O'Shea.
2010. Signal transduction pathways and transcriptional regulation in
Th17 cell differentiation. Cytokine & Growth Factor Reviews 21:425-434.
Horai, R., M. Asano, K. Sudo, H. Kanuka, M. Suzuki, M. Nishihara, M.
Takahashi, and Y. Iwakura. 1998. Production of mice deficient in genes for
interleukin (IL)-1 alpha, IL-1 beta, IL-1 alpha/beta, and IL-1 receptor
antagonist shows that IL-1 beta is crucial in turpentine-induced fever
development and glucocorticoid secretion. Journal of Experimental
Medicine 187:1463-1475.
Horai, R., A. Nakajima, K. Habiro, M. Kotani, S. Nakae, T. Matsuki, A. Nambu, S.
Saijo, H. Kotaki, K. Sudo, A. Okahara, H. Tanioka, T. Ikuse, N. Ishii, P.L.
Schwartzberg, R. Abe, and Y. Iwakura. 2004. TNF-alpha is crucial for the
development of autoimmune arthritis in IL-1 receptor antagonist-deficient
mice. Journal of Clinical Investigation 114:1603-1611.
Horai, R., S. Saijo, M. Tanioka, S. Nakae, K. Sudo, A. Okahara, T. Ikuse, M.
Asano, and Y. Iwakura. 2000. Development of chronic inflammatory
arthropathy resembling rheumatoid arthritis in interleukin 1 receptor
antagonist-deficient mice. Journal of Experimental Medicine 191:313-320.
Hu, W., T.D. Troutman, R. Edukulla, and C. Pasare. 2011. Priming
Microenvironments Dictate Cytokine Requirements for T Helper 17 Cell
Lineage Commitment. Immunity 35:1010-1022.
Hueber, W., D.D. Patel, T. Dryja, A.M. Wright, I. Koroleva, G. Bruin, C. Antoni, Z.
Draelos, M.H. Gold, P. Durez, P.P. Tak, J.J. Gomez-Reino, C.S. Foster, R.Y.
Kim, C.M. Samson, N.S. Falk, D.S. Chu, D. Callanan, N. Quan Dong, K.
Rose, A. Haider, F. Di Padova, G. Psoriasis Study, G. Rheumatoid Arthrit
Study, and G. Uveitis Study. 2010. Effects of AIN457, a Fully Human
Antibody to Interleukin-17A, on Psoriasis, Rheumatoid Arthritis, and
Uveitis. Science Translational Medicine 2:
Huehn, J., J.K. Polansky, and A. Hamann. 2009. Epigenetic control of FOXP3
45
expression: the key to a stable regulatory T-cell lineage? Nature Reviews
Immunology 9:83-89.
Ichiyama, K., H. Yoshida, Y. Wakabayashi, T. Chinen, K. Saeki, M. Nakaya, G.
Takaesu, S. Hori, A. Yoshimura, and T. Kobayashi. 2008. Foxp3 inhibits
ROR gamma t-mediated IL-17A mRNA transcription through direct
interaction with ROR gamma t. Journal of Biological Chemistry
283:17003-17008.
Ishida, Y., T. Kondo, A. Kimura, K. Matsushima, and N. Mukaida. 2006. Absence
of IL-1 receptor antagonist impaired wound healing along with aberrant
NF-kappa B activation and a reciprocal suppression of TGF-beta signal
pathway. Journal of Immunology 176:5598-5606.
Ishihara, K., S. Sawa, H. Ikushima, S. Hirota, T. Atsumi, D. Kamimura, S.J. Park,
M. Murakami, Y. Kitamura, Y. Iwakura, and T. Hirano. 2004. The point
mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130
synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like
arthritis. International Immunology 16:455-465.
Ivanov, I.I., B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, D.J.
Cua, and D.R. Littman. 2006. The orphan nuclear receptor ROR gamma t
directs the differentiation program of proinflammatory IL-17(+) T helper
cells. Cell 126:1121-1133.
Iwakura, Y., H. Ishigame, S. Saijo, and S. Nakae. 2011. Functional Specialization
of Interleukin-17 Family Members. Immunity 34:149-162.
Iwakura, Y., S. Nakae, S. Saijo, and H. Ishigame. 2008. The roles of IL-17A in
inflammatory immune responses and host defense against pathogens.
Immunological Reviews 226:57-79.
Jones, G., A. Sebba, J. Gu, M.B. Lowenstein, A. Calvo, J.J. Gomez-Reino, D.A.
Siri, M. Tomsic, E. Alecock, T. Woodworth, and M.C. Genovese. 2010.
Comparison
of
tocilizumab
monotherapy
versus
methotrexate
monotherapy in patients with moderate to severe rheumatoid arthritis: the
AMBITION study. Annals of the Rheumatic Diseases 69:88-96.
Kimura, A., T. Naka, K. Nohara, Y. Fujii-Kuriyama, and T. Kishimoto. 2008. Aryl
hydrocarbon receptor regulates Stat1 activation and participates in the
development of Th17 cells. Proceedings of the National Academy of
Sciences of the United States of America 105:9721-9726.
Kopf, M., H. Baumann, G. Freer, M. Freudenberg, M. Lamers, T. Kishimoto, R.
46
Zinkernagel, H. Bluethmann, and G. Kohler. 1994. IMPAIRED IMMUNE
AND ACUTE-PHASE RESPONSES IN INTERLEUKIN-6-DEFICIENT
MICE. Nature 368:339-342.
Korn, T., E. Bettelli, W. Gao, A. Awasthi, A. Jager, T.B. Strom, M. Oukka, and
V.K. Kuchroo. 2007. IL-21 initiates an alternative pathway to induce
proinflammatory T(H)17 cells. Nature 448:484-U489.
