Download Cypress Semiconductor Quad HOTLink II CYV15G0404RB User`s guide

Transcript
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Users Guide
Cypress Semiconductor Corporation
•
3901 North First Street
•
San Jose, CA 95134
•
408-943-2600
Revised February 2, 2005
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
TABLE OF CONTENTS
1.0 INTRODUCTION .............................................................................................................................. 5
2.0 KIT CONTENTS ............................................................................................................................... 5
3.0 DEMO BOARD FEATURES ............................................................................................................ 6
4.0 BOARD ARCHITECTURE ............................................................................................................... 7
4.1 Cable Driver and Equalizer Interfaces ........................................................................................ 7
4.2 Clocking Architecture .................................................................................................................. 8
4.3 FPGA and Control Architecture ................................................................................................ 10
4.4 Power Supply ............................................................................................................................ 11
5.0 GUI AND OPERATING MODES .................................................................................................... 12
5.1 Setting the SDI Data Rate ......................................................................................................... 14
5.2 Serial Interface I/O Selection .................................................................................................... 15
5.3 Standard ................................................................................................................................... 15
5.4 Transmit Test Pattern ............................................................................................................... 16
5.5 Status ........................................................................................................................................ 16
6.0 SAMPLE TEST PROCEDURES ....................................................................................................17
6.1 Required Equipment ................................................................................................................. 17
6.2 Tektronix WFM 700 ................................................................................................................... 17
6.3 Tests ......................................................................................................................................... 19
6.3.1 Generating SD Color Bar Patterns .................................................................................................. 19
6.3.2 Generating HD Color Bar Patterns and Reclocking the Data Three Times .................................... 20
6.3.3 Using Redundant Outputs ............................................................................................................... 22
6.3.4 Using Selectable Inputs and Automatic Rate Detection .................................................................. 25
7.0 SUMMARY ..................................................................................................................................... 29
8.0 REFERENCES ............................................................................................................................... 29
APPENDIX A: SCHEMATICS OF HOTLINK II CYV15G0404DXB VIDEO DEMO BOARD ................ 30
APPENDIX B: PCB MANUFACTURING FILES (GERBER FILES) ..................................................... 43
APPENDIX C: PCB ASSEMBLY FILES (DRILL AND ASSEMBLY) ................................................... 65
APPENDIX D: BILL OF MATERIALS (BOM) OF HOTLINK II CYV15G0404DXB
VIDEO DEMO BOARD.......................................................................................................................... 69
APPENDIX E: UNPACKING HOTLINK II CYV15G0404DXB VIDEO DEMO BOARD ........................ 75
APPENDIX F: CONFIGURING THE HOTLINK II CYV15G0404DXB
VIDEO DEMO BOARD FOR SD-SDI TO HD-SDI UPCONVERSION .................................................. 86
Page 2 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
LIST OF FIGURES
Figure 2-1. Top View of Video Demo Board ............................................................................................ 6
Figure 4-1. Placement of Cable Drivers and Equalizers and Channel-specific LEDs ............................. 7
Figure 4-2. Placement of Clocks on the Board ........................................................................................ 9
Figure 4-3. Clock Configuration ............................................................................................................. 10
Figure 4-4. Placement of FPGA and Controls ....................................................................................... 11
Figure 4-5. Placement of Power Supply and Jumper Headers.............................................................. 12
Figure 5-1. Graphical User Interface ..................................................................................................... 13
Figure 5-2. GUI–Setting the Data Rate.................................................................................................. 15
Figure 5-3. GUI–Selecting the Serial I/Os ............................................................................................. 15
Figure 5-4. GUI–Selecting the Standards–SD....................................................................................... 15
Figure 5-5. GUI–Selecting the Standards–HD....................................................................................... 16
Figure 5-6. GUI–Selecting the Test Patterns......................................................................................... 16
Figure 5-7. GUI–Selecting Status .......................................................................................................... 17
Figure 6-1. Tektronix WFM 700–Front View .......................................................................................... 18
Figure 6-2. Tektronix WFM 700–Rear View .......................................................................................... 18
Figure 6-3. Sample Test 1–Generating and Transmitting Color Bars.................................................... 19
Figure 6-4. GUI Setting for Sample Test 1 ............................................................................................ 20
Figure 6-5. Sample Test 2–Transmits Color Bar Data Via Three Reclockers ....................................... 21
Figure 6-6. GUI Setting for Sample Test 2 ............................................................................................ 22
Figure 6-7. Sample Test 3–Generate and Transmit Color Bars Through Both Output Buffers ............. 23
Figure 6-8. GUI Setting for Sample Test 3–Transmit SD-SDI Color Bars ............................................. 24
Figure 6-9. GUI Setting for Sample Test 3–Transmit HD-SDI Color Bars ............................................. 25
Figure 6-10. Sample Test 4–Selectable Inputs and Auto Rate Detection ............................................. 26
Figure 6-11. GUI Setting for Sample Test 4: Step 6 .............................................................................. 27
Figure 6-12. GUI Settings for Sample Test 4: Step 9 ............................................................................ 28
Figure 6-13. GUI Setting for Sample Test 4: Step 13 ............................................................................ 29
Page 3 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
LIST OF TABLES
Table 4-1. Interface of Cable Drivers and Equalizers to HOTLink II Serial I/Os ..................................... 8
Table 5-1. Summary of GUI Button Functionality (Shown Here for Channel A) ................................... 13
Page 4 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
1.0
Introduction
The Quad Independent Channel HOTLink II CYV15G0404DXB Video Demonstration (Demo) Board is a full-fledged serial digital
video reference platform that demonstrates the HOTLink II video physical layers (PHYs) interfacing to industry-standard cable
drivers and equalizers. Upstream processing of the video data is performed using on-board Altera Cyclone FPGAs. The board
also has a flexible clocking architecture with automatic rate detection that allows the board to pass video traffic in multiple formats.
The Independent Channel HOTLink II devices[1] are capable of simultaneously operating each channel at a different data rate.
The CYV15G0404DXB has the additional capability of performing independent reclocking on a per-channel basis.
The Independent Channel HOTLink II CYV15G0404DXB Video Demo Board demonstrates:
• the ability of the Cypress family of transceivers to pass serial digital video at signaling rates from 270 Mb/s to 1485 Mb/s
• the independent channel functionality of the applicable devices[1]
• the ability to use a HOTLink II transceiver with an FPGA for auto rate detection and clock reconfiguration
• the ability to perform reclocking in the HOTLink II CYV15G0404DXB device
• the flexible configuration abilities of Cypress Microsystems’ PSoC microcontroller
• the use of Cypress EZ-USB FX2™ USB microcontroller for video data and in-system configuration applications
• on-board FPGAs that generate and receive different video test patterns.
Although this board uses the CYV15G0404DXB device, the same board can be used as an evaluation vehicle for any device in
the HOTLink II Independent Channel family of devices. Please refer to the data sheets for descriptions of the HOTLink II
Independent Channel family of devices.
2.0
Kit Contents
The kit contains the following:
1. Quad Independent Channel HOTLink II CYV15G0404DXB Video PHY Demo Board, as shown in Figure 2-1.
2. CD containing:
a. Graphical User Interface (GUI) set-up file[2]
b. Application Notes
c. Demo board user’s guide (this document)
d. Cypress’ device data sheets
e. Schematics
3. 75Ω Coaxial cable
4. AC/DC wall adapter
5. USB cable
6. Dear Customer Letter
7. Kit checklist.
Notes:
1. The Independent Channel HOTLink II family consists of the CYV15G0403DXB, CYV15G0404DXB, CYV15G0104TRB, CYV15G0203TB, CYV15G0204RB,
CYV15G0204TRB, CYV15G0403TB, CYV15G0404RB. Refer to each data sheet for a description.
2. Please see Appendix E for instructions on installation.
Page 5 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 2-1. Top View of Video Demo Board
3.0
Demo Board Features
This section highlights the key features of the Quad Independent Channel HOTLink II CYV15G0404DXB Video PHY Demo Board.
• Video transport at multiple rates of 270 Mb/s, 360 Mb/s, 540 Mb/s, and 1485 Mb/s
• Auto-rate detection
• Low-Jitter outputs
• Programmable clocking options for different SMPTE data rates
• SMPTE scrambler/descrambler functionality implemented in FPGA
• 4x4 clock header to support multiple clocking options
• High-speed USB FX2 microcontroller to configure FPGAs
• Configuration of HOTLink II device using Cypress Microsystems PSoC Microcontroller
• Reclocking Deserializers
• 6V DC supply with on-board voltage regulator to prevent noise transfer from external power sources
• Interfaces to industry-standard equalizers and cable drivers
• LED status indicators
• User-friendly GUI
• Windows 2000/XP supported.
Page 6 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
4.0
Board Architecture
The architecture of the board is shown in Figure 4-1 through Figure 4-4.
The heart of the board is the Quad Independent Channel HOTLink II CYV15G0404DXB device. The device has four independent
transceiver channels. Each transceiver has a transmitter with two outputs and a receiver with two selectable inputs. Each
CYV15G0404DXB channel also incorporates a reclocking deserializer. Each transmitter performs 10-to-1 serialization. Each
receiver includes a Clock and Data Recovery PLL (CDR PLL with embedded VCO and loop filter) and 1-to-10 deserializer. On
the board, the parallel interface of the CYV15G0404DXB is connected to the on-board FPGAs (U2 and U3). All serial outputs
(except OUTA2) are connected to commercially-available cable drivers. All serial inputs (excluding INA2) are connected to
commercially-available equalizers. The CYV15G0404DXB is configured via an 8-bit data/4-bit address configuration interface.
This configuration is controlled via a Cypress Microsystems PSoC microcontroller (U14). The architecture of the board is
described in the following sections.
4.1
Cable Driver and Equalizer Interfaces
The serial I/Os of the HOTLink II device are connected to various equalizers on the receive side and various cable drivers on the
transmit side as shown in Figure 4-1. The different cable drivers, equalizers and their connections to the HOTLink II device are
shown in Table 4-1. Note that all primary interfaces (INx1 and OUTx1) of each channel support multiformat (both HD and SD)
drivers and equalizers, while the secondary interfaces (INx2 and OUTx2) support SD only.
OUTA2+/- SMA
(J4 and J2)
(No CableDriver)
INB1 (J11)
(GS1524
Equalizer)
INB2 (J10)
OUTB1 (J9) (CLC014
(GS1528 CD) Equalizer)
OUTB2 (J8)
(CLC001 CD)
Channel A
LEDs
Channel B
LEDs
INA2+/- SMA
(J3 and J5)
(No Equalizer)
OUTA1 (J6)
(GS1528 CD)
INA1 (J7)
(GS1524
Equalizer)
OUTD2 (J16)
(CLC007 CD)
IND2 (J19)
(CLC014
Equalizer)
OUTD1 (J17)
(GS1528 CD)
IND1 (J18)
(GS1524
Equalizer)
OUTC2 (J12)
(GS9028 CD)
INC2 (J15)
(GS9024 OUTC1 (J14)
Equalizer) (GS1528 CD)
INC1 (J13)
(GS1524
Equalizer)
Channel C
LEDs
Channel D
LEDs
Figure 4-1. Placement of Cable Drivers and Equalizers and Channel-specific LEDs
Page 7 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Table 4-1. Interface of Cable Drivers and Equalizers to HOTLink II Serial I/Os
HOTLink II Channel
Serial I/O of
HOTLink II Device
Interfacing Cable
Driver
Interfacing Equalizer
Supported Standard
Channel A
OUTA1+
Gennum GS1528
x
HD-SDI and SD-SDI
Channel B
Channel C
Channel D
4.2
INA1+
x
Gennum GS1524
OUTA2+
No Cable Driver (SMA)
x
INA2+
x
No Equalizer (SMA)
Supports any data rate from
195 Mb/s–1500 Mb/s
(not SMPTE-compliant)
OUTB1+
Gennum GS1528
x
HD-SDI and SD-SDI
INB1+
x
Gennum GS1524
OUTB2+
National CLC001
x
INB2+
x
National CLC014
OUTC1+
Gennum GS1528
x
INC1+
x
Gennum GS1524
OUTC2+
Gennum GS9028
x
INC2+
x
Gennum GS9024
OUTD1+
Gennum GS1528
x
IND1+
x
Gennum GS1524
OUTD2+
National CLC007
x
IND2+
x
National CLC014
SD-SDI
HD-SDI and SD-SDI
SD-SDI
HD-SDI and SD-SDI
SD-SDI
Clocking Architecture
The board has multiple clocking options to allow for flexible testing and configuration. On each channel, the user can select either
the on-board programmable clock, on-board 74.25-MHz crystal oscillator (for HD-SDI/SMPTE 292M), a clock provided by the
FPGA, or an external clock. The on-board programmable clock plays a useful role in the auto rate detection mechanism, which
dynamically reprograms the reference clock to the correct frequency, based on the incoming SDI data rate.
When transmitting the video test patterns generated by the FPGA, either the programmable clock, external clock or on-board
crystal oscillator (only for HD-SDI) should be used.
Page 8 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Programmable
Clocks for Each
Channel
B
C
(U13) (U12)
D
A
(U11) (U10)
A (X5)
B (X2)
B (JP13)
A (JP11)
74.25 MHz
Crystal
Oscillators
Clock Config
Headers for
Each
D (JP10) Channel
C (X4)
C (JP12)
D (X3)
Channel A
27 MHz Crystal
1 to 4
Differential Oscillator (reference for
Fanout Clock programmable clocks)
(X1)
Buffer (U9)
Channel B
Channel C
Channel D
Figure 4-2. Placement of Clocks on the Board
Note. For HD-SDI transmit jitter measurements, it is recommended to avoid using the programmable clock due to the high intrinsic
jitter generated by this clock. This jitter will not influence the output jitter in reclocker mode, so the programmable clock may be
used to measure reclocked jitter generation. To measure HD-SDI transmit jitter of the HOTLink II video demo board, it is recommended to use the on-board crystal oscillator.
The board allows various video test patterns to be generated by the FPGA at different rates and transmitted through serial outputs.
The selection of the pattern and data rate is made through the USB host interface GUI. Clock configuration instructions are given
in Figure 4-3.
If the programmable clock option is selected, the data rate setting in the GUI controls the output frequency of the programmable
clock. If the external clock option is selected, the user must ensure that the external clock frequency matches the data rate setting
in the GUI. For HD-SDI, either a full-rate (148.5 MHz or 148.5/1.001 MHz) or half-rate (74.25 MHz or 74.25/1.001 MHz) clock
may be used. If the on-board 74.25-MHz crystal oscillator option is selected, the GUI must be set to 1485 Mb/s and the FR (FullRate) box should be left unchecked.
For further details on jitter measurement, please see application note entitled, SDI SMPTE Jitter Performance of the Independent
Channel HOTLink II Transceiver.
Configuration instructions for the different clocking options are found in Figure 4-3.
Page 9 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
JP10, JP11, JP12, JP13
GND
1
5
2
6
3
7
OSC+
9
GND
13
REFCLKx+
FCLKx+
FCLKx-
10
14 CLOCKOUT+
11
15 CLOCKOUT-
REFCLKx4
8
12
16
GND
GND
OSC-
GND
Micrel
Programmable
Clock
SY87729
GND
The position of the Micrel programmable clock chip is given to set the
correct orientation for determining the pin numbers for clock configuration.
Note: Jumpers 6 and 10, and jumpers 7 and 11 are physically shorted for
header design considerations.
On board programmable clock option:
Jumper 14 to 10 and Jumper 15 to 11 for using Programmable Micrel clock
as Reference Clock. Remove all other jumpers from the header. This option
must be chosen if the auto rate detect feature of the board is used.
On board 74.25 MHz crystal oscillator clock option:
Jumper 9 to 10 and Jumper 12 to 11 for using 74.25 MHz crystal oscillator
clock as Reference Clock. All other jumpers must be removed. This option
should be chosen for HD-SDI transmit jitter measurement. The GUI must be
set to a datarate of 1485 Mb/s (FR box unchecked) for the associated
channel.
FPGA clock option:
Jumper 2 to 6 and Jumper 3 to 7 for using FPGA clock (FCLK) as Reference
Clock. Remove all other jumpers from the clock configuration header. This
clock option is only used when implementing the upconversion feature of the
board. See Appendix F for further details.
External clock option:
Remove all jumpers from the clock configuration header. Provide a
differential clock to pins 6 and 7, with pins 5 and 8 as respective grounds
(pins 6 and 5 and pins 7 and 8 are signal and ground pairs). Ensure that the
GUI is set to the same clock frequency as the external clock.
Figure 4-3. Clock Configuration
4.3
FPGA and Control Architecture
The board contains two FPGAs, U2 and U3. The FPGA U2 interfaces to channels A and B of the CYV15G0404DXB device. The
FPGA U3 interfaces to channels C and D of the CYV15G0404DXB device. The major functions performed by the FPGA are as
follows.
Page 10 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
1. Video test pattern generation. For SD-SDI, the FPGA can generate EG1 Color Bar Data, Grey Pattern, SMPTE RP178, and
SMPTE RP178 alternate SDI checkfield patterns. For HD-SDI, the FPGA can generate Color Bar Data, Grey Pattern, SMPTE
RP198, and SMPTE RP198 alternate SDI checkfield patterns.
2. Auto rate detection and clock reconfiguration. The FPGA plays an important role in automatically detecting the incoming data
rate and reconfiguring the programmable clock to the correct frequency.
The CYV15G0404DXB configuration interface (8-bit data and 4-bit address) is configured through a Cypress Microsystems PSoC
microcontroller. The PSoC receives instructions from the host PC through the on-board USB interface.
The on-board USB interface is used to control the various operating modes of the device through a flexible GUI. The USB interface
is also used to re-program the FPGA and the PSoC microcontroller.