Korn, T., E. Bettelli, M. Oukka, and V.K. Kuchroo. 2009. IL-17 and Th17 Cells.
Annual Review of Immunology 27:485-517.
Kryczek, I., S. Wei, L.H. Vatan, J. Escara-Wilke, W. Szeliga, E.T. Keller, and W.
Zou. 2007. Cutting edge: Opposite effects of IL-1 and IL-2 on the regulation
of IL-17(+) T cell pool IL-1 subverts IL-2-mediated suppression. Journal of
Immunology 179:1423-1426.
Lee, Y.K., H. Turner, C.L. Maynard, J.R. Oliver, D.Q. Chen, C.O. Elson, and C.T.
Weaver. 2009. Late Developmental Plasticity in the T Helper 17 Lineage.
Immunity 30:92-107.
LeibundGut-Landmann, S., O. Gross, M.J. Robinson, F. Osorio, E.C. Slack, S.V.
Tsoni, E. Schweighoffer, V. Tybulewicz, G.D. Brown, J. Ruland, and C.R.E.
Sousa. 2007. Syk- and CARD9-dependent coupling of innate immunity to
the induction of T helper cells that produce interleukin 17. Nature
Immunology 8:630-638.
Leonard, W.J., and R. Spolski. 2005. Interleukin-21: A modulator of lymphoid
proliferation, apoptosis and differentiation. Nature Reviews Immunology
5:688-698.
Li, T., and S.H. He. 2006. Induction of IL-6 release from human T cells by PAR-1
and PAR-2 agonists. Immunology and Cell Biology 84:461-466.
Liu, X.B., S. Leung, C.X. Wang, Z. Tan, J. Wang, T.B. Guo, L. Fang, Y.G. Zhao, B.
Wan, X. Qin, L.M. Lu, R.S. Li, H. Pan, M.J. Song, A.L. Liu, J. Hong, H.T.
Lu, and J.Z. Zhang. 2010. Crucial role of interleukin-7 in T helper type 17
survival and expansion in autoimmune disease. Nature Medicine
16:191-U197.
Manel, N., D. Unutmaz, and D.R. Littman. 2008. The differentiation of human
T-H-17 cells requires transforming growth factor-beta and induction of the
nuclear receptor ROR gamma t. Nature Immunology 9:641-649.
McGeachy, M.J., Y. Chen, C.M. Tato, A. Laurence, B. Joyce-Shaikh, W.M.
Blumenschein, T.K. McClanahan, J.J. O'Shea, and D.J. Cua. 2009. The
47
interleukin 23 receptor is essential for the terminal differentiation of
interleukin 17-producing effector T helper cells in vivo. Nature
Immunology 10:314-324.
McInnes, I.B., and G. Schett. 2007. Cytokines in the pathogenesis of rheumatoid
arthritis. Nature Reviews Immunology 7:429-442.
Monteleone, G., F. Pallone, and T.T. MacDonald. 2008. Interleukin-21: a critical
regulator of the balance between effector and regulatory T-cell responses.
Trends in Immunology 29:290-294.
Murakami, M., Y. Okuyama, H. Ogura, S. Asano, Y. Arima, M. Tsuruoka, M.
Harada, M. Kanamoto, Y. Sawa, Y. Iwakura, K. Takatsu, D. Kamimura,
and
T.
Hirano.
2011.
Local
microbleeding
facilitates
IL-6-
and
IL-17-dependent arthritis in the absence of tissue antigen recognition by
activated T cells. Journal of Experimental Medicine 208:103-114.
Nakae, S., S. Saijo, R. Horai, K. Sudo, S. Mori, and Y. Iwakura. 2003. IL-17
production from activated T cells is required for the spontaneous
development of destructive arthritis in mice deficient in IL-1 receptor
antagonist. Proceedings of the National Academy of Sciences of the United
States of America 100:5986-5990.
Nakajima, A., T. Matsuki, M. Komine, A. Asahina, R. Horai, S. Nakae, H.
Ishigame, S. Kakuta, S. Saijo, and Y. Iwakura. 2010. TNF, but Not IL-6
and IL-17, Is Crucial for the Development of T Cell-Independent
Psoriasis-Like Dermatitis in Il1rn(-/-) Mice. Journal of Immunology
185:1887-1893.
Nakayamada, S., Y. Kanno, H. Takahashi, D. Jankovic, K.T. Lu, T.A. Johnson,
H.-w. Sun, G. Vahedi, O. Hakim, R. Handon, P.L. Schwartzberg, G.L.
Hager, and J.J. O'Shea. 2011. Early Th1 Cell Differentiation Is Marked by
a Tfh Cell-like Transition. Immunity 35:919-931.
Nishimoto, N., N. Miyasaka, K. Yamamoto, S. Kawai, T. Takeuchi, and J. Azuma.
2009. Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor
monoclonal antibody, in monotherapy, in patients with rheumatoid
arthritis (the STREAM study): evidence of safety and efficacy in a 5-year
extension study. Annals of the Rheumatic Diseases 68:1580-1584.
Okamoto, K., Y. Iwai, M. Oh-hora, M. Yamamoto, T. Morio, K. Aoki, K. Ohya,
A.M. Jetten, S. Akira, T. Muta, and H. Takayanagi. 2010. I kappa B zeta
regulates T(H)17 development by cooperating with ROR nuclear receptors.
48
Nature 464:1381-U1313.
Powolny-Budnicka, I., M. Riemann, S. Taenzer, R.M. Schmid, T. Hehlgans, and F.
Weih. 2011. ReIA and ReIB Transcription Factors in Distinct Thymocyte
Populations Control Lymphotoxin-Dependent Interleukin-17 Production in
gamma delta T Cells. Immunity 34:364-374.
Puga, I., M. Cols, C.M. Barra, B. He, L. Cassis, M. Gentile, L. Comerma, A.
Chorny, M. Shan, W. Xu, G. Magri, D.M. Knowles, W. Tam, A. Chiu, J.B.
Bussel, S. Serrano, J. Antonio Lorente, B. Bellosillo, J. Lloreta, N.
Juanpere, F. Alameda, T. Baro, R. Diaz de Heredia, N. Toran, A. Catala, M.
Torrebadell, C. Fortuny, V. Cusi, C. Carreras, G.A. Diaz, J.M. Blander,
C.-M. Farber, G. Silvestri, C. Cunningham-Rundles, M. Calvillo, C. Dufour,
L.D. Notarangelo, V. Lougaris, A. Plebani, J.-L. Casanova, S.C. Ganal, A.
Diefenbach, J. Ignacio Arostegui, M. Juan, J. Yaguee, N. Mahlaoui, J.
Donadieu, K. Chen, and A. Cerutti. 2012. B cell-helper neutrophils
stimulate the diversification and production of immunoglobulin in the
marginal zone of the spleen. Nature Immunology 13:170-180.
Ramonda, R., A. Lo Nigro, V. Modesti, L. Nalotto, E. Musacchio, L. Iaccarino, L.
Punzi, and A. Doria. 2011. Atherosclerosis in psoriatic arthritis.
Autoimmunity Reviews 10:773-778.
Reddy, S., S. Jia, R. Geoffrey, R. Lorier, M. Suchi, U. Broeckel, M.J. Hessner, and
J. Verbsky. 2009. BRIEF REPORT An Autoinflammatory Disease Due to
Homozygous Deletion of the IL1RN Locus. New England Journal of
Medicine 360:2438-2444.
Ruan, Q., V. Kameswaran, Y. Zhang, S. Zheng, J. Sun, J. Wang, J. DeVirgiliis,
H.-C. Liou, A.A. Beg, and Y.H. Chen. 2011. The Th17 immune response is
controlled by the Rel-ROR gamma-ROR gamma T transcriptional axis.
Journal of Experimental Medicine 208:2321-2333.
Schmitt, N., R. Morita, L. Bourdery, S.E. Bentebibel, S.M. Zurawski, J.
Banchereau, and H. Ueno. 2009. Human Dendritic Cells Induce the
Differentiation of Interleukin-21-Producing T Follicular Helper-like Cells
through Interleukin-12. Immunity 31:158-169.
Shinkai, Y., G. Rathbun, K.P. Lam, E.M. Oltz, V. Stewart, M. Mendelsohn, J.
Charron, M. Datta, F. Young, A.M. Stall, and F.W. Alt. 1992.
RAG-2-DEFICIENT MICE LACK MATURE LYMPHOCYTES OWING TO
INABILITY TO INITIATE V(D)J REARRANGEMENT. Cell 68:855-867.
49
Sims, J.E., and D.E. Smith. 2010. The IL-1 family: regulators of immunity.
Nature Reviews Immunology 10:89-102.
Spolski, R., and W.J. Leonard. 2010. IL-21 and T follicular helper cells.
International Immunology 22:7-12.
Stritesky, G.L., N. Yeh, and M.H. Kaplan. 2008. IL-23 Promotes Maintenance but
Not Commitment to the Th17 Lineage. Journal of Immunology
181:5948-5955.
Stumhofer, J.S., A. Laurence, E.H. Wilson, E. Huang, C.M. Tato, L.M. Johnson,
A.V. Villarino, Q.L. Huang, A. Yoshimura, D. Sehy, C.J.M. Saris, J.J.
O'Shea, L. Hennighausen, M. Ernst, and C.A. Hunter. 2006. Interleukin 27
negatively regulates the development of interleukin 17-producing T helper
cells during chronic inflammation of the central nervous system. Nature
Immunology 7:937-945.
Sutton, C., C. Brereton, B. Keogh, K.H.G. Mills, and E.C. Lavelle. 2006. A crucial
role for interleukin (IL)-1 in the induction of IL-17-producing T cells that
mediate
autoimmune
encephalomyelitis.
Journal
of
Experimental
Medicine 203:1685-1691.
Tak, P.P., and J.R. Kalden. 2011. Advances in rheumatology: new targeted
therapeutics. Arthritis Research & Therapy 13:
Van Kooten, C., I. Rensink, D. Pascual-Salcedo, R. Van Oers, and L. Aarden. 1991.
MONOKINE PRODUCTION BY HUMAN T CELLS IL-1-ALPHA
PRODUCTION RESTRICTED TO MEMORY T CELLS. Journal of
Immunology 146:2654-2658.
Veldhoen, M., R.J. Hocking, R.A. Flavell, and B. Stockinger. 2006. Signals
mediated by transforming growth factor-beta initiate autoimmune
encephalomyelitis, but chronic inflammation is needed to sustain disease.
Nature Immunology 7:1151-1156.
Wei, L., A. Laurence, K.M. Elias, and J.J. O'Shea. 2007. IL-21 is produced by
Th17 cells and drives IL-17 production in a STAT3-dependent manner.
Journal of Biological Chemistry 282:34605-34610.
Yang, X.-P., K. Ghoreschi, S.M. Steward-Tharp, J. Rodriguez-Canales, J. Zhu, J.R.
Grainger, K. Hirahara, H.-W. Sun, L. Wei, G. Vahedi, Y. Kanno, J.J.