HOTLink II CYV15G0404DXB (U1)
FPGA for
channels
A and B
(U2)
Cypress Microsystems
PSoC Microcontroller
(U14)
Configuration Devices
(U4 and U5)
PSoC Programming
Header for external
PSoC configuration
(JB5)
128-bit I2C Bus Serial EEPROM
boot EEPROM for USB micro-controller (U8)
USB Interface
Connector (J20)
Cypress
FX2TM USB
Microcontroller
(U7)
FPGA for channels
C and D (U3)
Processor
Supervisory
Circuit (U6)
24MHz
crystal for
USB(Y1)
Figure 4-4. Placement of FPGA and Controls
4.4
Power Supply
The entire board is powered through a single 6V DC power supply. The 6V input is down-converted using on-board regulators to
different voltages for the various devices in the board. The kit for the board includes a compatible 6V AC wall power supply
adapter.
Page 11 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Parallel Jumper Headers
(JP14, JP15, JP16, JP17, JP18, JP19, JP20, JP21)
HOTLink II CYV15G0404DXB (U1)
A
C
B
D
D
C
3-Terminal Positive
Regulator (Q2)
DC-DC Converter
25W 8V in, 3.3V out (U15)
Channel A
Channel B
Channel C
Channel D
6V DC
3-Terminal Positive
Regulator (Q1) Power Supply
Jack (J1)
Figure 4-5. Placement of Power Supply and Jumper Headers
5.0
GUI and Operating Modes
Please refer to Appendix E for instructions on installing the GUI on a PC/Laptop and configuring the computer to recognize the
USB device. A picture of the GUI window is presented in Figure 5-1. A summary of the functionality of the buttons for channel A
is presented in Table 5-1. The description of each button’s functionality applies equally to all channels.
Page 12 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 5-1. Graphical User Interface
Table 5-1. Summary of GUI Button Functionality (Shown Here for Channel A)
Group
Button Name
Standard SMPTE
Functionality (On Click)
No action. This radio button is always selected.
1080i (see channel C in Standard for HD-SDI, automatically checked when user selects 1485Mb/s in Tx/Rx Rate
the above figure)
Panel of the GUI.
NTSC
Standard for SD-SDI. The user can check NTSC when they are transmitting/receiving data at
270 Mb/s, 360 Mb/s, or 540 Mb/s.
PAL
Standard for SD-SDI. The user can check PAL when they are transmitting/receiving data at
270 Mb/s, 360 Mb/s, or 540 Mb/s.
Interface TxPrim
Transmit data via OUTA1 (supports both SD and HD)
TxSec
Transmit data via OUTA2 (supports SD only)
RxPrim
Receive data via INA1 (supports both SD and HD)
Page 13 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Table 5-1. Summary of GUI Button Functionality (Shown Here for Channel A) (continued)
Group
Tx/Rx
Rate
Tx
Source
Status
Button Name
Receive data via INA2 (supports SD only)
270 Mb/s
SD-SDI: SMPTE 259M-C
360 Mb/s
SD-SDI: SMPTE 259M-D
540 Mb/s
SD-SDI: SMPTE 344M
1485 Mb/s
HD-SDI: SMPTE 292M
Auto Rate Detect
Programmable clock is reconfigured to the incoming video data rate and all other Tx/Rx Rate
buttons will display which frequency the programmable clock is set to.
FR
Setting the source clock frequency for HD-SDI as either full-rate (148.5 MHz) or half rate
(74.25 MHz). When the check-box is checked, a full-rate 148.5 MHz clock is used; when
unchecked, a 74.25 MHz clock is used.
EG1 Color Bars
The FPGA generates EG1 color bars, which will be transmitted out on OUTA1 or OUTA2 or
both.
Grey
The FPGA generates a uniform grey pattern, which will be transmitted out on OUTA1 or
OUTA2 or both.
RP178/198
The FPGA generates RP178/198 pattern (a pink half-frame on top of a grey half-frame, which
will be transmitted out on OUTA1 or OUTA2 or both.
RP 178/198 Alt.
The FPGA generates an alternative set of the RP178/198 pattern which will be transmitted
out on OUTA1 or OUTA2 or both.
Reclocker
Reclock the recovered data from the clock and data recovery unit and retransmit it through
the serial outputs of the same channel.
Up Convert Ch B
Functionality not yet implemented.
MCL
Maximum Cable Length: for normal operation there is no need for the user to touch this (i.e.
leave at 300m). If user would like to test at specific cable lengths then the bar can be set to
the desired setting.
Auto Rate Locked
Button selected when the correct data rate is detected.
CD
Carrier Detect: Button selected when the amplitude of the signal on equalizer is above the
MCL threshold.
LFI
Link Fault Indicator: Button automatically selected when HOTLink II CYV15G0404DXB does
NOT receive a valid serial signal on the relevant channel.
CRC Errors
Cyclic Redundancy Check Errors Indicator Bar: indicator bar indicates data reception errors.
CLI
Cable Length Indicator: estimates length of the cable being used for transmitting/receiving
data. Output from cable equalizer.
Channel Run/Stop
A
5.1
Functionality (On Click)
RxSec
Hitting run configures the channel with the applied settings; hitting stop ends operation and
powers down channel A.
Setting the SDI Data Rate
The appropriate data rate is set by selecting the appropriate button in the Tx/Rx Rate Box of the GUI. The various data rate
options are 270 Mb/s (SD-SDI/SMPTE 259M-C), 360 Mb/s (SMPTE 259M-D), 540 Mb/s (SMPTE 344M) or 1485 Mb/s (HD-SDI).
See Figure 5-2 for a picture of this GUI panel. The FR (Full Rate) check box adjacent to the 1485-Mb/s option is for setting the
source clock frequency for HD-SDI as either full-rate (148.5 MHz) or half-rate (74.25 MHz), via the programmable clock. When
the check-box is checked, a full-rate 148.5-MHz clock is used, and when unchecked, a 74.25-MHz clock is used. This button is
active only when the 1485-Mb/s button is selected.
If the programmable clock option is selected, the data rate setting in the GUI controls the output frequency of the programmable
clock. If the external clock option is selected, the user must ensure that the external clock frequency matches the data rate setting
in the GUI. If the on-board 74.25-MHz crystal oscillator is used, the 1485 Mb/s option must be selected with the FR box left
unchecked. See Section 4.2 for information on selecting clock options.
Page 14 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
If the output is to be viewed on a Tektronix WFM 700 waveform monitor, the user should not select the 360 Mb/s or 540 Mb/s
options because this waveform monitor does not support these data rates, and consequently, no images will be displayed on the
monitor.
Figure 5-2. GUI–Setting the Data Rate
Auto Rate Detect
When the Auto Rate Detect button is selected, the programmable clock is reconfigured to match the incoming video data rate
and all other data rate buttons will be disabled. Upon clicking “Run,” various rates are attempted until a valid SMPTE data rate is
detected on the input. This is shown as the last button in Figure 5-2. During the Auto Rate Detection function, a radial dot loops
through each data rate as it is attempted. If the data rate is successfully detected, the dot stops next to the rate of the incoming
data stream. For this feature to function, the programmable clock option must be selected.
5.2
Serial Interface I/O Selection
Each HOTLink II transmit channel has redundant outputs. Either one or both outputs can be enabled to transmit the same data.
When TxPrim is checked, the primary serial outputs OUTx1 are enabled. When TxSec is checked, the secondary serial outputs
OUTx2 are enabled. Note that both primary and secondary outputs can be enabled simultaneously. Each HOTLink II receive
channel has selectable dual inputs. Either INx1 (RxPrim) or INx2(RxSec), but not both, can be selected as the input serial data
source for the respective channel. See Figure 5-3 for a picture of the GUI panel.
Figure 5-3. GUI–Selecting the Serial I/Os
5.3
Standard
The first box in the top of the GUI sets the video standard. For SD, the supported SMPTE formats are NTSC and PAL as shown
in Figure 5-4. For HD, the supported format is 1080i and upon selecting 1485 Mb/s in the “Tx/Rx Rate” panel, the “Standard”
panel will reflect the HD standard as shown in Figure 5-5.
Figure 5-4. GUI–Selecting the Standards–SD
Page 15 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 5-5. GUI–Selecting the Standards–HD
5.4
Transmit Test Pattern
For SD-SDI, the FPGA can be configured to generate EG1 Color Bar, SMPTE RP178 SDI checkfield, SMPTE RP178 Alternate
SDI checkfield, or Grey field patterns. For HD-SDI, the FPGA can be configured to generate Color Bar, SMPTE RP198 SDI
checkfield, SMPTE RP198 Alternate SDI checkfield, or Grey field patterns. The Maximum Cable Length (MCL) scroll bar should
be set to 300m for normal operating conditions. See Figure 5-6 for details.
Reclocking
Function
Figure 5-6. GUI–Selecting the Test Patterns
Reclocker
The CYV15G0404DXB has an integrated reclocker function to reclock the recovered data from the clock and data recovery unit
and retransmit it through the serial outputs of the same channel. This can be set by selecting the Reclocker button. If both
Reclocker and Auto Rate Detect are selected, and the programmable clocking option is enabled, the auto rate detect logic will
detect the incoming data rate and reconfigure the clocks to perform reclocking function on the selected channel. See Figure 5-6
for a picture of the reclocker radio button.
5.5
Status
The status panel reflects the real time status of the board; the user has no control of this panel. The “Cable Length Indicator (CLI)”
estimates the length of the cable being used between a transmitter and the receiver on that channel. The “Cyclic Redundancy
Check (CRC) Errors” status bar indicates the number of errors detected after the received signal goes through the appropriate
cyclic redundancy check. The “Link Fault Indicator (LFI)” is asserted when the HOTLink II CYV15G0404DXB does not receive a
valid signal. The “Carrier Detect (CD)” is automatically checked when the amplitude of the incoming signal is greater than the
threshold. The “Auto Rate Locked” button is selected when the data rate for incoming data is detected and the clock is
programmed to the corresponding frequency.
Page 16 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 5-7. GUI–Selecting Status
6.0
Sample Test Procedures
Before performing the sample tests, please be sure to read Appendix E. It contains instructions on installing the GUI and configuring the hardware completely. Note: The on-board FPGAs and PSoC will be preprogrammed at the factory for testing. Therefore
there should be no need to program them. Appendix E contains programming instructions should you need them.
6.1
Required Equipment
• Tektronix Waveform Monitor: WFM 700
• Quad Independent Channel HOTLink II CYV15G0404DXB Video PHY Demo Board
• PC/Laptop with HVDB installed
• USB cable
• 6V DC Power Supply
• Four–six BNC cables
6.2
Tektronix WFM 700
The Tektronix WFM 700 is used in the demo tests to display the signal(s) output by the video demo board on the channel(s)
specified by the user. As mentioned in previous sections, the WFM 700 does not support data rates of 360 Mb/s and 540 Mb/s.
For a brief description of relevant buttons for the tests, please see Figure 6-1. The connectors used in the tests are shown in
Figure 6-2.
Page 17 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
STATUS - Displays video format
information and CRC status.
Used to see if data contains errors
Touchscreen allows easy user
interface
PICTURE - Displays video
EYE - Displays eye diagram
used for jitter analysis
INPUT - A or B
used to choose desired input
Figure 6-1. Tektronix WFM 700–Front View
S e r ia l D ig ita l In te r fa c e C a r d
Channel B
in p u t
C h a n n e l A in p u t
Figure 6-2. Tektronix WFM 700–Rear View
Page 18 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
6.3
Tests
This section contains step-by-step tests for fully evaluating the functionality of the board.
6.3.1
Generating SD Color Bar Patterns
1. Apply power to the board and connect the USB cable between the board and the computer.
2. Connect output OUTA1 to input A of the WFM700 using a BNC cable.
3. Open the GUI.
4. Configure channel A to generate color bars in SD format. In the “Tx/Rx Rate” panel of the GUI, click on the radio box for
270 Mb/s. In the “Tx Source” panel, select “EG1 Color Bars” to generate the color bar in SD format. See Figure 6-4 for the
GUI setting for transmitting color bar at 270 Mb/s.
5. Select the programmable clocking option as shown in Figure 4-3.
6. Press the “Run” button for channel A.
7. View the picture and status displays for the signal on the WFM 700.
Figure 6-3. Sample Test 1–Generating and Transmitting Color Bars
Page 19 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-4. GUI Setting for Sample Test 1
6.3.2
Generating HD Color Bar Patterns and Reclocking the Data Three Times
1. Apply power to the board and connect the USB cable between the board and the computer.
2. Connect a BNC cable between OUTC1 and IND1, a cable between OUTD1 and INB1, a cable between OUTB1 and INA1,
and a cable from OUTA1 to WFM 700. The pattern is sent from the FPGA to channel C; the data is then reclocked from channel
C to channel D, then reclocked from channel D to channel B, then reclocked from channel B to channel A and then displayed
on the WFM. Since HD color bars are transmitted, the primary outputs/inputs of each channel should be used.
3. For all channels, configure the clock headers to the programmable clock option.
4. Open the GUI.
5. Select appropriate buttons on the GUI according to Figure 6-6. Please note that there are two methods for setting the data
rate on the reclocker channels. One method is to select “Auto Rate Detect”, which will reconfigure the programmable clocks
to the incoming data rate. The other method is to set the data rate for all reclocked channels to be the same as the data rate
of the transmitting channel. In the set up shown in Figure 6-5 and Figure 6-6, the transmitting data rate is 1485 Mb/s which is
transmitting HD color bars. All reclocked channels are configured to automatically detect this data rate.
6. Press the “Run” button for channel C, then channel A, then channel B, then channel D.
7. View the picture display of the signal on the WFM 700.
Page 20 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-5. Sample Test 2–Transmits Color Bar Data Via Three Reclockers
Page 21 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-6. GUI Setting for Sample Test 2
6.3.3
Using Redundant Outputs
This test shows that primary input/output of a channel on the board supports both SD-SDI and HD-SDI standards while the
secondary input/output supports only the SD-SDI standard (due to presence of SD-SDI equalizers and cable drivers on secondary
I/Os).
1. Apply power to the board and connect the USB cable between the board and the computer.
2. Connect output OUTB1 to the WFM 700 channel A input and connect output OUTB2 to the WFM 700 channel B input using
BNC cables.
3. Open the GUI.
4. Select the appropriate GUI settings according to Figure 6-8. For this setting, channel B is transmitting SD-SDI color bars on
both primary and secondary outputs.
5. Press the “Run” button for channel B.
6. Press the “Input” button on the WFM to display either the primary or secondary output.
7. Press the “Stop” button for channel B.
8. Change the GUI settings according to Figure 6-9. For this setting, channel B is transmitting HD-SDI color bars only on the
primary output.
9. Press the “Run” button for channel B.
10.Press the Input button on the WFM 700 to display either the primary or secondary output. No signal is shown when the
secondary output is selected.
Page 22 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-7. Sample Test 3–Generate and Transmit Color Bars Through Both Output Buffers
Page 23 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-8. GUI Setting for Sample Test 3–Transmit SD-SDI Color Bars
Page 24 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-9. GUI Setting for Sample Test 3–Transmit HD-SDI Color Bars
6.3.4
Using Selectable Inputs and Automatic Rate Detection
1. Apply power to the board and connect the USB cable between the board and the computer.
2. Connect OUTB1 to IND2, OUTA1 to IND1, and OUTD1 to input A of the WFM 700.
3. Configure the clock header for channel A to the 74.25-MHz on-board crystal oscillator option, the clock header for channel B
and channel D to the programmable clock option.
4. Open the GUI
5. Configure channel A to generate the grey pattern in HD format at 1485 Mb/s and channel B to generate the EG1 color bars
in SD format at 270 Mb/s. For channel D, select TxPrim and RxPrim with Auto Rate Detect and Reclocker enabled. See
Figure 6-11.
6. Press the “Run” button for channel A, channel B, and channel D.
7. View the picture display of the signal on the WFM 700. The user should see the grey pattern in HD-SDI format displayed.
8. Press the “Stop” button for channel D.
9. Keep the GUI settings for channel A and channel B. For channel D, select TxPrim and RxSec with Auto Rate Detect and
Reclocker enabled. See Figure 6-12.
10.Press the “Run” button for channel A, channel B, and channel D.
11.View the picture display of the signal on the WFM 700. The user should see the EG1 color bars in SD-SDI format displayed.
12.Press the “Stop” button for all channels.
13.Keep the GUI settings for channel A and channel B. For channel D, keep the settings in the “Interface” panel; select the data
rate to be 270 Mb/s and reclocker enabled. See Figure 6-13.
14.Press the “Run” button for channel A, channel B, and channel D.
Page 25 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
15.View the picture display of the signal on the WFM 700. The user should see the EG1 color bars in SD-SDI format displayed.
16.Press the “Stop” button for all channels.
Note: For this test, the clock headers for channel A can be configured to either the on-board programmable clock option or the
on-board 74.25-MHz crystal oscillator clock option. Clock headers for channel B and channel D should be configured to the onboard programmable clock option.
Figure 6-10. Sample Test 4–Selectable Inputs and Auto Rate Detection
Page 26 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-11. GUI Setting for Sample Test 4: Step 6
Page 27 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-12. GUI Settings for Sample Test 4: Step 9
Page 28 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure 6-13. GUI Setting for Sample Test 4: Step 13
7.0
Summary
The Cypress HOTLink II family of transceivers are compliant to requirements specified by SMPTE for SD-SDI and HD-SDI serial
interfaces. The evaluation platform provides a full-fledged reference design that enables customers to easily implement Serial
Digital Interface systems with HOTLink II Video PHYs.
8.0
References
1. Television—10-Bit 4:2:2 Component and 4fSC Composite Digital Signals–Serial Digital Interface, ANSI/SMPTE 259M–1997,
Society of Motion Picture and Television Engineers, 1997.
2. Television—Component Video Signal 4:2:2 - Bit-Parallel Digital Interface, ANSI/SMPTE 125M-1995, Society of Motion Picture
and Television Engineers, 1995.
3. Television—System M/NTSC Composite Video Signals–Bit-Parallel Digital Interface, ANSI/SMPTE 244M-1995, Society of
Motion Picture and Television Engineers, 1995.
4. Television—Bit-Parallel Digital Interface–Component Video Signal 4:2:2 16x9 Aspect Ratio, ANSI/SMPTE 267M-1995, Society
of Motion Picture and Television Engineers, 1995.