O'Shea, and A. Laurence. 2011. Opposing regulation of the locus encoding
IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature
Immunology 12:247-U284.
50
Yang, X.O., R. Nurieva, G.J. Martinez, H.S. Kang, Y. Chung, B.P. Pappu, B. Shah,
S.H. Chang, K.S. Schluns, S.S. Watowich, X.-H. Feng, A.M. Jetten, and C.
Dong. 2008a. Molecular antagonism and plasticity of regulatory and
inflammatory T cell programs. Immunity 29:44-56.
Yang, X.O., R. Nurieva, G.J. Martinez, H.S. Kang, Y. Chung, B.P. Pappu, B. Shah,
S.H. Chang, K.S. Schluns, S.S. Watowich, X.H. Feng, A.M. Jetten, and C.
Dong. 2008b. Molecular antagonism and plasticity of regulatory and
inflammatory T cell programs. Immunity 29:44-56.
Zhou, L., Ivanov, II, R. Spolski, R. Min, K. Shenderov, T. Egawa, D.E. Levy, W.J.
Leonard, and D.R. Littman. 2007. IL-6 programs TH-17 cell differentiation
by promoting the sequential engagement of the IL-21 and IL-23 pathways.
In 176.
Zhou, L., and D.R. Littman. 2009. Transcriptional regulatory networks in Th17
cell differentiation. Current Opinion in Immunology 21:146-152.
Zhou, L., J.E. Lopes, M.M.W. Chong, Ivanov, II, R. Min, G.D. Victora, Y.L. Shen,
J.G. Du, Y.P. Rubtsov, A.Y. Rudensky, S.F. Ziegler, and D.R. Littman.
2008. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by
antagonizing ROR gamma t function. Nature 453:236-U214.
Zhou,
X.Y.,
S.L.
Bailey-Bucktrout,
L.T.
Jeker,
C.
Penaranda,
M.
Martinez-Llordella, M. Ashby, M. Nakayama, W. Rosenthal, and J.A.
Bluestone. 2009. Instability of the transcription factor Foxp3 leads to the
generation of pathogenic memory T cells in vivo. Nature Immunology
10:1000-U1104.
51
a
b
IL#6R
&
Human&IL#1Ra&
TNF#α
Figure 0-1
a,
IL-6-TNF
b, IL-6 IL-1 TNF
Human IL-1Ra (
IL-6R
)
TNF
&
a
IL-1α
IL-1R1
NFkB AP-1
IL-1R AcP
IL-1β
IL-1Ra
Cell membrane
Il1rn-/-
Il1rn+/+
c
100!
Incidence of RA (%)!
b
Il1rn-/-Il17+/+!
50!
Il1rn-/-Il17-/-!
0!
0!
5!
10!
15!
Age (week)!
Horai et al., J. Exp. Med.,2000!
d


Figure 0-2 IL-1Ra
a, IL-1Ra
b, IL-1Ra
c,
d, IL-1Ra
IL-17 T
IL-1
IL-17
T
nude
Nakae et al., !
Proc. Natl. Acad. Sci. 2003
20!
β
Figure 0-3 Th17
T
IL-17
CD4+
CD4+
T
TGF-β IL-6
T
IL-17
T
Th17
Th17
TCR#
TGF-β#
IL-6/ IL-21!
IL-23
IL-1
IFN-γ#
IL-2 IL-27!
IL-4!
SOCS3
STAT3
Foxp3
STAT5
STAT1
STAT6
Irf4
AHR
Rorc
FoxP3
Ahr
RORγt
Rora
NFATc1
BATF
RUNX1
RORγt
STAT3
STAT5
RORα
Nfkbiz
IkBζ
Il17a!Promoter!&!
Enhancer
Il17a
Figure 0-4 Th17
IL-17
Th17
Th17
RORγt Th17
RORγt
STAT3 Th17
Th17
Foxp3
STAT3
Figure 0-5 Th17
Treg
Th17
Th17
TGF-β Foxp3 RORγ
IL-6
RORγt
Foxp3 RORγ
STAT3
Foxp3
TGF-β
RORγ
Foxp3+
Th17
a
6
100
*
5
Severity (Score)
Incidence (%)
80
60
40
Il1rn-/20
Il1rn-/-Il6-/-
b
Wt
12
week
4
20
Il6-/-
Il1rn-/-
0.18&
1.3&
8
12
16
20
week
Il1rn-/-Il6-/0.99&
IL-17
0.16&
16
2
0
0
8
3
1
Il1rn-/-Il6+/-
4
4
CD4
Figure 1. Il1rn-/-Il6-/(a) 
:
Il1rn-/:
Il6-/-,
(b WT,
in vitro
(%)
χ2
Il1rn-/-,
PMA/ionomycin
CD4+
Th17
n=15-22/
*, P < 0.05: Il1rn-/-
Il1rn-/-Il6-/-
Il6-/-Il1rn-/IL-17
LNs CD8+ cells !
(106 cells)
0"
4"
*
Il1rn-/80"
*
5"
0"
0"
*
3"
2"
1"
0"
Il6-/25"
*
*
60"
*
*
50"
40"
30"
20"
10"
0"
*
40"
20"
*
20"
15"
10"
5"
0"
3-4
70"
60"
50"
40"
20"
12"
10"
8"
6"
4"
2"
0"
Figure 2.
Il1rn-/-Il6-/-
± SD *P < 0.05. 2
B220+ cells !
(%)
30"
20"
10"
Spleen
cells (106 cells)
150"
100"
50"
Spleen/body weight (µg)
200"
*
15"
10"
5"
*
CD4+ cells !
(%)
0"
Spleen
5"
B220+ cells !