5. Pathological Conditions in Serial Digital Video Systems, SMPTE Engineering Guidelines, EG 34-1999, Society of Motion
Picture and Television Engineers, 1999.
6. Serial Digital Interface Checkfield for 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals, SMPTE Recommended
Practices, RP 178-1996, Society of Motion Picture and Television Engineers, 1996.
7. SDI SMPTE Jitter Performance of the Independent Channel HOTLink II Transceiver, Application Note, Cypress Semiconductor Corporation 2004.
Page 29 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Appendix A: Schematics of HOTLink II
CYV15G0404DXB Video Demo Board
Page 30 of 92
[+] Feedback
D
C
1
OUTB1+
OUTB1OUTB2+
OUTB2INB1+
INB1INB2+
INB2OUTC1+
OUTC1OUTC2+
OUTC2INC1+
INC1INC2+
INC2OUTD1+
OUTD1OUTD2+
OUTD2IND1+
IND1IND2+
IND2-
OUTB1+
OUTB1OUTB2+
OUTB2INB1+
INB1INB2+
INB2OUTC1+
OUTC1OUTC2+
OUTC2INC1+
INC1INC2+
INC2OUTD1+
OUTD1OUTD2+
OUTD2IND1+
IND1IND2+
IND2-
SD/HDA
SD/HDB
SD/HDC
SD/HDD
CD/MUTEA
CD/MUTEB
CD/MUTEC
CD/MUTED
CD/MUTEB2
CD/MUTED2
SSI/CDC2
OUTA1+
OUTA1OUTA2+
OUTA2INA1+
INA1INA2+
INA2-
Flexible Clock &Configuration
Flexible Clock &Configuration.SchDoc
2
REFCLKA+
REFCLKAREFCLKB+
REFCLKBREFCLKC+
REFCLKCREFCLKD+
REFCLKDHR ESET#
B
CLIA
CLIB
CLIC
CLID
CLIA
CLIB
CLIC
CLID
CYV15G0403
CYV15G0403.SchDoc
OUTA1+
OUTA1OUTA2+
OUTA2INA1+
INA1INA2+
INA2-
3
SCSE1
SCSE
SCL
SDO
SDI
TD3
TD4
I2SCL
I2SDA
TXDC[7..0]
TXCTC[1..0]
TXCLKOC
TXCLKC
TXERRC
RXDC[7..0]
RXSTC[2..0]
RXCLKC+
RXCLKCRCLKENC
LFIC
TXDD[7..0]
TXCTD[1..0]
TXCLKOD
TXCLKD
TXERRD
RXDD[7..0]
RXSTD[2..0]
RXCLKD+
RXCLKDRCLKEND
LFID
TXDC[7..0]
TXCTC[1..0]
TXCLKOC
TXCLKC
TXERRC
RXDC[7..0]
RXSTC[2..0]
RXCLKC+
RXCLKCRCLKENC
LFIC
TXDD[7..0]
TXCTD[1..0]
TXCLKOD
TXCLKD
TXERRD
RXDD[7..0]
RXSTD[2..0]
RXCLKD+
RXCLKDRCLKEND
LFID
4
4
GPIF Interface
I2CBUS
RESET#
Programmming Interface
I2SCL
I2SDA
RESET#
F1CONFIG_DONE
F1nCONFIG
F1nCE
F1DATA0
F1DCLK
F1nCS
F1ASDI
DMINUS
DPLUS
F2CONFIG_DONE
F2nCONFIG
F2nCE
F2DATA0
F2DCLK
F2nCS
F2ASDI
PA7/*FLAGD/SLCS#
IFCLK
CLKOUT
FD[15..0]
RDY[1..0]
CTL[2..0]
FX2 USB Microcontroller
FX2 USB Microcontroller.SchDoc
Power Supply
Power Supply.SchDoc
PRXDD[9..0]
PRXCLKD
PRXDD[9..0]
PRXCLKD
FCLKA+
FCLKAFCLKB+
FCLKBFCLKC+
FCLKCFCLKD+
FCLKD-
PTXDD[9..0]
PTXCLKD
PRXDC[9..0]
PRXCLKC
PRXDC[9..0]
PRXCLKC
PTXDD[9..0]
PTXCLKD
PTXDC[9..0]
PTXCLKC
PRXDB[9..0]
PRXCLKB
PRXDB[9..0]
PRXCLKB
PTXDC[9..0]
PTXCLKC
PTXDB[9..0]
PTXCLKB
PRXDA[9..0]
PRXCLKA
PRXDA[9..0]
PRXCLKA
PTXDB[9..0]
PTXCLKB
PTXDA[9..0]
PTXCLKA
Parallel Interfaces
Parallel Interfaces.SchDoc
PTXDA[9..0]
PTXCLKA
SD/HDA
SD/HDB
SD/HDC
SD/HDD
CD/MUTEA
CD/MUTEB
CD/MUTEC
CD/MUTED
CD/MUTEB2
FD[15..0]
CD/MUTED2
RDY[1..0]
SSI/CDC2
CTL[2..0]
LDTDEN
ULCD
ULCC
ULCB
ULCA
IFCLK
INSELD
CLKOUT
INSELC
INSELB PA7/*FLAGD/SLCS#
INSELA
LPEND
F1CONFIG_DONE
LPENC
F1nCONFIG
LPENB
F1nCE
LPENA
F1DATA0
SPDSELD
F1DCLK
SPDSELC
F1nCS
SPDSELB
F1ASDI
SPDSELA
F2CONFIG_DONE
F2nCONFIG
F2nCE
F2DATA0
F2DCLK
F2nCS
F2ASDI
SCSE1
SCSE
SCL
SDO
SDI
RESET#
TDO
TDI
TCLK
TMS
TMRESET#
TXDA[7..0]
TXCTA[1..0]
TXCLKOA
TXCLKA
TXERRA
RXDA[7..0]
RXSTA[2..0]
RXCLKA+
RXCLKARCLKENA
LFIA
TXDB[7..0]
TXCTB[1..0]
TXCLKOB
TXCLKB
TXERRB
RXDB[7..0]
RXSTB[2..0]
RXCLKB+
RXCLKBRCLKENB
LFIB
FPGA
FPGA.SchDoc
TXDA[7..0]
TXCTA[1..0]
TXCLKOA
TXCLKA
TXERRA
RXDA[7..0]
RXSTA[2..0]
RXCLKA+
RXCLKARCLKENA
LFIA
TXDB[7..0]
TXCTB[1..0]
TXCLKOB
TXCLKB
TXERRB
RXDB[7..0]
RXSTB[2..0]
RXCLKB+
RXCLKBRCLKENB
LFIB
XDATA
XSC LK
XRES
Serial IO Interface
Serial IO Interface.SchDoc
MCLADJA
MCLADJB
MCLADJC
MCLADJD
MCLADJA
MCLADJB
MCLADJC
MCLADJD
3
REFCLKA+
REFCLKAREFCLKB+
REFCLKBREFCLKC+
REFCLKCREFCLKD+
REFCLKDHR ESET#
SPDSELA
SPDSELB
SPDSELC
SPDSELD
LPENA
LPENB
LPENC
LPEND
INSELA
INSELB
INSELC
INSELD
ULCA
ULCB
ULCC
ULCD
LDTDEN
DATA[7..0]
ADDR [3.. 0]
WREN
TMRESET#
TMS
TCLK
TDO
TDI
DATA[7..0]
ADDR[3..0]
WREN
FCLKA+
FCLKAFCLKB+
FCLKBFCLKC+
FCLKCFCLKD+
FCLKD-
2
XR ES
XSCLK
XDATA
A
1
5
5
4.7n
C158
1M
R167
S
C
2
6
Revision
12
of
G. Cosens
LS7652
Sheet 01
Drawn By:
Linear Systems Ltd.
Fiducial
FID6
Fiducial
FID5
Fiducial
FID4
Fiducial
FID3
Fiducial
FID2
Fiducial
FID1
1PIN
TP7
1PIN
TP6
1PIN
TP5
1PIN
TP4
1PIN
TP3
1PIN
TP2
1PIN
TP1
DrawingNumber
Date: 7/6/2004
File: Top Level.SchDoc
Size
Cypress Molson - Top Level
USB-B
VBUS
DD+
GND
FRM1
FRM2
J20
USB Connector
1
2
3
4
5
6
6
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-1. Top Level Schematic
Page 31 of 92
[+] Feedback
D
C
B
A
C36
0.1u
C37
0.1u
C38
0.1u
C39
0.1u
22p
C42
22p
C41
C40
0.1u
Y1
24 MHz
1
1
2
3
4
24LC00
A0
A1
A2
Vss
U8
8
7
6
5
I2SCL
I2SDA
Vcc
WP
SCL
SDA
+3.3V
R18
2.2K
+3.3V
R17
2.2K
+3.3V
C252
0.1u
2
IFCLK
DPLUS
DMINUS
RDY[1..0]
C168
0.1u
RDY[1..0]
C169
0.1u
DPLUS/DMINUS should have 90 ohm +/-10% differential impedance.
C35
0.1u
2
RDY1
RDY0
C255
0.1u
FD[15..0]
C254
0.1u
R195
1k
FD[15..0]
C253
0.1u
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
C257
0.1u
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
VCC
DPUS
DMINUS
GND
VCC
GND
INT4
T0
T1
T2
IFCLK
RESERVED
BKPT
SCL
SDA
C256
0.1u
CLKOUT
C258
0.1u
3
FD15
FD14
FD13
FD12
3
FD0
FD1
FD2
FD3
1
C259
0.1u
+
C260
10u
2
4
1
3
5
PD0/FD8
*WAKEUP
VCC
RESET
CTL5
GND
PA7/*FLAGD/SLCS
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1
PA0/INT0
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
4
XRES
XSCLK
XDATA
F1CONFIG_DONE
F1nCONFIG
F1nCE
F1DATA0
F1DCLK
F1nCS
F1ASDI
CTL[2..0]
PA7/*FLAGD/SLCS#
F2CONFIG_DONE
F2nCONFIG
F2nCE
F2DATA0
F2DCLK
F2nCS
F2ASDI
RESET#
CTL[2..0]
RESET#
CTL2
CTL1
CTL0
FD8
+3.3V
R16
4.7K
+3.3V
RESET#
4
U7
CY7C68013-100AC
RST
MR
VDD
TPS3820-33
GND
WDI
U6
FD11
FD10
FD9
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
CLKOUT
GND
PD7/FD15
PD6/FD14
PD5/FD13
PD4/FD12
GND
PE7/GPIFADR8
PE6/T2EX
PE5/INT6
PE4/RXD1OUT
PE3/RXD0OUT
PE2/T2OUT
PE1/T1OUT
PE0/T0OUT
VCC
INT5
PD3/FD11
PD2/FD10
PD1/FD9
RD
WR
VCC
PB0/FD0
PB1/FD1
PB2/FD2
PB3/FD3
VCC
GND
TXD0
RXD0
TXD1
RXD1
PB4/FD4
PB5/FD5
PB6/FD6
PB7/FD7
GND
VCC
GND
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
FD4
FD5
FD6
FD7
+3.3V
B
LS7652
Drawing Number
5
Date: 7/6/2004
File: FX2 USB Microcontroller.SchDoc
Size
6
6
Sheet 02
Drawn By:
Linear Systems Ltd.
Cypress Molson - FX2 USB Microcontroller
5
12
of
G. Cosens
2
Revision
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-2. USB FX2 Microcontroller
Page 32 of 92
[+] Feedback
D
C
B
A
TDO
TCLK
TDI
TMS
TMRESET#
TD4
1
0
R192
1
TD3
TD1
R15
1.0K
R13
1.0K
+3.3V
R14
1.0K
2
4
6
8
10
HEADER 5X2
1
3
5
7
9
JP9
2
2
+3.3V
SCSE1
TXCLKOC
TXCLKOD
RXDC[7..0]
RXDD[7..0]
RXSTC[2..0]
RXSTD[2..0]
RXCLKC+
RXCLKD+
RXCLKCRXCLKDCD/MUTEC
CD/MUTED
PTXDC[9..0]
PTXDD[9..0]
F2ASDI
F2DCLK
F2nCS
LFIC
LFID
CD/MUTED2
SSI/CDC2
F2nCE
F2nCONFIG
F2CONFIG_DONE
PTXCLKC
PTXCLKD
TXERRC
TXERRD
TXCLKOA
TXCLKOB
RXDA[7..0]
RXDB[7..0]
RXSTA[2..0]
RXSTB[2..0]
RXCLKA+
RXCLKB+
RXCLKARXCLKBCD/MUTEA
CD/MUTEB
PTXDA[9..0]
PTXDB[9..0]
F1ASDI
F1DCLK
F1nCS
CLKOUT
IFCLK
LFIA
LFIB
SDO
SCL
SCSE
F1nCE
F1nCONFIG
F1CONFIG_DONE
PA7/*FLAGD/SLCS#
RESET#
PTXCLKA
PTXCLKB
TXERRA
TXERRB
FD[15..0]
CTL[2..0]
CD/MUTEB2
3
3
TD2
TXCLKOC
TXDC[7..0]
TXCLKOD
TXDD[7..0]
RXDC[7..0]
TXCTC[1..0]
RXDD[7..0]
TXCTD[1..0]
RXSTC[2..0]
TXCLKC
RXSTD[2..0]
TXCLKD
RXCLKC+
SD/HDC
RXCLKD+
SD/HDD
RXCLKCPRXDC[9..0]
RXCLKDPRXDD[9..0]
CD/MUTEC
F2DATA0
CD/MUTED
RCLKENC
PTXDC[9..0]
RCLKEND
PTXDD[9..0]
SPDSELC
F2ASDI
SPDSELD
F2DCLK
PRXCLKC
F2nCS
PRXCLKD
LFIC
LPENC
LFID
LPEND
CD/MUTED2
INSELC
SSI/CDC2
INSELD
F2nCE
ULCC
F2nCONFIG
ULCD
F2CONFIG_DONE
SDI
PTXCLKC
TDO
PTXCLKD
RDY[1..0]
TXERRC
FCLKC+
TXERRD
FCLKCSDO
FCLKD+
SCL
FCLKDSCSE1
RESET#
TCK
TDI
TMS
CLKOUT
IFCLK
CTL[2..0]
FD[15..0]
PA7/*FLAGD/SLCS#
FPGA2
FPGA2.SchDoc
TXCLKOA
TXDA[7..0]
TXCLKOB
TXDB[7..0]
RXDA[7..0]
TXCTA[1..0]
RXDB[7..0]
TXCTB[1..0]
RXSTA[2..0]
TXCLKA
RXSTB[2..0]
TXCLKB
RXCLKA+
SD/HDA
RXCLKB+
SD/HDB
RXCLKAPRXDA[9..0]
RXCLKBPRXDB[9..0]
CD/MUTEA
F1DATA0
CD/MUTEB
SDI
PTXDA[9..0]
RCLKENA
PTXDB[9..0]
RCLKENB
F1ASDI
SPDSELA
F1DCLK
SPDSELB
F1nCS
LPENA
CLKOUT
LPENB
IFCLK
INSELA
LFIA
INSELB
LFIB
ULCA
SDO
ULCB
SCL
LDTDEN
SCSE
PRXCLKA
F1nCE
PRXCLKB
F1nCONFIG
RDY[1..0]
F1CONFIG_DONE
TDO
PA7/*FLAGD/SLCS#FCLKA+
RESET#
FCLKAPTXCLKA
FCLKB+
PTXCLKB
FCLKBTXERRA
TXERRB
FD[15..0]
CTL[2..0]
CD/MUTEB2
TCK
TDI
TMS
FPGA1
FPGA1.SchDoc
4
4
FCLKC+
FCLKCFCLKD+
FCLKD-
TXDC[7..0]
TXDD[7..0]
TXCTC[1..0]
TXCTD[1..0]
TXCLKC
TXCLKD
SD/HDC
SD/HDD
PRXDC[9..0]
PRXDD[9..0]
F2DATA0
RCLKENC
RCLKEND
SPDSELC
SPDSELD
PRXCLKC
PRXCLKD
LPENC
LPEND
INSELC
INSELD
ULCC
ULCD
FCLKA+
FCLKAFCLKB+
FCLKB-
TXDA[7..0]
TXDB[7..0]
TXCTA[1..0]
TXCTB[1..0]
TXCLKA
TXCLKB
SD/HDA
SD/HDB
PRXDA[9..0]
PRXDB[9..0]
F1DATA0
SDI
RCLKENA
RCLKENB
SPDSELA
SPDSELB
LPENA
LPENB
INSELA
INSELB
ULCA
ULCB
LDTDEN
PRXCLKA
PRXCLKB
RDY[1..0]
B
5
Date: 7/6/2004
File: FPGA.SchDoc
Size
6
2
6
Revision
LS7652
of
12
G. Cosens
Drawing Number
Sheet 03
Drawn By:
Linear Systems Ltd.
Cypress Molson - FPGA's
5
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-3. FPGA Top Level
Page 33 of 92
[+] Feedback
D
C
B
A
C147
1n
0
FD[15..0]
RESET#
RXCLKA+
TXCLKOA
RXCLKASDI
SDO
SCSE
LFIA
INSELB
LPENB
SCL
FD[15..0]
CTL[2..0]
1
CLKOUT
PA7/*FLAGD/SLCS#
TXDA[7..0]
TXCTA[1..0]
R213
FCLKA+
FCLKA-
CTL[2..0]
C146
0.1u
+1.5VA
TXCLKA
TXDA[7..0]
TXCTA[1..0]
C3
C2
D3
D2
D4
D1
E3
E2
F1
E4
E5
F2
F3
F4
F5
G1
G2
F6
F7
G3
G4
G5
G6
H1
H2
H3
H4
H5
H6
J1
H7
J2
J5
J3
J4
K1
J6
K2
J7
K3
K7
L1
K6
K4
K5
L7
L6
L2
L3
L5
L4
M1
M3
M2
M5
M4
N1
N2
M6
N7
N5
N6
N3
N4
P5
P2
P3
R1
P4
R2
R3
T2
T3
+
+3.3V
F1CONFIG_DONE
F1nCONFIG
F1nCE
F1DATA0
F1DCLK
F1nCS
F1ASDI
FD4
FD14
FD15
FD12
FD13
FD5
FD11
FD10
FD8
FD7
FD6
CTL1
FD9
CTL0
CTL2
F1DCLK
F1ASDI
F1nCE
RXCLKA+
TXCLKOA
F1nCS
F1DATA0
F1nCONFIG
RXCLKA-
RXDA7
TXCTA1
TXCLKA
RXSTB2
TXDA1
RXDA3
C250
10u
C155
0.1u
+3.3V
C170
0.1u
+3.3V
F1CONFIG_DONE
F1nCONFIG
F1nCE
F1DATA0
F1DCLK
F1nCS
F1ASDI
BANK1
EP1C20F324C8
rxstb[2]
txda[1]
rxda[3]
lpenb
scl
txclka
inselb
txcta[1]
RESERVED_INPUT
rxda[7]
RESERVED_INPUT
sdo
scse
lfia
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
rxclka_n
sdi
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
DATA0
nCONFIG
VCCA_PLL1
rxclka_p
txclkoa
GNDA_PLL1
GNDG_PLL1
nCEO
nCE
MSEL0
MSEL1
DCLK
RESERVED_INPUT
fclka_p
fclka_n
RESERVED_INPUT
RESERVED_INPUT
ctl[2]
reset_n
RESERVED_INPUT
pa7_flagd_slcs
ctl[1]
fd[9]
ctl[0]
RESERVED_INPUT
fd[8]
fd[7]
fd[6]
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
fd[11]
fd[10]
RESERVED_INPUT
fd[12]
fd[13]
fd[5]
RESERVED_INPUT
fd[4]
fd[14]
fd[15]
clkout
U2A
C143
0.1u
C171
0.1u
C20
0.1u
C172
0.1u
2
C21
0.1u
C173
0.1u
RXDA[7..0]
RXSTA[2..0]
TXCTB[1..0]
TXDB[7..0]
TXCLKB
RXDB[7..0]
RXSTB[2..0]
2
INSELA
TXERRA
LFIB
RXDA[7..0]
RXSTA[2..0]
TXCTB[1..0]
TXDB[7..0]
+3.3V
0
LPENA
RCLKENA
RXDB[7..0]
TXERRB
RXSTB[2..0]
R214
POWER/GND
V5
V14
P8
P11
C10
0.1u
C174
0.1u
VC CIO4
VC CIO4
VC CIO4
VC CIO4
+1.5V
P18
M12
H12
E18
VC CIO3
VC CIO3
VC CIO3
VC CIO3
RXDA6
RXDB3
RXDA5
TXDA2
RXDB6
RXDA4
TXDA3
RXDB7
TXDA0
TXDA5
TXDA6
RXDA1
TXCTA0
TXCTB0
RXDA0
RXDB2
TXDA7
TXDA4
RXSTA0
RXDA2
TXDB1
TXDB5
RXDB1
RXSTA2
RXDB0
TXDB7
TXDB4
RXDB5
RXSTA1
TXDB0
TXCTB1
TXDB2
TXCLKB
TXDB3
RXDB4
RXSTB0
SPDSELB'
RXSTB1
E9
E12
A5
A14
VC CIO2
VC CIO2
VC CIO2
VC CIO2
C16
B16
G11
F11
B15
A15
C15
D14
B14
C14
E13
G10
F10
B13
A13
D13
C13
D12
C12
B12
A12
C11
D11
B11
A11
E11
C10
D10
B10
A10
E10
G9
F9
D9
C9
A9
B9
D8
C8
A8
B8
E8
E7
A7
B7
D7
C7
E6
D6
B6
C6
A6
B5
C5
D5
A4
B4
F8
G8
B3
C4
P1
M7
G7
E1
VC CIO1
VC CIO1
VC CIO1
VC CIO1
BANK2
EP1C20F324C8
rxstb[1]
txerrb
VCCINT
GND
rxstb[0]
spdselb
lpena
rclkena
txdb[3]
rxdb[4]
RESERVED_INPUT
GND
VCCINT
txdb[2]
txclkb
insela
rxdb[1]
rxsta[2]
rxdb[0]
txdb[7]
txdb[4]
rxdb[5]
rxsta[1]
txdb[0]
txctb[1]
RESERVED_INPUT
RESERVED_INPUT
rxda[2]
txdb[1]
txdb[5]
RESERVED_INPUT
VCCINT
GND
rxsta[0]
RESERVED_INPUT
txcta[0]
txctb[0]
rxda[0]
rxdb[2]
txda[7]
txda[4]
RESERVED_INPUT
RESERVED_INPUT
txda[5]
txda[6]
rxda[1]
lfib
RESERVED_INPUT
rxda[4]
txda[3]
rxdb[7]
txda[0]
RESERVED_INPUT
rxdb[3]
rxda[5]
txda[2]
rxdb[6]
VCCINT
GND
txerra
rxda[6]
U2B
3
C11
0.1u
C175
0.1u
C12
0.1u
C176
0.1u
C13
0.1u
C177
0.1u
C14
0.1u
+1.5V
C178
0.1u
+1.5V
C15
0.1u
C179
0.1u
3
C16
0.1u
C180
0.1u
C148
0.1u
+1.5VA
C17
0.1u
C181
0.1u
C18
0.1u
C182
0.1u
C19
0.1u
C183
0.1u
C149
1n
FCLKB+
FCLKB-
221
+3.3V
R196
U2E
EP1C20F324C8
+1.5V
V2
V17
U18
U1
L9
K10
J9
H10
B18
B1
A2
A17
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
V3
V18
V16
V1
U2
U17
T18
T1
L8
L11
L10
K9
K8
K11
J8
J11
J10
H9
H8
H11
C18
C1
B2
B17
A3
A18
A16
A1
1
C9
0.1u
+3.3V
ULCB
LDTDEN
RCLKENB
ULCA
CD/MUTEB2
CD/MUTEB
SD/HDB
CD/MUTEA
SD/HDA
+3.3V
RXCLKB-
TDI
L7425A
L270A
L540A
L360A
LFIA
CDA
L7425B
L540B
LFIB
L270B
L360B
CDB
PTXDA1
PTXDA0
8
7
3
4
EPCS4SI8N
VCC
VCC
VCC
GND
U4
TXDB6
SPDSELA'
RXCLKB-
TXCLKOB
RXCLKB+
F1CONFIG_DONE
F1nSTATUS
TXCLKOB
RXCLKB+
TCK
TMS
TDO
PTXCLKA
PRXCLKB
LED2
D30
4
2
6
1
5
BANK3
EP1C20F324C8
F1DATA0
F1DCLK
F1nCS
F1ASDI
led2
ledcdb
ptxda[1]
ptxda[0]
prxclkb
ledlfib
led270b
led360b
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
led540b
ptxclka
RESERVED_INPUT
RESERVED_INPUT
led7425b
RESERVED_INPUT
ledlfia
ledcda
RESERVED_INPUT
RESERVED_INPUT
led270a
led540a
led360a
RESERVED_INPUT
RESERVED_INPUT
led7425a
RESERVED_INPUT
RESERVED_INPUT
fclkb_p
fclkb_n
CONF_DONE
nSTATUS
TCK
TMS
TDO
GNDG_PLL2
GNDA_PLL2
txclkob
rxclkb_p
VCCA_PLL2
TDI
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
rxclkb_n
RESERVED_INPUT
RESERVED_INPUT
cd_mutea
sd_hda
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
cd_muteb
sd_hdb
RESERVED_INPUT
RESERVED_INPUT
cd_muteb2
RESERVED_INPUT
RESERVED_INPUT
rclkenb
ulca
spdsela
RESERVED_INPUT
ldtden
RESERVED_INPUT
txdb[6]
ulcb
U2C
DATA
DCLK
nCS
ASDI
T16
T17
R17
R18
R15
R16
P16
P17
P15
P14
N14
N18
N17
N13
N12
N16
N15
M18
M17
M14
M15
M16
L18
L17
M13
L13
L16
L15
L14
K16
K15
K17
L12
K18
K14
K13
J18
K12
J16
J15
J12
J17
J14
J13
H13
H14
H15
H16
H17
H18
G18
G17
G13
G14
G15
G16
G12
F12
F18
F17
F13
F14
F16
F15
E17
E16
E15
D18
E14
D16
D15
C17
D17
4
F1DCLK
F1CONFIG_DONE
F1nCONFIG
F1DATA0
F1ASDI
PRXDB[9..0]
PTXDB[9..0]
PRXDA[9..0]
PTXDA[9..0]
RDY[1..0]
2
4
6
8
10
HEADER 5X2
1
3
5
7
9
JP6
PRXDB[9..0]
PTXDB[9..0]
PRXDA[9..0]
PTXDA[9..0]
RDY[1..0]
F1nCE
F1nCS
+3.3V
PRXCLKA
PTXCLKB
IFCLK
5
+1.5V
5
U3
V4
M8
N8
T4
U4
T5
U5
R4
R5
V6
U6
P6
P7
T6
R6
U7
V7
T7
R7
U8
V8
T8
R8
U9
V9
R9
T9
M9
N9
P9
U10
V10
T10
R10
P10
R11
T11
U11
V11
V12
U12
T12
R12
V13
U13
T13
R13
N10
M10
P12
P13
U14
T14
R14
V15
U15
N11
M11
U16
T15
F1nCE
F1nCONFIG
F1nSTATUS
F1CONFIG_DONE
PRXDA1
PTXDB0
PRXDB0
PTXDA2
PRXDA0
PRXDB3
PTXDB3
PRXDA4
PTXDA5
PTXDA4
PRXDA3
PTXDB2
PRXDB2
PTXDA3
PRXDA2
PTXDB1
PRXDB1
PRXDA5
PTXDA6
PTXDB4
PRXDB4
PTXDB8
PRXDB8
PRXDA8
PTXDA9
PTXDB7
PRXDB7
PRXDA7
PTXDA8
PTXDB6
PRXDB6
PRXDA6
PTXDA7
PRXDB5
PTXDB5
FD3
PTXDB9
PRXDA9
RDY0
PRXDB9
FD0
FD1
RDY1
FD2
+3.3V
0
B
Date: 7/6/2004
File: FPGA1.SchDoc
Size
+3.3V
+3.3V
3
2
1
3
2
1
3PIN
JB2
3PIN
JB1
L7425B
L540B
L360B
L270B
CDB
LFIB
L7425A
L540A
L360A
L270A
CDA
LFIA
SPDSELB
SPDSELA
221
R179
221
R178
221
R177
221
R176
221
R175
221
R174
221
R173
221
R172
221
R171
221
R170
221
R169
221
R168
2
6
Revision
12
of
G. Cosens
LS7652
LED2
D14
LED2
D13
LED2
D12
LED2
D11
LED2
D10
LED2
D9
LED2
D8
LED2
D7
LED2
D6
LED2
D5
LED2
D4
LED2
D3
DrawingNumber
Sheet 04
Drawn By:
Linear Systems Ltd.
R2
0
R1
Cypress Molson - FPGA1
10K
R6
10K
R5
10K
R4
10K
R3
SPDSELB'
SPDSELA'
BANK4
EP1C20F324C8
rdy[1]
fd[2]
VCCINT
GND
ifclk
fd[3]
ptxdb[9]
prxda[9]
rdy[0]
prxdb[9]
fd[0]
fd[1]
RESERVED_INPUT
RESERVED_INPUT
ptxdb[8]
prxdb[8]
prxda[8]
ptxda[9]
ptxdb[7]
prxdb[7]
prxda[7]
ptxda[8]
ptxdb[6]
prxdb[6]
prxda[6]
ptxda[7]
prxdb[5]
ptxdb[5]
GND
VCCINT
RESERVED_INPUT
prxda[5]
ptxda[6]
ptxdb[4]
prxdb[4]
RESERVED_INPUT
prxdb[3]
ptxdb[3]
prxda[4]
ptxda[5]
ptxda[4]
prxda[3]
ptxdb[2]
prxdb[2]
ptxda[3]
prxda[2]
ptxdb[1]
prxdb[1]
GND
VCCINT
RESERVED_INPUT
RESERVED_INPUT
prxda[1]
ptxdb[0]
prxdb[0]
ptxda[2]
prxda[0]
VCCINT
GND
prxclka
ptxclkb
U2D
6
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-4. FPGA for Channel A and B
Page 34 of 92
[+] Feedback
D
C
B
A
RXDD[7..0]
RXSTD[2..0]
SCL
SDO
SDI
SCSE1
RXCLKD+
TXCLKOD
1
RXDD[7..0]
TXERRD
RXSTD[2..0]
1n
FCLKD+
FCLKD-
C151
0.1u
RXCLKD-
PA7/*FLAGD/SLCS#
RESET#
CTL[2..0]
C150
+1.5VA
CTL[2..0]
FD[15..0]
FD[15..0]
C3
C2
D3
D2
D4
D1
E3
E2
F1
E4
E5
F2
F3
F4
F5
G1
G2
F6
F7
G3
G4
G5
G6
H1
H2
H3
H4
H5
H6
J1
H7
J2
J5
J3
J4
K1
J6
K2
J7
K3
K7
L1
K6
K4
K5
L7
L6
L2
L3
L5
L4
M1
M3
M2
M5
M4
N1
N2
M6
N7
N5
N6
N3
N4
P5
P2
P3
R1
P4
R2
R3
T2
T3
+
C251
10u
C157
0.1u
0.1u
0.1u
C185
C156
+3.3V
0.1u
C184
+3.3V
F2CONFIG_DONE
F2nCONFIG
F2nCE
F2DATA0
F2DCLK
F2nCS
F2ASDI
EP1C20F324C8
BANK1
fd[1]
fd[2]
fd[3]
fd[13]
rdy[1]
fd[12]
fd[4]
fd[5]
fd[10]
RESERVED_INPUT
RESERVED_INPUT
fd[11]
fd[6]
fd[7]
RESERVED_INPUT
fd[8]
fd[9]
RESERVED_INPUT
RESERVED_INPUT
ctl[0]
ctl[1]
RESERVED_INPUT
RESERVED_INPUT
pa7_flagd_slcs
reset_n
ctl[2]
rxclkd_n
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
DATA0
nCONFIG
VCCA_PLL1
rxclkd_p
txclkod
GNDA_PLL1
GNDG_PLL1
nCEO
nCE
MSEL0
MSEL1
DCLK
RESERVED_INPUT
fclkd_p
fclkd_n
RESERVED_INPUT
RESERVED_INPUT
sdi
scse1
RESERVED_INPUT
RESERVED_INPUT
sdo
RESERVED_INPUT
scl
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
rxstd[2]
txerrd
rxstc[2]
rxdd[1]
rxstc[1]
txctd[1]
rxstd[0]
U3A
+3.3V
F2CONFIG_DONE
F2nCONFIG
F2nCE
F2DATA0
F2DCLK
F2nCS
F2ASDI
RXSTC2
RXDD1
RXSTC1
TXCTD1
RXSTD0
RXSTD2
F2DCLK
F2ASDI
F2nCE
RXCLKD+
TXCLKOD
F2nCS
F2DATA0
F2nCONFIG
CTL2
RXCLKD-
CTL0
CTL1
FD8
FD9
FD11
FD6
FD7
FD1
FD2
FD3
FD13
RDY1
FD12
FD4
FD5
FD10
2
+3.3V
RDY[1..0]
PRXDD[9..0]
PTXDD[9..0]
PRXDC[9..0]
PTXDC[9..0]
0.1u
C33
0.1u
C186
POWER/GND
2
0.1u
C34
0.1u
C187
PTXCLKC
IFCLK
PTXCLKD
PRXCLKD
CLKOUT
PRXCLKC
PRXDD[9..0]
PTXDD[9..0]
PRXDC[9..0]
PTXDC[9..0]
RDY[1..0]
V5
V14
P8
P11
VC CIO4
VC CIO4
VC CIO4
VC CIO4
P18
M12
H12
E18
VC CIO3
VC CIO3
VC CIO3
VC CIO3
+1.5V
E9
E12
A5
A14
VC CIO2
VC CIO2
VC CIO2
VC CIO2
FD0
RDY0
FD15
FD14
PTXDD0
PRXDD0
PRXDD1
PTXDD1
PTXDC0
PRXDD3
PTXDD3
PTXDC2
PRXDC1
PRXDD2
PTXDD2
PTXDC1
PRXDC0
PTXDD4
PRXDD4
PRXDC2
PTXDC3
PRXDC5
PTXDC6
PRXDD7
PTXDD7
PRXDD6
PTXDD6
PRXDC4
PTXDC5
PTXDD5
PRXDD5
PRXDC3
PTXDC4
PRXDC7
PTXDC7
PTXDD9
PRXDD8
PRXDC6
PTXDD8
PRXDC9
PRXDC8
P1
M7
G7
E1
VC CIO1
VC CIO1
VC CIO1
VC CIO1
C16
B16
G11
F11
B15
A15
C15
D14
B14
C14
E13
G10
F10
B13
A13
D13
C13
D12
C12
B12
A12
C11
D11
B11
A11
E11
C10
D10
B10
A10
E10
G9
F9
D9
C9
A9
B9
D8
C8
A8
B8
E8
E7
A7
B7
D7
C7
E6
D6
B6
C6
A6
B5
C5
D5
A4
B4
F8
G8
B3
C4
0.1u
C23
0.1u
C188
0.1u
C24
0.1u
C189
0.1u
C25
0.1u
C190
0.1u
C26
0.1u
C191
0.1u
C27
+1.5V
0.1u
0.1u
C28
0.1u
C193
3
0.1u
C29
0.1u
C194
0.1u
C30
0.1u
0.1u
C31
0.1u
C196
1n
0.1u
C32
0.1u
C197
221
+3.3V
R197
C153
0.1u
FCLKC+
FCLKC-
C152
+1.5VA
C195
U3E
EP1C20F324C8
+1.5V
EP1C20F324C8
BANK2
C192
+1.5V
3
prxdc[9]
prxdc[8]
VCCINT
GND
prxdc[7]
ptxdc[7]
ptxdd[9]
prxdd[8]
prxdc[6]
ptxdd[8]
RESERVED_INPUT
GND
VCCINT
prxdc[5]
ptxdc[6]
prxdd[7]
ptxdd[7]
prxdd[6]
ptxdd[6]
prxdc[4]
ptxdc[5]
ptxdd[5]
prxdd[5]
prxdc[3]