(106 cells)
10"
Spleen
5"
Spleen
15"
CD4+ cells !
(106 cells)
10"
60"
Spleen
20"
250"
CD8+ cells !
(%)
10"
*
p=0.09
Spleen
5"
*
*
CD8+ cells !
(106 cells)
15"
*
LNs B220+ cells !
(%)
LNs cells (106 cells)
25"
Spleen
15"
*
LNs CD4+ cells !
(%)
LNs B220+ cells !
(106 cells)
30"
LNs CD8+ cells !
(%)
LNs CD4+ cells !
(106 cells)
35"
[LNs]
[Spleen]
300"
12"
10"
8"
6"
4"
0"
2"
80"
0"
140"
120"
100"
0"
25"
0"
80"
60"
40"
20"
0"
50"
40"
30"
20"
10"
0"
20"
15"
10"
5"
0"
*
*
LN IFNg+ (TCRb+CD4+) cells!
LN Foxp3+ (TCRb+CD4+) cells!
2.5"
*
*
LN IL-17+ (TCRb+CD4+) cells!
n.s
2"
0.09"
0.08"
1.5"
1"
1.5"
1"
0.07"
(106 cells)
(106 cells)
(106 cells)
2"
*
0.06"
0.05"
0.04"
0.03"
0.5"
0.5"
0.02"
0.01"
0"
0"
Figure 3.
0"
Th
T
WT, Il6-/-, arthritic Il1rn-/-, Il6-/- , arthritic Il1rn-/-Il6-/PMA/ionomycin
IFN-γ, IL-17A, Foxp3
3-4
± SD 2
CD4+
Wt
0.6
2.7
Il6-/-
medium
2.3
6.9
6.5
9.4
IL-1
1.6
IL-17
3.5
IFN-γ#
Figure 4. IL-1 IL-6
CD4+
Th17
$/$
+
WT
Il6 &
CD4
IL-1
anti-CD3 (4 µg/
ml), anti-CD28 (1µg/ml), anti-IL-4 (10 µg/ml), anti-IFN-γ (10 µg/ml)
48well Flat
Bottom plate
5
5
PMA/ionomycine 5
FACS
CD4+
(%)
5
Il21
4
LNs
*
*
*
*
3
2
1
0
3
Spleen
*
*
2.5
Il21
2
1.5
1
0.5
0
None stimulation
PMA/Ionomycin
Figure 5. WT, Il1rn-/-, Il6-/-, Il1rn-/-Il6-/mRNA
real-time RT-PCR
IL-21
PMA/ionomycin
GAPDH mRNA
n=3 2
Il21 mRNA
4
5
0.1
IL-1
1.2
0.86
TGF/IL-6
17
1.01
TGF/IL-1,6
33
0.07
IL-17
TGF
0.03
TGF/IL-1
c
10
0.9
1.2
0.11
TGF/IL-21
8.2
0.11
0
TGF/IL-1,21
18
100
0.11
Rorc
medium
Foxp3
a
0.06
50
0
1.5
medium
IL-1
TGF
TGF/IL-1
Il17a
IFN-γ#
b
5
1
0.5
0
TGF/IL-6
TGF/IL-1,6
TGF/IL-21
TGF/IL-1,21
Il1r1
6
4
2
Il21
0
0.3
IL-1R1"
0.2
Il22
0.1
0
14
12
10
8
6
4
2
0
Figure 6. IL-1 IL-6
Th17
(a-b) In vitro Th17
BALB/cA
FACS
naïve
+
CD4 T
anti-CD3 (4 µg/ml) anti-CD28 (1 µg/ml) 10 ng/ml; anti-IFN-γ, 10 µg/ml; anti-IL-4,
10 µg/ml
(TGF-β, 3 ng/ml; IL-6, 40 ng/ml; IL-21, 100 ng/ml; IL-1, 10 ng/
ml)
IL-17A FN-γ
IL-1R1 PMA-ionomycin
FACS
(%)
(b) IL-1R
a
Anti-IL-1R1:
(
):
(c)
BALB/cA
FACS
naïve CD4+T
anti-CD3 (4 µg/ml)
anti-CD28 (1 µg/ml) 10 ng/ml; anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml
5
mRNA
mRNA
PCR
GAPDH RNA
0.04
IL-17
1.9
Foxp3
0.02
0.04
1.5
0.07
3.2
0.11
2.9
5.0
IL-1α,β 0.1-100ng/ml
Figure 7 naïve T
IL-1
FACS
naïve CD4+T
anti-CD3 (4 µg/ml)
ml; anti-IL-4, 10 µg/ml IL-1(0.1-100 ng/ml) 4
Foxp3
IL-17
anti-CD28 (1 µg/ml) anti-IFN-γ, 10 µg/
4
PMA/ionomycin
2
IL-1R1
TGF-β
TGF-β / IL-21 (20-1000ng/ml)
Figure 8 IL-21
IL-1R1
FACS
naïve CD4+T
anti-CD3 (4 µg/ml) anti-CD28 (1 µg/ml)
γ, 10 µg/ml; anti-IL-4, 10 µg/ml TGF-β (3 ng/ml) ; IL-21 (20, 100, 400, 1000 ng/ml) 4
PMA/ionomycin
IL-1R1
TGF-β
anti-IFN-
2
1st round
TGF/IL-21
2nd round
4.8"
9.9"
3nd round
3.1"
TGF
0.27"
IL-17
5.53"
1.3"
IFN-γ#
9.7"
3.5"
TGF/
IL-21
6.0"
0.24"
17.3"
11.5"
TGF/
IL-1,21
2.2"
1.34"
17.2"
12.2"
TGF/
IL-1
1.9"
0.24"
2.2"
1.4"
IL-1
0.79"
0.22"
0.83"
0.02"
med
3.9"
IL-17
3.9"
IFN-γ#
Figure 9 IL-1 TGF-β
IL-17
FACS
naïve CD4+T
Th17
anti-CD3 (4 µg/ml)
antiCD28 (1 µg/ml) 10 ng/ml; anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3 ng/ml; IL-21, 100 ng/
ml
5
(1st round culture)
anti-IFN-γ, anti-IL-4
anti-CD3 anti-CD28
PMA/ionomycin
IL-17A
IFN-γ
FACS
3
3
d
c
Il17a
Il21
Il22
medium
2
0
0.3
1
24.4
14.4
7.9
24.9
IL-21
0.2
10
Foxp3
Nfkbiz
Batf
Rorc
1.6
0
1
Gata3
2
0.1
1.2
IL-1
0
6
0.4
4
Rorc
0.8
0.01
0.1
1
IL-1 (ng/ml)
2
10
12
Foxp3
0
13.4
0.5
IL-23
0
3.4
8
4
0
0
21.2
11.6
Foxp3
MyD88+/-
e
10
8
6
4
2
0
MyD88-/5
*
Foxp3+ cells (%)
0.01
0.1
1
IL-1 (ng/ml)
Tbx21
0
relative expression (fold)
+TGF
0.1
0
b
no TGF
Il17a
relative expression (fold)
4
Foxp3+ cells (%)
a
4
3
2
1
0
Figure 10. IL-1 in vitro Foxp3
(a), IL-1 Th17
Il6-/FACS
naïve CD4+T
Th17
anti-CD3 (4 µg/ml) antiCD28 (1 µg/ml) anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3 ng/ml; IL-21, 100 ng/ml
4
IL-1 (0-10 ng/ml)
anti-CD3, anti-CD28 24
mRNA
Real time PCR
mRNA
(a)& IL#17A IL-22
IL-21 IL-1
(b) Nfkbiz
Batf
Rorc
Foxp3
GAPDH RNA
(c-d),
FACS
naïve CD4+T
Th17
anti-CD3 (4 µg/ml) anti-CD28 (1 µg/ml) anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3
ng/ml; IL-21, 100 ng/ml
5
anti-CD3 anti-CD28 48
(c)Il17a Tbx21 Gata3 Rorc Foxp3 mRNA
GAPDH RNA
(d), PMA/ionomycin
Foxp3
FACS
;
TGF-β
;
TGF-β
(%)
(e) MyD88+/MyD88-/FACS
+
naïve CD4 T
Th17
anti-CD3 (4 µg/ml) anti-CD28 (1 µg/ml) anti-IFN-γ, 10
µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3 ng/ml; IL-21, 100 ng/ml
4
anti-CD3 anti-CD28 48
PMA/ionomycin
Foxp3
FACS
*P&<&0.05&(student&t#test)
IL-17+
Foxp3+
Il1r1-/Wt
2.7
42
54
IL-17
Foxp3
Figure 11. IL-1R
IL-17-Foxp3-
IL-1R1
Th17
IL-17+
Foxp3+
FACS
Il1r1-/- naïve CD4+T
Th17
antiCD3 (4 µg/ml) anti-CD28 (1 µg/ml) anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3 ng/ml;
IL-21, 100 ng/ml
4
(1st round culture) 4
PMA/ionomycin
IL-1R1 Foxp3 IL-17A
WT T
-/IL-1R1
Il1r1 T
2
71
*
2000
TGF
1600
59
36
TGF/IL-21
3.7
67
26
Foxp3 MFI
(in Foxp3+ cell)
3.7
87
RORγt
TGF/IL-6
CFSE
6.1
Foxp3
Foxp3CFSE
800
400
0
5.7
Foxp3+
1200
TGF/IL-1,21
5.9
*
*
c
Foxp3
b
24
TGF"
Foxp3+ cell (%) in each division
a
90"
TGF/IL-21"
80"
TGF/IL-1,21"
70"
TGF/IL-6"
60"
50"
40"
30"
*
20"
10"
0"
0"
1"
2" 3" 4"
cell division
5"
6"
Figure 12. IL-1
Foxp3
-/(a) Il6
FACS
naïve CD4+T
CFSE
anti-CD3 (4 µg/
ml) anti-CD28 (1 µg/ml) anti-IFN-γ 10 µg/ml anti-IL-4 10 µg/ml
4
RORγt Foxp3
(%)
(b) Foxp3
(Mean fluorescence intensity; MIF)
+
(a)
(c)
Foxp3
CFSE
*P < 0.05 (student t-test) 3
b
d
0.53
TGF
27
3.5
Foxp3+ cell population (%)
"
a
TGF"
40&
TGF+IL-1"
medium
30&
20&
IL#1
10&
0&
TGF/IL-21
IL-21R-Fc "
TGF"
TGF+IL-1"
IIL#21R#Fc
20000&
9.7
15000&
10000&
5.8
IL#1&
IL#21R#Fc
5000&
0&
pSTAT3
IL-21R-Fc "
c
e
10
Il6-/-
Il1rn-/-Il6-/-
Il1ab-/-
20
15
10
0
IL-1
(0.01-10 ng/ml)
IL-21R-Fc 20 µg/ml
IL-1 10 ng/ml
5
IL-1 0 ng/ml
Foxp3+ cell (%)
25
Foxp3+ cells (%)
IL-17
TGF/IL-21