ptxdc[4]
RESERVED_INPUT
ptxdd[4]
prxdd[4]
prxdc[2]
ptxdc[3]
RESERVED_INPUT
VCCINT
GND
prxdd[3]
ptxdd[3]
ptxdc[2]
prxdc[1]
prxdd[2]
ptxdd[2]
ptxdc[1]
prxdc[0]
RESERVED_INPUT
RESERVED_INPUT
ptxdc[0]
prxclkc
prxdd[1]
ptxdd[1]
RESERVED_INPUT
prxdd[0]
clkout
ptxdd[0]
ptxclkc
ifclk
ptxclkd
prxclkd
fd[15]
fd[14]
VCCINT
GND
fd[0]
rdy[0]
U3B
V2
V17
U18
U1
L9
K10
J9
H10
B18
B1
A2
A17
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
VC CINT
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
V3
V18
V16
V1
U2
U17
T18
T1
L8
L11
L10
K9
K8
K11
J8
J11
J10
H9
H8
H11
C18
C1
B2
B17
A3
A18
A16
A1
1
0.1u
C22
+3.3V
TXDC4
TXDC0
SPDSELD'
8
7
3
4
EPCS4SI8N
VCC
VCC
VCC
GND
U5
PTXDC8
CDD
PRXDD9
PTXDC9
L270D
LFID
L7425D
L540D
L360D
L270C
L7425C
L360C
L540C
LFIC
CDC
RXCLKC-
TXCLKOC
RXCLKC+
F2CONFIG_DONE
F2nSTATUS
+3.3V
LED2
D31
TDI
RXCLKC-
TXCLKOC
RXCLKC+
TCK
TMS
TDO
CD/MUTED2
SD/HDD
CD/MUTED
SSI/CDC2
SD/HDC
CD/MUTEC
INSELC
ULCC
LPEND
ULCD
INSELD
DATA
DCLK
nCS
ASDI
T16
T17
R17
R18
R15
R16
P16
P17
P15
P14
N14
N18
N17
N13
N12
N16
N15
M18
M17
M14
M15
M16
L18
L17
M13
L13
L16
L15
L14
K16
K15
K17
L12
K18
K14
K13
J18
K12
J16
J15
J12
J17
J14
J13
H13
H14
H15
H16
H17
H18
G18
G17
G13
G14
G15
G16
G12
F12
F18
F17
F13
F14
F16
F15
E17
E16
E15
D18
E14
D16
D15
C17
D17
4
4
2
6
1
5
F2DATA0
F2DCLK
F2nCS
F2ASDI
EP1C20F324C8
BANK3
inseld
txdc[4]
ulcd
spdseld
RESERVED_INPUT
ulcc
lpend
txdc[0]
inselc
RESERVED_INPUT
RESERVED_INPUT
sd_hdc
cd_mutec
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
cd_muted
ssi_cdc2
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
cd_muted2
sd_hdd
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
fclkc_p
fclkc_n
CONF_DONE
nSTATUS
TCK
TMS
TDO
GNDG_PLL2
GNDA_PLL2
txclkoc
rxclkc_p
VCCA_PLL2
TDI
rxclkc_n
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
led7425c
led360c
led540c
ledlfic
ledcdc
RESERVED_INPUT
RESERVED_INPUT
RESERVED_INPUT
led270c
RESERVED_INPUT
RESERVED_INPUT
led540d
led360d
RESERVED_INPUT
RESERVED_INPUT
led7425d
RESERVED_INPUT
led270d
ledlfid
RESERVED_INPUT
ptxdc[9]
RESERVED_INPUT
ledcdd
prxdd[9]
led2
ptxdc[8]
U3C
F2DCLK
F2CONFIG_DONE
F2nCONFIG
F2DATA0
F2ASDI
TXCTC[1..0]
TXDC[7..0]
RXSTC[2..0]
RXDC[7..0]
TXCTD[1..0]
TXDD[7..0]
2
4
6
8
10
HEADER 5X2
1
3
5
7
9
JP8
TXCTC[1..0]
TXCLKC
TXDC[7..0]
RXSTC[2..0]
RXDC[7..0]
TXCTD[1..0]
TXDD[7..0]
TXCLKD
+1.5V
F2nCE
F2nCS
+3.3V
LPENC
RCLKEND
LFID
LFIC
0
R215
RCLKENC
TXERRC
0
R216
5
5
U3
V4
M8
N8
T4
U4
T5
U5
R4
R5
V6
U6
P6
P7
T6
R6
U7
V7
T7
R7
U8
V8
T8
R8
U9
V9
R9
T9
M9
N9
P9
U10
V10
T10
R10
P10
R11
T11
U11
V11
V12
U12
T12
R12
V13
U13
T13
R13
N10
M10
P12
P13
U14
T14
R14
V15
U15
N11
M11
U16
T15
F2nCE
F2nCONFIG
F2nSTATUS
F2CONFIG_DONE
SPDSELC'
TXDC7
RXDC6
SPDSELC'
TXDC1
TXCTC0
TXDC3
TXDC2
RXDD6
RXDC2
TXDC5
TXCTC1
RXDD7
RXDC7
RXDD2
TXDC6
TXCLKC
RXDD3
RXDC3
RXDD4
TXDD2
RXDC4
RXDC5
TXDD0
TXDD1
RXDD5
RXSTC0
TXDD3
TXDD4
RXDC1
TXDD6
TXDD5
RXDC0
RXDD0
RXSTD1
TXDD7
TXCTD0
TXCLKD
10K
10K
R12
10K
R11
10K
R10
R9
3
2
1
3PIN
JB3
+3.3V
B
Date: 7/6/2004
File: FPGA2.SchDoc
Size
0
R8
SPDSELC
L7425D
L540D
L360D
L270D
CDD
LFID
L7425C
L540C
L360C
L270C
CDC
LFIC
+3.3V
LS7652
DrawingNumber
3
2
1
3PIN
JB4
221
R191
221
R190
221
R189
221
R188
221
R187
221
R186
221
R185
221
R184
221
R183
221
R182
221
R181
221
R180
6
Sheet 05
Drawn By:
Linear Systems Ltd.
SPDSELD'
+3.3V
Cypress Molson - FPGA2
0
R7
EP1C20F324C8
BANK4
txctd[0]
txclkd
VCCINT
GND
rxdc[0]
rxdd[0]
rxstd[1]
txdd[7]
RESERVED_INPUT
rxdc[1]
txdd[6]
txdd[5]
RESERVED_INPUT
RESERVED_INPUT
rxdd[5]
rxstc[0]
txdd[3]
txdd[4]
RESERVED_INPUT
rxdc[5]
txdd[0]
txdd[1]
RESERVED_INPUT
rxdc[4]
txerrc
txdd[2]
rclkenc
rxdd[4]
GND
VCCINT
RESERVED_INPUT
txdc[6]
txclkc
rxdd[3]
rxdc[3]
RESERVED_INPUT
lfic
rxdd[2]
RESERVED_INPUT
txctc[0]
txdc[3]
txdc[2]
rxdd[6]
rxdc[2]
txdc[5]
txctc[1]
rxdd[7]
rxdc[7]
GND
VCCINT
RESERVED_INPUT
RESERVED_INPUT
txdc[1]
lfid
rxdc[6]
spdselc
rclkend
VCCINT
GND
txdc[7]
lpenc
U3D
6
12
of
G. Cosens
2
Revision
SPDSELD
LED2
LED2
D26
LED2
D25
LED2
D24
LED2
D23
LED2
D22
LED2
D21
LED2
D20
LED2
D19
LED2
D18
LED2
D17
LED2
D16
D15
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-5. FPGA for Channel C and D
Page 35 of 92
[+] Feedback
D
C
B
A
1
1
2
4
6
8
10
12
14
16
18
20
22
2
PTXDC[9..0]
PTXDB[9..0]
PTXDC[9..0]
PTXDB[9..0]
PTXDA[9..0]
PRXDC[9..0]
PRXDB[9..0]
PRXDA[9..0]
PRXDC[9..0]
PRXDB[9..0]
PRXDA[9..0]
2
4
6
8
10
12
14
16
18
20
22
HEADER 11X2
1
3
5
7
9
11
13
15
17
19
21
JP20
HEADER 11X2
2
4
6
8
10
12
14
16
18
20
22
PTXCLKD
PTXDD0
PTXDD1
PTXDD2
PTXDD3
PTXDD4
PTXDD5
PTXDD6
PTXDD7
PTXDD8
PTXDD9
PTXDD[9..0]
PTXDD[9..0]
3
PRXDD[9..0]
PRXDD[9..0]
PRXDD0
PRXDD1
PRXDD2
PRXDD3
PRXDD4
PRXDD5
PRXDD6
PRXDD7
PRXDD8
PRXDD9
PRXCLKC
PRXCLKB
PRXCLKA
PRXCLKD
PRXDC0
PRXDC1
PRXDC2
PRXDC3
PRXDC4
PRXDC5
PRXDC6
PRXDC7
PRXDC8
PRXDC9
PRXDB0
PRXDB1
PRXDB2
PRXDB3
PRXDB4
PRXDB5
PRXDB6
PRXDB7
PRXDB8
PRXDB9
PRXDA0
PRXDA1
PRXDA2
PRXDA3
PRXDA4
PRXDA5
PRXDA6
PRXDA7
PRXDA8
PRXDA9
4
JP21
2
4
6
8
10
12
14
16
18
20
22
1
3
5
7
9
11
13
15
17
19
21
JP17
2
4
6
8
10
12
14
16
18
20
22
HEADER 11X2
1
3
5
7
9
11
13
15
17
19
21
JP15
2
4
6
8
10
12
14
16
18
20
22
HEADER 11X2
1
3
5
7
9
11
13
15
17
19
21
2
4
6
8
10
12
14
16
18
20
22
HEADER 11X2
1
3
5
7
9
11
13
15
17
19
21
JP19
1
3
5
7
9
11
13
15
17
19
21
PTXDC0
PTXDC1
PTXDC2
PTXDC3
PTXDC4
PTXDC5
PTXDC6
PTXDC7
PTXDC8
PTXDC9
PTXDB0
PTXDB1
PTXDB2
PTXDB3
PTXDB4
PTXDB5
PTXDB6
PTXDB7
PTXDB8
PTXDB9
PTXDA[9..0]
JP18
PTXCLKC
PTXCLKB
PTXDA0
PTXDA1
PTXDA2
PTXDA3
PTXDA4
PTXDA5
PTXDA6
PTXDA7
PTXDA8
PTXDA9
4
HEADER 11X2
2
4
6
8
10
12
14
16
18
20
22
PTXCLKA
3
HEADER 11X2
1
3
5
7
9
11
13
15
17
19
21
JP16
HEADER 11X2
1
3
5
7
9
11
13
15
17
19
21
JP14
2
B
2
5
6
Revision
LS7652
12
of
G. Cosens
Drawing Number
Date: 7/6/2004
File: Parallel Interfaces.SchDoc
Size
6
Sheet 06
Drawn By:
Linear Systems Ltd.
Cypress Molson - Parallel Interfaces
5
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-6. Parallel Interface Headers
Page 36 of 92
[+] Feedback
D
C
B
C279
0.1u
+3.3V
C281
0.1u
+3.3V
C278
0.1u
+3.3V
C280
0.1u
+3.3V
OUT
OUT
X1
27 MHz
+3.3V
14
VC C
GND
7
C283
0.1u
C285
0.1u
C282
0.1u
C284
0.1u
1
8
1
2
1
2
1
2
1
2
C248
0.1u
+3.3V
1
NC
NC
NC
NC
NC
NC
NC
NC
i
50 ohm
OUT
OUT
X3
74.25 MHz
OUT
OUT
X4
74.25 MHz
OUT
OUT
X2
74.25 MHz
OUT
OUT
X5
74.25 MHz
i
50 ohm
C249
0.1u
6
4
5
4
5
4
5
4
5
R224
130
R228
130
R220
130
R232
130
C140
0.1u
+3.3V
1
2
3
4
5
6
7
8
9
10
i
i
50 ohm
C246
0.1u
0
R230
0
R223
0
R222
OSCA-
i
OSCC+
50 ohm
50 ohm
i
OSCB-
OSCB+
50 ohm
i
+
C245
10u
20
19
18
17
16
15
14
13
12
11
OSCA+
50 ohm
i
i
50 ohm
C247
0.1u
VCCO
Q0
Q0#
Q1
Q1#
Q2
Q2#
Q3
Q3#
VCCO
0
R226
i
OSCD+
50 ohm
R227
OSCDi
0
i
R225 50 ohm
130
50 ohm
i
50 ohm
R231
OSCCi
0
i
R229 50 ohm
130
50 ohm
i
50 ohm
R221 50 ohm
130
i
i
50 ohm
0
R235
0
R234
CY2DP314OI
VCCO
NC
VCC
CLK_SEL
CLKA
CLKA#
CLKB
CLKB#
VEE
VCCO
U9
R233 50 ohm
130
C141
0.1u
R44
82
R43
82
+3.3V
R199
130
+3.3V
R198
130
i
2
i
2
R42
147
R47
147
i
R48
147
50 ohm
i
50 ohm
R41
147
50 ohm
i
50 ohm
50 ohm
50 ohm
i
i
i
50 ohm
SCSA
SCSB
R38
100
LOCKEDA
+3.3V
SDO
SCL
R34 +3.3V
100
6
7
8
14
1
3
4
6
7
8
14
1
3
4
R25
2.0K
33
32
31
30
U11
SY87729L
PROGCS
PROGDI
PROGSK
LOCKED
R29
2.0K
VCCA
REFCLK+
REFCLK-
GND
GNDA
FNVCF+
FNVCF33
32
31
30
U13
SY87729L
PROGCS
PROGDI
PROGSK
LOCKED
VCCA
REFCLK+
REFCLK-
GND
GNDA
FNVCF+
FNVCF-
C48 R26
0.1u 2.0K
27
26
25
C49
0.1u
3
C58 R30
0.1u 2.0K
3
VCCO
VCC
VCC
GND
VCCA
CLOCKOUT+
CLOCKOUT-
C59
0.1u
VCCO
VCC
VCC
GND
VCCA
CLOCKOUT+
CLOCKOUT-
WRVCF+
WRVCFGNDA
27
26
25
WRVCF+
WRVCFGNDA
A
3
VC C
GND
6
6
VC C
GND
3
3
VC C
GND
6
VC C
GND
3
C61
0.1u
R51
121
i
50 ohm
C51
0.1u
DATA[7..0]
DATA[7..0]
MCLADJA
C233
0.1u
+
C242
10u
+
+3.3V
SDI
SDO
SCSD
SCSB
DATA7
DATA5
DATA3
DATA1
VDD
P0[6]/AI
P0[4]/AIO
P0[2]/AIO
P0[0]/AI
P2[6]/AI(Ref)
P2[4]/AI(AGND)
P2[2]/AI(ASD13/ASC23)
P2[0]/AI(ASC23)
P4[6]
P4[4]
P4[2]
P4[0]
XRES
P3[6]
P3[4]
P3[2]
P3[0]
P5[2]
P5[0]
P1[6]
P1[4]/EXTCLK
P1[2]
P1[0]/XTALOUT/SDA
LOCKEDC
SCSC
R46
147
R35
100
LOCKEDD
SCSD
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
+3.3V
+3.3V
+3.3V
6
7
8
14
1
3
4
R27
2.0K
U10
SY87729L
PROGCS
PROGDI
PROGSK
LOCKED
VCCA
REFCLK+
REFCLK-
PROGCS
PROGDI
PROGSK
LOCKED
VCCA
REFCLK+
REFCLK-
CLID
U12
SY87729L
6
7
8
14
1
3
4
0
R19
I2SCL
I2SDA
HRESET#
CLIA
SDI
CLIC
0
R22
ADDR3
ADDR1
LOCKEDD
LOCKEDB
4
CY8C27643-PVI
CY8C27643-24PVI
XRES
XSCLK
XDATA
AI/P0[7]
AIO/P0[5]
AIO/P0[3]
AI/P0[1]
P2[7]
P2[5]
AI(ASC10)/P2[3]
AI(ASD20/ASC10)/P2[1]
P4[7]
P4[5]
P4[3]
P4[1]
SMP
P3[7]
P3[5]
P3[3]
P3[1]
P5[3]
P5[1]
SCL/P1[7]
SDA/P1[5]
P1[3]
SCL/XTALIN/P1[1]
VSS
ADDR2
ADDR0
SCL
SCSE
SCSC
SCSA
DATA6
DATA4
DATA2
DATA0
XRES
LOCKEDC
LOCKEDA
SCSE1
SCSE1
WREN
SCSE
CLIB
0
U14
R45
147
R40
147
R23
2.0K
R21
C142
10n
+3.3V
REFCLKB+
REFCLKB-
REFCLKAREFCLKA+
R39
147
R31
100
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
FCLKB+
FCLKB-
R37
100
C244
10u
50 ohm
50 ohm
i
i
C240
0.1u
R33
100
FCLKA+
FCLKA-
50 ohm
50 ohm
i
i
C234
0.1u
4
Place close to HOTLink II
R20
OSCB-
C239
0.1u
OSCA-
OSCA+
OSCB+
C238
0.1u
C232
0.1u
MCLADJB
R56
121
JP11
JP13
C62
0.1u
R52
121
i
ADDR[3..0]
R55
121
C52
0.1u
50 ohm
+3.3V
50 ohm
50 ohm
i
i
C60
0.1u
+3.3V
ADDR[3..0]
18
17
9
10
24
22
21
18
17
9
10
24
22
21
C50
0.1u
+3.3V
Place close to HOTLink II
33
32
31
30
GND
GNDA
FNVCF+
FNVCF33
32
31
30
GND
GNDA
FNVCF+
FNVCF-
C43 R24
0.1u 2.0K
5
C44
0.1u
MCLADJD
MCLADJC
VCCO
VCC
VCC
GND
VCCA
CLOCKOUT+
CLOCKOUT-
C54
0.1u
VCCO
VCC
VCC
GND
VCCA
CLOCKOUT+
CLOCKOUT-
C53 R28
0.1u 2.0K
5
27
26
25
WRVCF+
WRVCFGNDA
27
26
25
WRVCF+
WRVCFGNDA
50 ohm
LOCKEDB
18
17
9
10
24
22
21
C47
0.1u
R54
121
i
50 ohm
C57
0.1u
R50
121
i
50 ohm
R200
1K
SDO
SCL
R53
121
i
50 ohm
C56
0.1u
R49
121
i
50 ohm
C46
0.1u
OSCC-
OSCC+
C236
0.1u
OSCD-
OSCD+
5
4
3
2
1
C230
0.1u
B
LS7652
DrawingNumber
Date: 7/6/2004
File: Flexible Clock &Configuration.SchDoc
Size
i
R32
100
C241
10u
FCLKC+
FCLKC-
50 ohm
50 ohm
i
i
+
C243
10u
FCLKD+
FCLKD+3.3V
5 PINFL
JB5
C237
0.1u
i
+
+3.3V
6
Sheet 07
Drawn By:
REFCLKDREFCLKD+
REFCLKC+
REFCLKC-
12
of
G. Cosens
2
Revision
R36
100
Place close to HOTLink II
50 ohm 50 ohm
C231
0.1u
Linear Systems Ltd.
XDATA
XSCLK
XRES
JP12
C235
0.1u
JP10
C229
0.1u
Cypress Molson - Flexible Clock & Configuration
+3.3V
C55
0.1u
18
17
9
10
24
22
21
+3.3V
C45
0.1u
6
Place close to HOTLink II
1
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-7. Clocking and PSoC
Page 37 of 92
[+] Feedback
D
C
B
A
C167
68u
TXCLKOD
TXCLKOC
TXCLKOB
TXCLKOA
+
10
R204
10
R203
10
R202
10
R201
1
C227
1u
TXCTD[1..0]
TXERRD
TXCLKD
TXDD[7..0]
REFCLKD+
REFCLKDSPDSELD
TXCTC[1..0]
TXERRC
TXCLKC
TXDC[7..0]
REFCLKC+
REFCLKCSPDSELC
TXCTB[1..0]
TXERRB
TXCLKB
TXDB[7..0]
REFCLKB+
REFCLKBSPDSELB
TXCTA[1..0]
TXERRA
TXCLKA
TXDA[7..0]
REFCLKA+
REFCLKASPDSELA
C228
1u
C160
0.1u
TXDD[7..0] TXDD7
TXDD6
TXDD5
TXDD4
TXDD3
TXDD2
TXDD1
TXDD0
TXCTD[1..0] TXCTD1
TXCTD0
TXDC[7..0] TXDC7
TXDC6
TXDC5
TXDC4
TXDC3
TXDC2
TXDC1
TXDC0
TXCTC[1..0] TXCTC1
TXCTC0
TXDB[7..0] TXDB7
TXDB6
TXDB5
TXDB4
TXDB3
TXDB2
TXDB1
TXDB0
TXCTB[1..0] TXCTB1
TXCTB0
2
CYV15G0403DXB
REFCLKD+
REFCLKDSPDSELD
TXCLKOD
TXERRD
TXCLKD
TXDD7
TXDD6
TXDD5
TXDD4
TXDD3
TXDD2
TXDD1
TXDD0
TXCTD1
TXCTD0
OUTC2+
OUTC2-
OUTC1+
OUTC1-
OUTB2+
OUTB2-
OUTB1+
OUTB1-
OUTA2+
OUTA2-
OUTA1+
OUTA1-
C164
0.1u
OUTD2+
OUTD2-
OUTD1+
OUTD1-
CYV15G0403DXB
REFCLKC+
REFCLKCSPDSELC
TXCLKOC
TXERRC
TXCLKC
TXDC7
TXDC6
TXDC5
TXDC4
TXDC3
TXDC2
TXDC1
TXDC0
TXCTC1
TXCTC0
U1C
CYV15G0403DXB
REFCLKB+
REFCLKBSPDSELB
TXCLKOB
TXERRB
TXCLKB
TXDB7
TXDB6
TXDB5
TXDB4
TXDB3
TXDB2
TXDB1
TXDB0
TXCTB1
TXCTB0
U1B
CYV15G0403DXB
U1D
L2
K2
D7
R2
M4
K4
G1
L4
J2
G3
J4
J3
G4
F3
J1
K3
M17
M18
G17
F19
M19
M20
R20
L20
P17
P18
P19
P20
R17
R18
R19
U18
C163
0.1u
REFCLKA+
REFCLKASPDSELA
TXCLKOA
TXERRA
TXCLKA
TXDA7
TXDA6
TXDA5
TXDA4
TXDA3
TXDA2
TXDA1
TXDA0
TXCTA1
TXCTA0
U1A
C162
0.1u
W18
Y18
G19
V12
W12
Y11
V15
W15
Y15
U14
V14
W14
U12
Y14
U9
U15
V11
U11
C15
Y9
Y17
Y2
W2
Y1
W1
V2
V1
U3
U2
U1
U4
V3
C161
0.1u
TXDA[7..0] TXDA7
TXDA6
TXDA5
TXDA4
TXDA3
TXDA2
TXDA1
TXDA0
TXCTA[1..0] TXCTA1
TXCTA0
C159
0.1u
2
B10
A10
B7
A7
B4
A4
B2
A2
B20
A20
B18
A18
B15
A15
B12
A12
C165
0.1u
C219
0.1u
OUTD2+
OUTD2-
OUTD1+
OUTD1-
OUTC2+
OUTC2-
OUTC1+
OUTC1-
OUTB2+
OUTB2-
OUTB1+
OUTB1-
OUTA2+
OUTA2-
OUTA1+
OUTA1-
C166
0.1u
i
3
50 ohm 50 ohm
i
LPEND
INSELD
IND1+
IND1IND2+
IND2ULCD
LPENC
INSELC
INC1+
INC1INC2+
INC2ULCC
50 ohm 50 ohm
i
LPENB
INSELB
INB1+
INB1INB2+
INB2ULCB
i
C221
0.1u
LPENA
INSELA
INA1+
INA1INA2+
INA2ULCA
C220
0.1u
3
C19
D3
B6
A6
B9
A9
C6
G18
C3
B1
A1
B3
A3
C7
D14
C4
B17
A17
B19
A19
D15
D17
D4
B11
A11
B14
A14
D6
C223
0.1u
LFIB
RXDB7
RXDB6
RXDB5
RXDB4
RXDB3
RXDB2
RXDB1
RXDB0
RXSTB2
RXSTB1
RXSTB0
RXCLKB+
RXCLKBRCLKENB
LFIC
RXDC7
RXDC6
RXDC5
RXDC4
RXDC3
RXDC2
RXDC1
RXDC0
RXSTC2
RXSTC1
RXSTC0
RXCLKC+
RXCLKCRCLKENC
LFID
RXDD7
RXDD6
RXDD5
RXDD4
RXDD3
RXDD2
RXDD1
RXDD0
RXSTD2
RXSTD1
RXSTD0
RXCLKD+
RXCLKDRCLKEND
CYV15G0403DXB
LPEND
INSELD
IND1+
IND1IND2+
IND2ULCD
U1H
CYV15G0403DXB
LPENC
INSELC
INC1+
INC1INC2+
INC2ULCC
U1G
CYV15G0403DXB
LPENB
INSELB
INB1+
INB1INB2+
INB2ULCB
U1F
W3
Y3
V4
Y6
W6
V6
U6
U7
Y7
V9
W7
V7
Y4
W4
F4
L3
F2
F1
M2
M1
L1
K1
P1
P2
R1
P4
P3
R3
R4
M3
K20
K19
L17
J19
K18
K17
J20
G20
J18
J17
F18
F20
L18
L19
C14
W17
V17
Y19
Y20
W19
V18
U17
W20
V19
U19
U20
V20
W11
Y12
F17
C225
0.1u
LFIA
RXDA7
RXDA6
RXDA5
RXDA4
RXDA3
RXDA2
RXDA1
RXDA0
RXSTA2
RXSTA1
RXSTA0
RXCLKA+
RXCLKARCLKENA
C224
0.1u
CYV15G0403DXB
LPENA
INSELA
INA1+
INA1INA2+
INA2ULCA
U1E
C222
0.1u
C1
0.1u
22
R211
RXDD7
RXDD6
RXDD5
RXDD4
RXDD3
RXDD2
RXDD1
RXDD0
RXSTD2
RXSTD1
RXSTD0
22
R209
RXDC7
RXDC6
RXDC5
RXDC4
RXDC3
RXDC2
RXDC1
RXDC0
RXSTC2
RXSTC1
RXSTC0
22
R207
RXDB7
RXDB6
RXDB5
RXDB4
RXDB3
RXDB2
RXDB1
RXDB0
RXSTB2
RXSTB1
RXSTB0
22
R205
RXDA7
RXDA6
RXDA5
RXDA4
RXDA3
RXDA2
RXDA1
RXDA0
RXSTA2
RXSTA1
RXSTA0
C226
0.1u
+3.3V
C2
0.1u
4
22
R212
RXSTD[2..0]
RXDD[7..0]
22
R210
RXSTC[2..0]
RXDC[7..0]
22
R208
RXSTB[2..0]
RXDB[7..0]
22
R206
RXSTA[2..0]
RXDA[7..0]
4
C4
0.1u
RCLKEND
RXCLKD-
RXCLKD+
RXSTD[2..0]
LFID
RXDD[7..0]
RCLKENC
RXCLKC-
RXCLKC+
RXSTC[2..0]
LFIC
RXDC[7..0]
RCLKENB
RXCLKB-
RXCLKB+
RXSTB[2..0]
LFIB
RXDB[7..0]
RCLKENA
RXCLKA-
RXCLKA+
RXSTA[2..0]
LFIA
RXDA[7..0]
C3
0.1u
2
2
2
2
C6
0.1u
HEADER 1X2
1
JP4
HEADER 1X2
1
JP3
HEADER 1X2
1
JP2
HEADER 1X2
1
JP1
C5
0.1u
C8
0.1u
+3.3V
LDTDEN
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
B
LS7652
Drawing Number
5
Date: 7/6/2004
File: CYV15G0403.SchDoc
Size
C214
0.1u
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
C215
0.1u
6
U1I
CYV15G0403DXB
TMRESET#
TMS
TCLK
TDI
TDO
12
of
G. Cosens
2
C218
0.1u
+3.3V
C217
0.1u
Revision
U13
V13
W13
Y13
U8
V8
W8
Y8
N20
N19
N18
N17
N4
N3
N2
N1
H20
H19
H18
H17
H4
H3
H2
H1
D13
C13
B13
A13
D8
C8
B8
A8
C216
0.1u
6
Sheet 08
Drawn By:
Linear Systems Ltd.
DATA[7..0]
ADDR[3..0]
U16
V16
W16
Y16
U5
V5
W5
Y5
T20
T19
T18
T17
T4
T3
T2
T1
E20
E19
E18
E17
E4
E3
E2
E1
D16
C16
B16
A16
D5
C5
B5
A5
C213
0.1u
Cypress Molson - CYV15G0403
LDTDEN
DATA[7..0]
2
C212
0.1u
HEADER 1X2
1
JP26
C211
0.1u
WREN
ADDR[3..0]
HRESET#
C7
0.1u
5
D2
C18
C2
D1
C1
C20
RESET
TRST
TMS
TCLK
TDI
TDO
1
D18
D19
D20
LTEN1
SCANEN2
TMEN3
WREN
ADDR3
ADDR2
ADDR1
ADDR0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
LDTDEN
G2
W9
V10
W10
U10
C9
D9
C10
D10
C11
D11
C12
D12
C17
ADDR3
ADDR2
ADDR1
ADDR0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
+3.3V
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-8. HOTLink II CYV15G0404DXB
Page 38 of 92
[+] Feedback
2
3
INA2+
INA2INB2+
INB2INC2+
INC2IND2+
IND2CD/MUTEB2
CD/MUTED2
SSI/CDC2
INA1+
INA1INB1+
INB1INC1+
INC1IND1+
IND1CLIA
CLIB
CLIC
CLID
INA2+
INA2INB2+
INB2INC2+
INC2IND2+
IND2CD/MUTEB2
CD/MUTED2
SSI/CDC2
INA1+
INA1INB1+
INB1INC1+
INC1IND1+
IND1CLIA
CLIB
CLIC
CLID
4
5
Linear Systems Ltd.
6
B
A
B
5
2
6
Revision
of
12
G. Cosens
LS7652
Sheet 09
Drawn By:
Drawing Number
Date: 7/6/2004
File: Serial IO Interface.SchDoc
Size
Cypress Molson - Serial I/O's
D
OUTA2+
OUTA2OUTB2+
OUTB2OUTC2+
OUTC2OUTD2+
OUTD2-
Serial IO Interface2
Serial IO Interface2.SchDoc
OUTA1+
OUTA1OUTB1+
OUTB1OUTC1+
OUTC1OUTD1+
OUTD1SD/HDA
SD/HDB
SD/HDC
SD/HDD
CD/MUTEA
CD/MUTEB
CD/MUTEC
CD/MUTED
MCLADJA
MCLADJB
MCLADJC
MCLADJD
Serial IO Interface1
Serial IO Interface1.SchDoc
4
D
OUTA2+
OUTA2OUTB2+
OUTB2OUTC2+
OUTC2OUTD2+
OUTD2-
OUTA1+
OUTA1OUTB1+
OUTB1OUTC1+
OUTC1OUTD1+
OUTD1SD/HDA
SD/HDB
SD/HDC
SD/HDD
CD/MUTEA
CD/MUTEB
CD/MUTEC
CD/MUTED
MCLADJA
MCLADJB
MCLADJC
MCLADJD
3
C
1
2
C
B
A
1
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-9. Serial I/Os Top Level
Page 39 of 92
[+] Feedback
D
C
B
A
OUTD1-
OUTD1+
OUTC1-
OUTC1+
OUTB1-
OUTB1+
OUTA1-
OUTA1+
50 ohm
i
i
50 ohm
50 ohm
i
i
50 ohm
50 ohm
i
i
50 ohm
50 ohm
i
i
50 ohm
R76
100
R71
100
R67
100
R62
100
1
1
R116
750
+3.3V
R115
750
+3.3V
R114
750
+3.3V
R113
750
+3.3V
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
GS1528
SDI
SDI
VEE
RSET
U19
GS1528
SDI
SDI
VEE
RSET
U18
GS1528
SDI
SDI
VEE
RSET
U17
GS1528
SDI
SDI
VEE
RSET
U16
SDO
SDO
SD/HD
VCC
SDO
SDO
SD/HD
VCC
SDO
SDO
SD/HD
VCC
SD/HDA
SDO
SDO
SD/HD
VCC
SD/HDD
8
7
6
5
SD/HDC
8
7
6
5
SD/HDB
8
7
6
5
8
7
6
5
+3.3V
C200
2.2u
i 75 ohm
i 2.2u
75 ohm
i 2.2u
75 ohm
C202
2.2u
i 75 ohm
i
R125
75 ohm 150
75
2
i 2.2u
75 ohm
75 ohm
R109 i
L4
75
5.6nH
Optional, Do Not Populate
C114
R59
C201
2.2u
i 75 ohm
i R121
75 ohm150
75
75 ohm
R96 i
L3
75
5.6nH
Optional, Do Not Populate
C97
R98
+3.3V
R108
75
75
i R119
75 ohm150
+3.3V
+3.3V
R95
75
i 2.2u
75 ohm
75 ohm
R88 i
L2
75
5.6nH
Optional, Do Not Populate
C78
R89
+3.3V
+3.3V
R87
75
C199
2.2u
i 75 ohm
i
R118
75 ohm 150
75
75 ohm
R80 i
L1
75
5.6nH
Optional, Do Not Populate
C69
R81
+3.3V
+3.3V
R79
75
2
75 ohm
i
75 ohm
i
75 ohm
i
75 ohm
i
J17
BNC JACK
J14
BNC JACK
J9
BNC JACK
J6
BNC JACK
C120
0.1u
C101
0.1u
C85
0.1u
C73
0.1u
C269
0.1u
C268
0.1u
C267
0.1u
C266
0.1u
+
+3.3V
+
+3.3V
+
+3.3V
+
+3.3V
C206
10u
C205
10u
C204
10u
C203
10u
3
3
MCLADJD
IND1+
IND1-
R74
100
CLID
CD/MUTED
MCLADJC
R70
100
CLIC
CD/MUTEC
MCLADJB
R68
100
50 ohm
i
i
50 ohm
C276
0.1u
+3.3V
50 ohm
i
i
50 ohm
C274
0.1u
+3.3V
50 ohm
i
i
C132
0.1u
C130
0.1u
C128
0.1u
C126
0.1u
50 ohm
C272
0.1u
+3.3V
50 ohm
i
i
50 ohm
C270
0.1u
+3.3V
CLIB
CD/MUTEB
INC1+
INC1-
INB1+
INB1-
MCLADJA
INA1+
INA1-
R63
100
CLIA
CD/MUTEA
16
15
14
13
12
11
10
9
16
15
14
13
12
11
10
9
4
16
15
14
13
12
11
10
9
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
GS1524
CD/MUTE CLI
VCC
VCC
VEE
VEE
SDO
SDI
SDO
SDI
VEE
VEE
MCLADJ AGC+
BYPASS AGC-
U23
GS1524
CD/MUTE CLI
VCC
VCC
VEE
VEE
SDO
SDI
SDO
SDI
VEE
VEE
MCLADJ AGC+
BYPASS AGC-
U22
GS1524
CD/MUTE CLI
VCC
VCC
VEE
VEE
SDO
SDI
SDO
SDI
VEE
VEE
MCLADJ AGC+
BYPASS AGC-
U21
GS1524
CD/MUTE CLI
VCC
VCC
VEE
VEE
SDO
SDI
SDO
SDI
VEE
VEE
MCLADJ AGC+
BYPASS AGC-
U20
4
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
i
C137
75 ohm
1u
i
75 ohm
i
C136
75 ohm
1u
i
C117
2.2u
i
R136
37.4
R111
75
75
R110
10nH
i L8
C277
0.1u 75 ohm
+3.3V
C115
2.2u 75 ohm
C133
0.1u
R101
75
75
R97
5
i
75 ohm
i
75 ohm
i
75 ohm
i
75 ohm
10nH
i L7
C275
0.1u 75 ohm
+3.3V
C96
2.2u 75 ohm
i
C98
2.2u
R134
37.4
C131
0.1u
R92
75
75
R90
10nH
i L6
C273
0.1u 75 ohm
+3.3V
C82
2.2u 75 ohm
i
C86
2.2u
R133
37.4
C129
0.1u
R83
75
75
R82
10nH
i L5
C271
0.1u 75 ohm
+3.3V
C72
2.2u 75 ohm
i
C74
2.2u
R130
37.4
75 ohm
i
C135
75 ohm
1u
i
75 ohm
i
C134
75 ohm
1u
i
75 ohm
C127
0.1u
5
J18
BNC JACK
Optional
J13
BNC JACK
J11
BNC JACK
J7
BNC JACK
C208
10u
C207
10u
C210
10u
C209
10u
Linear Systems Ltd.