IL-1 10ng
Foxp3
Foxp3 MFI in Foxp3+ cells
"
13
8
6
4
2
0
med
TGF
TGF/IL-1
Foxp3
IL-6 IL-21
(a) Il6-/FACS
anti-CD3 (4 µg/ml) anti-CD28 (1 µg/ml) anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml;
4
PMA/ionomycin
Foxp3 IL-17
(%)
2
(b-c)
-/+
Il6
FACS
naïve CD4 T
Th17
anti-CD3 (4 µg/ml) antiCD28 (1 µg/ml) anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3 ng/ml; IL-21, 100 ng/ml
4
IL-21R-Fc (1-15 µg/ml)
anti-CD3 anti-CD28
2
Foxp3
+
FACS
: Foxp3
,
: Foxp3 MFI (c-d) Th17
IL-1 (10 ng/ml) IL-21R-Fc (20 µg/ml)
anti-CD3 anti-CD28
Foxp3 pSTAT3
*P<0.05 (student t-test)(e) IL-1
Foxp3
IL-6 IL-1α/IL-1β,
-/-/-/-/IL-1Ra
Il6 , Il1rn Il6 , Il1αβ
FACS
naïve CD4+T
Th17
anti-CD3 (4 µg/ml) anti-CD28 (1 µg/ml) 10 ng/ml; anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/
ml; TGF-β, 3 ng/ml; IL-21, 100 ng/ml
4
anti-CD3 anti-CD28
Foxp3
2
Figure 13. IL-1
naïve CD4+T
Wt naïve T
1.2
Il1ab-/- naïve T
37
40
0.8
0.36
med
13
1.7
0.27
6.9
2.4
IL-6 0.8ng
11
IL-6 4ng
0.13
TGF/IL1
TGF
2.6
21
IL-6 20ng
27
IL-6 100ng
TGF/IL1
TGF
9.8
14
2.3
IL-6 0.8ng
2.7
4.2
IL-6 4ng
+ TGF
Foxp3"
34
0.37
IL-21 20ng
0.4
0.31
med
1.5
39
45
1.8
18
IL-6 100ng
13
IL-6 20ng
+ TGF
21
16
22
2.4
IL-21 100ng
2.9
IL-21 400ng
+ TGF
3.9
IL-21 1000ng
36
18
0.54
IL-21 20ng
23
17
1.7
IL-21 100ng
2.8
IL-21 400ng
+ TGF
2.7
IL-21 1000ng
IL-17A"
Figure 14. IL-6 IL-21
Foxp3
IL-17
IL-1
-/+
FACS
Il1ab naïve CD4 T
TGF-β: 3 ng/ml, IL-6: 40 ng/ml
or IL-21: 100 ng/ml, anti-IFN-γ: 10 µg/ml, anti-IL-4: 10 µg/ml; anti-CD3 (4 µg/ml); anti-CD28 (1 µg/ml)
4
PMA/ionomycin
IL-17A, Foxp3
(%)
4.5"
4"
3.5"
3"
2.5"
2"
1.5"
1"
0.5"
0"
2"
1.8"
1.6"
1.4"
1.2"
1"
0.8"
0.6"
0.4"
0.2"
0"
Nfkbiz/Gapdh
2"
1.5"
1"
1.5"
1"
0.5"
0"
2"
1.8"
1.6"
1.4"
1.2"
1"
0.8"
0.6"
0.4"
0.2"
0"
2.5"
2"
Il21/Gapdh
Il17a/Gapdh
0.5"
2"
Il22/Gapdh
Foxp3/Gapdh
2.5"
2.5"
Rorc/Gapdh
0"
2"
1.8"
1.6"
1.4"
1.2"
1"
0.8"
0.6"
0.4"
0.2"
0"
Batf/Gapdh
3"
1.5"
1"
0.5"
0"
1.8"
1.6"
IL#1
IL#21
Rorc Il21
1.4"
&
1"
0.8"
IL-21
Il1r1
1.2"
IL#21
&
Foxp3 Ba4 5
Il17 Il22
IL#1
0.6"
IL#1
IL$1
IL#21
IL$21
N9biz
5
0.4"
0.2"
0"
med" IL-1"
Fc"
Fc
IL-1"
IL-1
Figure 15. IL-1 IL-21
Il6-/FACS
naïve CD4+T
Th17
anti-CD3 (4 µg/ml)
(1 µg/ml) anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3 ng/ml; IL-21, 100 ng/ml
4
IL-1 (10 ng/ml) IL-21R-Fc (20 µg/ml)
anti-CD3, anti-CD28 24
mRNA
PCR
mRNA
anti-CD28
Real time
LPL&
LPL!Foxp3+!cell!
(gated!on!CD4+TCR9b+)
LPL!IFN9g+!!
(gated!on!CD4+TCR9b+)!
35&
25&
LPL!IL917+!%!!
(gated!on!CD4+TCR9b+)!
14&
25&
10&
12&
20&
10&
(%)
15&
(%)
(%)!
20&
15&
5&
0&
0&
①
②
③
④
8&
6&
10&
5&
*
16&
30&
4&
2&
①
②
③
0&
④
①
②
③
Wild type"
Il1rn-/-!
Il6-/-!
Il1rn-/-Il6-/-
Figure 16. IL-1 IL-21
Il1rn-/- Il6-/- Il1rn-/-Il6-/Foxp3 IFN-γ
LPL)
IL-17
)
LPL
FACS
PMA/ionomycin
5
④
a
b
*
130"
Body weight (%)
120"
110"
R1"
90"
17"
80"
70"
0"
1"
2"
3"
4"
weeks after transfer
6"
W"
Il1r1-/-"
17"
*
c
12&
MLN!IL917+!cell!(%)!!