B
12
of
G. Cosens
2
6
Revision
LS7652
Sheet 10
Drawn By:
DrawingNumber
Date: 7/6/2004
File: Serial IO Interface1.SchDoc
Size
Cypress Molson - Serial I/O Interface (Primary)
+
+3.3V
+
+3.3V
+
+3.3V
+
+3.3V
6
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-10. Serial I/O Interface (Primary)
Page 40 of 92
[+] Feedback
D
C
B
A
1
50 ohm i
OUTC2+
OUTC2-
i
50 ohm
2.2u
C92
2.2u
Standard
C90
50 ohm i
OUTD250 ohm i
OUTD2+
R157
108.7
R152
40.3
R151
40.3
R156
108.7
R148
52.3
R147
52.3
Optional
+5V
0
2.2u
R58
0 Optional
2.2u
C112
Optional
R57
R160
51.1
2
i
R60
2.0K
R162
51.1
50 ohm
+5V
1
2
3
4
50 ohm
R163
51.1
R166
1540
R117
750
+5V
i
8
7
6
5
8
7
6
5
CLC007
VCC
VIN+
VINVEE
U29
+
+5V
Q0
Q0
Q1
Q1
C139
6.8u
1
2
3
4
C89
10n
i
i
3
75
R94
i 2.2u
75 ohm
2.2u
C111
75 ohm
2.2u
i C109
75 ohm
2.2u
i C108
3
i 2.2u
75 ohm
C93
8.2nH
L9
R93
75
75 ohm
i C106
150
R120
75 ohm
i
R219
75
+5V
J8
BNC JACK
75 ohm
R131
75 ohm37.4
R164
59
2.2u
R84
75
C125
10n
i
75 ohm
J4
SMA-TH-RA
J2
SMA-TH-RA
+3.3V
75 ohm
i C75
4
3
2
1
C118
10n
Standard
50 ohm
R73
100
Optional
C95
1u
GS9028
VEE RSET
SDI
VEE
SDI
SDO
VCC SDO
U27
C88
10n
CLC001
5
6
7
8
i
i
50 ohm
VBB VDD
VIN+ SDO
VIN- SDO
RREF VSS
U24
C94
0.1u
R146
1.91K
R155
680
+5V
50 ohm
i
R64
100
i 2.2u
50 ohm
OUTA2-
C70
2.2u
50 ohm
i C67
OUTA2+
R161
51.1
C87
10n
+3.3V
Standard
C138
6.8u
C110
50 ohm
i
i
50 ohm
+
OUTB2+
OUTB2-
i
50 ohm
2
2.2u
C91
75
R105
75 ohm
i
150
75 ohm 150
i
R124
75 ohm
i
i
75 ohm
i
R122
75 ohm 150
i
R123
75 ohm
75 ohm
i
J16
BNC JACK
J12
BNC JACK
CD/MUTED2
i 2.2u
50 ohm
i C104
2.2u
50 ohm
C102
82
4
R218
D33
SDM40E20LS
+3.3V
INC2-
INC2+
R72
100
C122
0.1u
C81
0.1u
INA2-
INA2+
i
C123
100p
+5V
50 ohm
i
SSI/CDC2
108.7
R159
108.7
R158
50 ohm
Optional
82
R217
D32
SDM40E20LS
+3.3V
Standard
CD/MUTEB2
4
1
2
3
4
5
6
7
+5V
1
40.3
R154
40.3
R153
+5V
CLC014
DO
DO
MUTE
VEE
VEE
DI
DI
C107
0.1u
3
+5V
CLC014
VCC
VCC
OEM
VCC
CD
AEC+
AEC-
U25
50 ohm
i
i
50 ohm
+5V
52.3
R150
52.3
VCC
VCC
OEM
VCC
CD
AEC+
AEC-
U26
R165
100K
1
2
3
4
5
6
7
R149
2.2u
2.2u
R61
100
C71
C68
C83
100p
50 ohm
i
i
50 ohm
2
1
R100
75
i
100
14
13
12
11 75 ohm
10 i
R77
9
8
100
R78
75 ohm
D2
MMBD914
14
13
12
11
10
9
8
C113
10n
GS9024
C116
R144
223.8
R140
218.2
R128
90.9
Optional
i 2.2u
75 ohm
5
R112
75
R137
37.4
C119
i
2.2u
75
75 ohm
50 ohm
ohm
i C121 2.2u i
75 ohm
50 ohm
C124
i
2.2u
i
1
2
3
4
5
6
7
R75
100
Standard
IND2+
IND2-
75
i R104
75 ohm
75
C145
10n
R103
75
J15
BNC JACK
Linear Systems Ltd.
37.4
i
75 ohm
INB2-
INB2+
i R135
75 ohm
+5V
R65
100
Standard
6
B
12
of
G. Cosens
2
6
Revision
LS7652
Sheet 11
Drawn By:
DrawingNumber
Date: 7/6/2004
File: Serial IO Interface2.SchDoc
Size
Cypress Molson - Serial I/O Interface (Secondary)
J19
BNC JACK
R145
223.8
R141
218.2
R129
90.9
+5V
i 2.2u
75 ohm
C105
2.2u
75 ohm
75 ohm
+5V
i C103
i R102
0.1u
AGCVEE
VCC
SDI
SDI
VEE
VCC
U28 0.1u
AGC+
HIGH Z
SSI/CD
SDO
SDO
CD_ADJ
OEM
C100
C79
2.2u
R143
223.8
R139
218.2
R127
90.9
+5V
C77 Standard
R142
223.8
C99
100
R106 R107
75 75
+5V
Standard
R99
75
i
75 ohm
C76
10n
R138
218.2
R126
90.9
+5V
Optional
i
75 ohm
50 ohm
C80i
2.2u
i
50 ohm
i 75 ohm
C84
J10
2.2u
BNC JACK
i 2.2u
i
R91
75 ohm
75 ohmR132
75
37.4
R85 R86
75 75
D1
MMBD914
Standard
+5V
14
13
12
11 75 ohm
10 i
R66
9
8
100
R69
+5V
DO
DO
MUTE
VEE
VEE
DI
DI
C144
0.1u
Standard
+5V
J5
SMA-TH-RA
J3
SMA-TH-RA
5
D
C
B
A
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-11. Serial I/O Interface (Secondary)
Page 41 of 92
[+] Feedback
1
C262
68u
C263
0.1u
C264
0.1u
+
2
C265
68u
P6
PGood
APC08F08
P
ENABLE
P7
P5
C198
1u
3
+
C63
100u
1
2
3
PWR JACK
CENTER
SLEEVE
SHUNT
J1
1
IN
3
4
3
+3.3V
OUT
GND
Q1
LM2940CS-5.0
C64
22u
IN
OUT
OUT
Q2
LT1587CM-1.5
+
+5V
2
4
+1.5V
+
C66
22u
Ferrite Bead
L10
+
+1.5VA
C154
22u
LED2
LED2
D28
Linear Systems Ltd.
B
A
B
5
6
Revision
of
12
G. Cosens
2
Sheet 12
Drawn By:
Drawing Number
LS7652
Date: 7/6/2004
File: Power Supply.SchDoc
Size
Cypress Molson - Power Supply
D
+
GND
Vo
P1
221
R193
360
D27
6
D
C261
0.1u
P3
P2
Vin
+3.3V
+5V
R194
5
C
C65
0.1u
+3.3V
TRIM
U15
4
C
B
P4
3
2,4
2
GND
1
A
1
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure A-12. Power Supply
Page 42 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Appendix B: PCB Manufacturing Files
(GERBER Files)
Page 43 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-1. Board Stackup
Page 44 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-2. Top Overlay
Page 45 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-3. Top Layer
Page 46 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-4. Top Paste
Page 47 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-5. Top Solder Mask
Page 48 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-6. Internal Plane 1
Page 49 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-7. Internal Plane 2
Page 50 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-8. Midlayer 1
Page 51 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-9. Internal Plane 3
Page 52 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-10. Midlayer 2
Page 53 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-11. Internal Plane 4
Page 54 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-12. Internal Plane 5
Page 55 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-13. Midlayer 3
Page 56 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-14. Internal Plane 6
Page 57 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-15. Midlayer 4
Page 58 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-16. Internal Plane 7
Page 59 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-17. Internal Plane 8
Page 60 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-18. Bottom Overlay
Page 61 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-19. Bottom Layer
Page 62 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-20. Bottom Paste
Page 63 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure B-21. Bottom Solder Mask
Page 64 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Appendix C: PCB Assembly Files
(Drill and Assembly)
Page 65 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure C-1. Drill Placement
Page 66 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure C-2. Assembly–Top View
Page 67 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure C-3. Assembly–Bottom View
Page 68 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Appendix D: Bill of Materials (BOM)
of HOTLink II CYV15G0404DXB
Video Demo Board
Page 69 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Table D-1. Bill of Materials for HOTLink II CYV15G0404DXB Video Demo Board
Qty
Part No.
Manufacturer
Description
Designator
185
C0603C104K4RAC
Kemet
0.1-µF 10% X7R ceramic 16V 0603
C1, C2, C3, C4, C5, C6,
C7, C8, C9, C10, C11,
C12, C13, C14, C15, C16,
C17, C18, C19, C20, C21,
C22, C23, C24, C25, C26,
C27, C28, C29, C30, C31,
C32, C33, C34, C35, C36,
C37, C38, C39, C40, C43,
C44, C45, C46, C47, C48,
C49, C50, C51, C52, C53,
C54, C55, C56, C57, C58,
C59, C60, C61, C62, C65,
C73, C81, C85, C94, C99,
C100, C101, C107, C120,
C122, C126, C127, C128,
C129, C130, C131, C132,
C133. C140, C141, C143,
C144, C146, C148, C150,
C152, C155, C156, C157,
C159, C160, C161, C162,
C163, C164, C165, C166,
C168, C169, C252, C253,
C254, C255, C256, C257,
C258, C259, C170, C171,
C172, C173, C174, C175,
C176, C177, C178, C179,
C180, C181, C182, C183,
C184, C185, C186, C187,
C188, C189, C190, C191,
C192, C193, C194, C195,
C196, C197, C219, C211,
C212, C213, C214, C215,
C216, C217, C218, C220,
C221, C222, C223, C224,
C225, C226, C229,C230,
C231, C232, C233, C234,
C235, C236, C237, C238,
C239, C240, C246, C247,
C248, C249, C261, C263,
C264, C266, C267, C268,
C269, C270, C271, C272,
C273, C274, C275, C276,
C277, C278, C279, C280,
C281, C282, C283, C284,
C285
2
T491C685K020AS
Kemet
CAPACITOR TANT 6.8-µF 20V 10% SMD C138, C139
4
C0603C102K5RACTU
Kemet
CAP 1000-pF 50V CERAMIC X7R 0603 C147, C149, C151, C153
1
C0603C472K5RACTU
Kemet
CAP 4700-pF 50V CERAMIC X7R 0603 C158
3
TPSC686K016R0200
AVX
CAPACITOR TANT 68-µF 20V 10% SMD C167, C262, C265
16
T491C106K020AS
Kemet
CAPACITOR TANT 10-µF 20V 10% SMD C203, C204, C205, C206,
C207, C208, C209, C210,
C241, C242, C243, C244,
C245, C250, C251, C260
2
ECJ-1VC1H220J
Panasonic
22-pF 5% NPO ceramic 50V 0603
C41, C42
1
T491D107M016AS
Kemet
100-µF Tantalum 16V 7343
C63
3
T491C226K016AS
Kemet
22-µF 10% Tantalum 16V 6032
C64, C66, C154
4
C0805C105K4RAC
CAP CERAMIC 1.0-µF 16V X7R 0805
C95, C198, C227, C228
Page 70 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Table D-1. Bill of Materials for HOTLink II CYV15G0404DXB Video Demo Board (continued)
Qty
Part No.
Manufacturer
Description
Designator
43
ECJ-1VB0J225K
Panasonic
CAP 2.2-µF 6.3V CERAMIC X5R 0603
C67, C68, C69, C70, C71,
C72, C74, C75, C77, C78,
C79, C80, C82, C84, C86,
C90, C91, C92, C93, C96,
C97, C98, C102, C103,
C104, C105, C106, C108,
C109, C110, C111, C112,
C114, C115, C116, C117,
C119, C121, C124, C199,
C200, C201, C202
9
C0603C103K5RAC
Kemet
10-nF (0.01-µF) 10% X7R ceramic 50V
C76, C87, C88, C89,
C113, C118, C125, C142,
C145
2
C0805C101K5GACTU
Kemet
100-pF 0805 SMT Ceramic Cap
C83, C123
4
C0603C105K8PACTU
Kemet
CAP CERAMIC 1.0-µF 10V X5R 0603
C134, C135, C136, C137
2
MMBD914
Fairchild
Semiconductor
High Conductance Ultra Fast Diode
D1, D2
28
SML-LX0603GW-TR
Lumex
Surface Mount LED, Half-Moon Solder
Terminals
D3, D4, D5, D6, D7, D8,
D9, D10, D11, D12, D13,
D14, D15, D16, D17, D18,
D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28,
D30, D31
D32, D33
2
SDM40E20LS
Diodes Inc.
Schottky Barrier Diode
1
RAPC722
Switchcraft
Conn Power Jack Right Angle PCB 2.1 J1
mm
4
142-0701-301
Johnson
nents
1
787780-1
AMP
Universal Serial Bus Type B Receptacle J20
14
UCBBJE20-3
Trompeter
Circuit Board Bulkhead Edge Mount
4 * 0.075 36-140G-0
1
640456-5
Compo- Right angle SMA jack
Mode
J2, J3, J4, J5
Coax BNC Style Receptacle
J6, J7, J8, J9, J10, J11,
J12, J13, J14, J15, J16,
J17, J18, J19
3X1 PIN
JB1, JB2, JB3, JB4
AMP
5X1 PIN FRICTION LOCK
JB5
5 * 0.025 36-280G-0
Mode
HEADER 1X2
JP1, JP2, JP3, JP4, JP26
8 * 0.1
36-280G-0
Mode
HEADER 4X4 (2 X 2X4)
JP10, JP11, JP12, JP13
8
90059-0009
Molex
0.1-inch shunt, 15µ gold plate
JP10, JP11, JP12, JP13
8 * 0.275 36-280G-0
Mode
HEADER 11X2
JP14, JP15, JP16, JP17,
JP18, JP19, JP20, JP21
3 * 0.125 36-280G-0
Mode
HEADER 5X2
JP6, JP8, JP9
4
LL2012-F5N6K
Toko America
5.6-nH 0805 Inductor
L1, L2, L3, L4
1
BLM18BD102SN1D
Murata
FERRITE CHIP 1000-OHM 100-MA 0603 L10
4
LL2012-F10NK
Toko America
10-nH 0805 Inductor
L5, L6, L7, L8
1
LL2012-F8N2K
Toko America
8.2-nH 0805 Inductor
L9
1
LM2940CS-5.0
National
3-Terminal Positive Regulator
Q1
1
LT1587CM-1.5
3-Terminal Positive Regulator
Q2
Semiconductor
Page 71 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Table D-1. Bill of Materials for HOTLink II CYV15G0404DXB Video Demo Board (continued)
Qty
Part No.