15&
10&
5&
0&
10&
1.5&
8&
6&
4&
W
0&
Il1r1-/- Il17a-/-
0&
LPL!IL917+!cell!(%)!!
10&
5&
Il1r1-/- Il17a-/-
W
20&
5&
4&
3&
2&
1&
0&
0&
W
Il1r1-/-
Figure 17. IL-1 in vivo
Il17a-/- Il1r1-/(a) 
test)
(b)
6
(c)
6
MLN
Il17a-/-
Foxp3 IFN-γ
15&
10&
5&
0&
W
Il1r1-/- Il17a-/-
Th17
IL-17
CD4+CD45RBhiCD25Rag2-/1
:Il1r1-/LPL)
IL-17
W Il1r1-/- Il17a-/-
*
6&
15&
1&
0.5&
2&
20&
LPL!IFN9g+!cell!(%)!!
MLN!Foxp3+!cell!(%)!!
20&
2&
LPL!Foxp3+!cell!(%)!!
MLN!IFN9g+!cell!(%)!!
25&
test)
5"
cm
W"
100"
*
10"
9"
8"
7"
6"
5"
4"
3"
2"
1"
0"
FACS
W Il1r1-/- Il17a-/-
:Il1r1-/-
p<0.05 (student t-test)
)
PMA/ionomycin
:Il1r1-/-
p<0.05 (student t-
5
p<0.05 (student t-
medium
a
LPS
5.9
zymosan
7.4
3.5
Wt
MCM
3.4
3.7
4.8
6.8
0.4
2.8
Il6-/MCM
3.9
0.19
200012.2.800 Workspace.jo
1.1
Layout
16
11
Il1rn-/-Il6-/MCM
2.5
3.9
2.5
IL-17
7.9
IFN-γ#
TGF
b
10 2
0
0
1.25
10 4
47.7
10 5
10
10 3
10 2
0
Foxp3
10 5
10 2
10 3
IL-17
10 4
29
0
10 5
1.13
10 5
Foxp3
10 2
10 2
0
10 2
3.12
10 3
IL-17
10 4
10 5
10 3
IL-17
10 4
26.7
10 4
21.1
10 5
0.626
10 3
10 5
69.1
0
0.749
10 5
10 2
9.22
10 3
IL-17
10 4
16.9
10 5
0.822
10 4
10 3
10 3
10 2
IL-6
64.9
Th1767.4
0
TGC
anti-CD3
anti-CD3 anti-CD28
PMA/ionomycin
27.9
10 3
IL-17
4
0
9.07
10 2
0
10 2
10 2
55.8
10 4
10 3
66.8
0
10
0
IL-17
Foxp3
10 4
10 3
10 5
0.831
10 3
24.6
10 3
IL-17
34
10 5
0.235
Figure 18. Il1rn-/67.6
-/-/-I
(a)
Il6
Il1rn l6-/(MCM)
Il6-/-CD4+
5
PMA/ionomycin
(b) naïve T
5
10 2
4
0
1.75
10 4
Il1rn-/-Il6-/MCM
71.1
10 2
50.3
4.46
4
10 2
0
4
0
10
10 5
0.278
10 5
Foxp3
10 3
IL-17
Foxp3
Foxp3
10
10 2
0.257
10 3
10 2
46.3
3.97
4
Foxp3
10 3
10 5
MCM
10 5
10
0
Il6-/Il6-/MCM
0.203
Foxp3
Wt Wt
MCM
MCM
Foxp3
10
52.2
4
Foxp3
10 5
TGF
zymosan
Zym
MCM
TGF
LPS
LPL
MCM
medium
0
10 2
10 3
IL-17
10 4
anti-CD28
anti-IFN-γ
0
7.64
10 5
10 2
14.8
10 3
IL-17
10 4
10 5
LPS zymosan
anti-IFN-γ atni-IL-4
FACS
atni-IL-4
0
TGF-β (3 ng/ml) CM
FACS
5
5
12000"
25"
*
15"
10"
5"
0"
*
*
MFI (Foxp3+ cell)
Foxp3+ cell (%)
20"
*
10000"
8000"
6000"
4000"
2000"
0"
Figure 19. IL-1 mTOR
Foxp3
-/Il6
FACS
naïve CD4+T
Th17
anti-CD3 (4 µg/ml)
anti-CD28 (1 µg/ml) anti-IFN-γ, 10 µg/ml; anti-IL-4, 10 µg/ml; TGF-β, 3 ng/ml; IL-21, 100 ng/ml
4
Rapamycin 50 ng/ml
anti-CD3 anti-CD28
2
+
Foxp3
FACS
: Foxp3
,
: Foxp3 MFI *P<0.05 (student
t-test)
!IL91
IL-21!
IL-6
IL-21!
IL-6
Th17
IL-1
IL-1
TGF
NFκB"
MAPK"
mTOR"
RORγ
IL-1R1
Batf!
Ikbiz
STAT3
!
STAT3
Foxp3
naïve T
IL-21R
IL-21R
IL-17
IL-22
IL-1R
Foxp3+
Foxp3
IL#1
IL#1
IL#21
TGF
+IL-21
Foxp3+
RORγt+
naïve T
IL#1
Foxp3RORγt+
IL-17++
IL#1
Foxp3+
RORγt+
Foxp3RORγt+
IL-17++
Nfkbiz↑
Batf↑
TGF
Foxp3RORγt+
IL-17++
Foxp3
downregulation
Th17 cells
Foxp3+
RORγt-
iTreg
Figure 20
Th17
Foxp3 RORγt
IL-1
IL-21 IL-1R1
IL-1,IL-6,IL-21
naïve T
Foxp3
TGF-β
Th17
52