Manufacturer
Description
Designator
21
ERJ-3GEY0R00V
Panasonic
RES ZERO-OHM 1/10W 5% 0603 SMD R1, R2, R7, R8, R19, R20,
R21, R22, R192, R213,
R214, R215, R216, R222,
R223, R226, R227, R230,
R231, R234, R235
5
ERJ-3GEYJ751V
Panasonic
RES 750-OHM 1/10W 5% 0603 SMD
R113, R114, R115, R116,
R117
8
ERJ-3GEYJ151V
Panasonic
RES 150-OHM 1/10W 5% 0603 SMD
R118, R119, R120, R121,
R122, R123, R124, R125
5
ERJ-3GEYJ102V
Panasonic
RES 1.0K-OHM 1/10W 5% 0603 SMD
R13, R14, R15, R195,
R200
8
ERJ-3EKF37R4V
Panasonic
RES 37.4-OHM 1/16W 1% 0603 SMD
R130, R131, R132, R133,
R134, R135, R136, R137
1
ERJ-3EKF1911V
Panasonic
RES 1.91K-OHM 1/16W 1% 0603 SMD
R146
1
ERJ-3GEYJ681V
Panasonic
RES 680-OHM 1/10W 5% 0603 SMD
R155
1
ERJ-3GEYJ472V
Panasonic
RES 4.7K-OHM 1/10W 5% 0603 SMD
R16
4
ERJ-3EKF51R1V
Panasonic
RES 51.1-OHM 1/16W 1% 0603 SMD
R160, R161, R162, R163
1
ERJ-3EKF59R0V
Panasonic
RES 59.0-OHM 1/16W 1% 0603 SMD
R164
1
CT6W104
BC Components
POT 100K 6-MM CERM SQ ST TOP
R165
1
ERJ-3EKF1541V
Panasonic
RES 1.54K-OHM 1/16W 1% 0603 SMD
R166
1
ERJ-3GEYJ105V
Panasonic
RES 1.0M-OHM 1/10W 5% 0603 SMD
R167
27
9C06031A2210FKHFT
Yageo America
RES 221-OHM 1/10W 1% 0603 SMD
R168, R169, R170,
R172, R173, R174,
R176, R177, R178,
R180, R181, R182,
R184, R185, R186,
R188, R189, R190,
R193, R196, R197
2
ERJ-3GEYJ222V
Panasonic
RES 2.2K-OHM 1/10W 5% 0603 SMD
R17, R18
1
ERJ-3GEYJ361V
Panasonic
RES 360-OHM 1/10W 5% 0603 SMD
R194
10
ERJ-3EKF1300V
Panasonic
RES 130-OHM 1/16W 1% 0603 SMD
R198, R199, R220, R221,
R224, R225, R228, R229,
R232, R233
4
ERJ-3EKF10R0V
Panasonic
RES 10.0-OHM 1/16W 1% 0603 SMD
R201, R202, R203, R204
8
9C06031A22R0FKHT
Yageo America
RES 22.0-OHM 1/10W 1% 0603 SMD
R205, R206, R207, R208,
R209, R210, R211, R212
9
ERJ-3GEYJ202V
Panasonic
RES 2.0K-OHM 1/10W 5% 0603 SMD
R23, R24, R25, R26, R27,
R28, R29, R30, R60
8
ERJ-3GEYJ103V
Panasonic
RES 10K-OHM 1/10W 5% 0603 SMD
R3, R4, R5, R6, R9, R10,
R11, R12
26
ERJ-3GEYJ101V
Panasonic
RES 100-OHM 1/10W 5% 0603 SMD
R31, R32, R33, R34, R35,
R36, R37, R38, R61, R62,
R63, R64, R65, R66, R67,
R68, R69, R70, R71, R72,
R73, R74, R75, R76, R77,
R78
8
ERJ-3EKF1470V
Panasonic
RES 147-OHM 1/16W 1% 0603 SMD
R39, R40, R41, R42, R45,
R46, R47, R48
4
ERJ-3GEYJ820V
Panasonic
RES 82-OHM 1/10W 5% 0603 SMD
R43, R44, R217, R218
8
ERJ-3EKF1210V
Panasonic
RES 121-OHM 1/16W 1% 0603 SMD
R49, R50, R51, R52, R53,
R54, R55, R56
R171,
R175,
R179,
R183,
R187,
R191,
Page 72 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Table D-1. Bill of Materials for HOTLink II CYV15G0404DXB Video Demo Board (continued)
Qty
Part No.
Manufacturer
Panasonic
Description
Designator
36
ERJ-3EKF75R0V
1
CYV15G0404DXB-BGC Cypress
Independent Clock Quad HOTLink II U1
Transceiver
4
SY87729LHI
3.3V AnyClock Fractional N Synthesizer U10, U11, U12, U13
1
CY8C27643-24PVI
Cypress
PSoC Mixed Signal Array
1
APC08F08
Astec
CONV DC-DC 25W 8VIN 3.3VOUT SMD U15
2
EP1C20F324C8
Altera
Cyclone FPGA
4
GS1528-CKA
Gennum
HD-LINX II Multi-Rate SDI Dual Slew- U16, U17, U18, U19
Rate Cable Driver
4
GS1524-CKD
Gennum
HD-LINX II Multi-Rate SDI Adaptive U20, U21, U22, U23
Cable Equalizer
1
CLC001AJE
National
Serial Digital Cable Driver with Adjustable U24
Outputs
2
CLC014AJE
National
1
GS9028-CKA
Gennum
GENLINX II Cable Driver with Two U27
Adjustable Outputs
1
GS9024-CKB
Gennum
GENLINX II Automatic Cable Equalizer
1
CLC007AJE
National
Semiconductor
Serial Digital Cable Driver with Dual U29
Complementary Outputs
Micrel
Semiconductor
Semiconductor
RES 75.0-OHM 1/16W 1% 0603 SMD
R59, R79, R80, R81, R82,
R83, R84, R85, R86, R87,
R88, R89, R90, R91, R92,
R93, R94, R95, R96, R97,
R98, R99, R100, R101,
R102, R103, R104, R105,
R106, R107, R108, R109,
R110, R111, R112, R219
U14
U2, U3
Adaptive Cable Equalizer for High-Speed U25, U26
Data Recovery
U28
2
EPCS4SI8
Altera
Configuration device
U4, U5
1
TPS3820-33
TI
Processor Supervisory Circuit
U6
1
CY7C68013-100AC
Cypress
EZ-USB FX2 USB Microcontroller High- U7
Speed USB Peripheral Controller
1
24LC00/SN
Microchip
128-bit I2C Bus Serial EEPROM(SOIC)
U8
1
CY2DP314OI
Cypress
1 of 2:4 Differential Fanout Buffer
U9
1
SEL2431A-27.0000MHz Saronix
PE1144MV-27.0M
Pletronics
27-MHz PECL OSCILLATOR MODULE
X1
4
VF261-SL-74.25 MHz
Valpey Fisher
XO-500-DFC-205N74.25 MHz
Vectron
74.25-MHz
20ppm
ECS-240-20-4
ECS
24-MHz 20-pF load Crystal
1
SMT
OSCILLATOR
4
6-32 threaded Nylon standoffs
4
6-32 Nylon screws
+/- X2, X3, X4, X5
1
LS7652 Rev 2
1
DTS060330UDC-P5P
CUI Inc.
Universal input 6V 20W power supply,
2.1-mm center-positive plug
1
P012-006
Tripp Lite
NEMA 1-15P to IEC 320 C7 power cable,
6'
Y1
14 Layer PCB
Page 73 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Table D-1. Bill of Materials for HOTLink II CYV15G0404DXB Video Demo Board (continued)
Qty
Part No.
Manufacturer
Description
Do not populate
Designator
R57, R58, R126,
R128, R129, R138,
R140, R141, R142,
R144, R145, R147,
R149, R150, R151,
R153, R154, R156,
R158, R159
R127,
R139,
R143,
R148,
R152,
R157,
Page 74 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Appendix E: Unpacking HOTLink II
CYV15G0404DXB Video Demo Board
Page 75 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
The software GUI must be installed from the resource CD included in the kit. Please follow instructions listed below for installing
and running the various tests from the GUI.
HOTLink II CYV15G0404DXB Video Demo Board Software Set-up Instructions
Open the CD that was supplied with the kit and locate the file named “HOTLink II Video Demo Board Set-up.exe” located in the
zip file. Follow the on screen instructions to set up the GUI. This will install the GUI for the video demo board software to run on
your PC/Laptop. A Windows 2000/XP operating system environment is a minimum requirement to run the software. The following
instructions on installation are based on the Windows XP operating system environment.
1. Locate the file HOTLink II Video Demo Board set-up.exe. Double click the icon.
2. When a dialog box pops up to confirm installation, click “Yes” to continue (see
Figure E-1). This will launch the installation wizard.
Figure E-1. Software Set-up Dialog Box
3. Click “Next” to continue.
Figure E-2. Software Set-up Wizard
4. Select the folder where the HOTLink II Video Demo Board software will be installed, then click on “Next.”
Page 76 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure E-3. Software Set-up Wizard 2
5. Select the Start menu folder in which the HOTLink II Video Demo Board shortcut will be created, then click on “Next.”
Figure E-4. Software Set-up Wizard 3
Page 77 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
6. Click on the check box to have the software icon installed either on desktop, or as a quick launch icon, or both, then click “Next.”
Figure E-5. Software Set-up Wizard 4
7. Click install to have the software installed.
Figure E-6. Software Set-up Wizard 5
Page 78 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
The HVDB icon will now be available on your Desktop and/or as a Quick Launch item in your taskbar (depending on your
selections during installation).
Connect the 6V DC power supply to the power supply jack (J1) on the board. The power LEDs on the board will turn on.
Connect the USB cable between the USB port of the video board and the PC/laptop. Once the USB connection from PC/laptop
is made, the “Found New Hardware Wizard” will pop up indicating that new hardware has been detected and the drivers may
need to be installed if they are not present. See Figure E-7.
1. Choose “Install the software automatically (Recommended)”, then click on “Next.”
Figure E-7. New Hardware Wizard
2. If a warning window pops up as shown in Figure E-8, click on “Continue Anyway.”
Figure E-8. Hardware Installation
Page 79 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
3. “Completing the Find New Hardware Wizard” will pop up. Click on “Finish.”
Figure E-9. New Hardware Wizard 2
4. Click on the HVDB icon on your desktop or Quick Launch taskbar. The HVDB GUI should appear as shown in Figure E-15
indicating that and you have successfully installed the relevant software and hardware on the computer. However, if upon
clicking the HDVB icon, the following warning dialog pops up, please follow the rest of the instructions in this section. Note. The
dialog box shown is Figure E-10 will also appear if the GUI is launched while the board is powered down.
Figure E-10. HVDB Warning
5. Go to Start -> Control Panel -> Add Hardware. This will bring up the Add Hardware Wizard as shown in Figure E-11. Click on
“Next.”
Page 80 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure E-11. Add Hardware Wizard
6. Make sure the USB cable is connected to the PC/laptop at this point. The “Yes, I have already connected the hardware” option
should be checked by default. Click on “Next.”
Figure E-12. Add Hardware Wizard 2
Page 81 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
7. Select the “Cypress HOTLink II Video Demo Board” hardware already installed on the computer.
Figure E-13. Add Hardware Wizard 3
8. Click on “Finish” when the hardware is configured properly.
Figure E-14. Add Hardware Wizard 4
Page 82 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
• The GUI looks like the following.
Figure E-15. HVDB Graphical User Interface
Board Configuration Instructions
Please note that the FPGAs and PSoC are preprogrammed at the factory, for testing purposes. Therefore, you should have no
need to perform the following steps. They are included as a reference should you ever need to reprogram the board.
1. Double click on the HDVB icon. The GUI should appear.
2. Click on Tools ->FPGA Programming. A small dialog box should pop up as shown.
Figure E-16. GUI–FPGA Programming Dialog Box
Click on FPGA1 (U2). This will bring up a File Open dialog box. Select “Hdvb0.pof”. Click on “Open”. The dialog box will have a
“percentage complete” indicator which indicates if the erasing/programming is completed. The FPGA will first be erased, then
programmed. When “Programming U2 Complete” is indicated on top of the “percentage complete” bar, click on “Exit” to close the
dialog box. The FPGA 1 (U2) is now configured. The series of status indications of the dialog box is shown in the following figures.
Page 83 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure E-17. FPGA Programming Dialog Box 1
Figure E-18. FPGA Programming Dialog Box 2
Figure E-19. FPGA Programming Dialog Box 3
Click on FPGA2 (U3). This will bring up a “File Open” dialog box. Select “Hdvb1.pof.” Click on “Open.” The FPGA is configured
the same way as in (1).
3. Click on Tools->PSoC Programming. A small dialog should pop up as shown. Click on “Program PSoC.” This will bring up a
File Open dialog box. Select “Hdvb.hex.” Click on “Open.” PSoC is now configured.
Figure E-20. GUI PSoC Programming Dialog Box
Page 84 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Setting Configurations
Once the user has configured the desired settings on the GUI, the settings selected can be saved to a file for future retrieval.
Similarly, a user can retrieve a saved setting.
• To save a current setting, click on File -> Save Settings, the “Save As” dialog box will prompt the user to enter a valid file name
and the setting for the GUI is saved as a configuration file with an “.ini” file extension. Click on “Save” to save the file. See
Figure E-21.
• To load a saved setting, click on File -> Load Settings, the “Open” dialog box will prompt the user to select a valid existing
configuration file. Click on “Open” to open the file. The GUI settings should be loaded with the new setting.
Figure E-21. GUI–Save/Load Settings
Page 85 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Appendix F: Configuring the HOTLink II
CYV15G0404DXB Video Demo Board for
SD-SDI to HD-SDI Upconversion
Page 86 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Overview
This appendix discusses the necessary modifications that need to be made to the CYV15G0404DXB video demo board, in order
for it to be able to perform upconversion. The upconversion function described in this appendix is for functional verification only.
Due to design constraints, the measured jitter will be higher than normal. If you have any questions about this feature please
contact Cypress’s Application Engineers.
Upconversion
Upconversion is the process of manipulating SD video data to produce an HD version of the same video. An SD signal is scaled
to the desired number of horizontal lines per frame, as well as the appropriate number of pixels per line. The resulting HD signal
can be used to drive a high-resolution projector or monitor.
Upconversion may be used in broadcast situations where SD video masters are provided to stations that wish to broadcast in
HD. For example, if a show is produced in 480 line interlaced and is provided to a station that wishes to broadcast in 1080 line
interlaced, an upconversion would be required. Upconversion can also be used when programming is broadcast in HD, but
advertisements are in SD format. An upconversion will enable the transmission of the advertisements in HD format.
In the CYV15G0404DXB video evaluation board, incoming SDI data that needs to be upconverted is input to the channel B
receiver of the HOTLink II device. The deserialized video data is processed by the FPGA where it is upconverted and transmitted
through the channel A transmitter of the HOTLink II device. The upconversion process is comprised of two primary components:
scaling of the video from 720 by 483 to 1440 by 1035 and conversion of the clock frequency from 27 MHz to 74.25/1.001 MHz.
Figure F-1 shows the block diagram for upconversion through the CYV15G0404DXB video demo board.
REFCLK (Programmable Clock)
27 MHz
RXCLKB
SD-SDI: SMPTE 259
(270 Mb/s)
Channel B
Rx
10
FPGA (U2)
HD-SDI: SMPTE 292
(1485/1.001 Mb/s)
Channel A
Tx
10
REFCLK (FPGA Clock)
74.17 MHz
Figure F-1. SD-SDI to HD-SDI Upconversion Block Diagram
Video Scaling
To perform the video scaling, the incoming SDI data is stored and scaled in up to seven line buffers. For each seven lines of SDI
data input, the first six lines are repeated twice, and the seventh line is repeated three times. The result is 15 lines of HD-SDI
data for each seven lines of SDI data in. The original SD-SDI image of 720 by 483 is converted to an HD-SDI image 1440 (720*2)
by 1035 (483*15/7). This changes the aspect ratio of 4:3 (1.333:1) to [4*15]:[3*14] (1.429:1). The resulting image is stretched
vertically by about 7%, but matches the average line and frame rates for incoming and outgoing data. In order to generate HDSDI line data, each pixel sample pair is repeated twice as follows.
CRnYnCBnYn+1 -> CRnY2nCBnYn+1Rn+1Yn+1CBn+1Yn+1
Page 87 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Clock Rate Conversion
As part of the upconversion process, the incoming SDI clock rate (27 MHz) must be converted to HD-SDI (half rate at 74.25/1.001
MHz). To achieve this, both PLLs in FPGA(U2) are connected in series to get the correct frequency for transmitting. The 27-MHz
clock rate from RXCLKB+ is passed through FPGA(U2), where the first PLL multiplies RXCLKB+ by 25/13, while the second PLL
multiplies the result by 10/7. This produces the desired half rate frequency of 74.17 MHz (74.25/1.001 MHz), which is sent to the
reference clock for channel A (REFCLKA).
Configure to programmable
clock
Connect JP13
and JP1
Configure to
FPGA clock
Remove
R205
Configure to
programmable
clock
Figure F-2. Upconversion Board Modifications
Board Modification
The following describes the board modifications required to achieve the clock rate conversion.
1. Connect JP13 (FCLKB+) and JP1 (RXCLKA+) as indicated in Figure F-2. Refer to Figure F-3 for location of the ground pins.
RXCLKB+ is connected to the first PLL in FPGA(U2), while the output of the PLL is internally connected to FCLKB+. By
connecting JP13 and JP1 as indicated, the output of the first PLL (FCLKB+ output pin) is sent to the input of the second PLL
(RXCLKA+ input pin) in FPGA(U2).
Ground Pins
Figure F-3. Ground Pin Location
Page 88 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
2.Remove resistor R205.
The RXCLKA+ pin on FPGA(U2) is connected to the input of the second PLL in FPGA(U2). However, the RXCLKA+ output
pin of the CYV15G0404DXB chip is connected to the RXCLKA+ input pin of FPGA(U2). The removal of resistor R205 breaks
this connection and allows FCLKB to be routed through the second PLL.
3. .Configure clocking options to FPGA clock option for Channel A (JP11).
This sets the reference clock for Channel A (REFCLKA) to the FPGA clock (FCLKA). Refer to theCYV15G0404DXB User’s
Guide for further information on clocking options.
4. Configure clocking options to programmable clock option for Channels B, C, D.
The block diagram for the resulting clock circuit is shown in Figure F-4.
FCLKB+
FPGA(U2)
REFCLKA+
FCLKA+
RXCLKB+
27MHz
PLL 1
PLL 2
JP11
74.17 MHz
FCLKAREFCLKARXCLKB * (25/13)
FCLKB * (10/7)
Figure F-4. Upconversion Clock Circuit
Test Procedure
Transmission of the SD-SDI signal may be generated on either channel C or channel D. This application note will describe the
connections and settings required for upconverting an SD-SDI signal transmitted on channel C.
Board Connections
1. Apply power to the board and connect the USB cable between the board and the computer.
2. Connect output OUTC1 to input INB1 using a BNC cable.
3. Connect output OUTA1 to the WFM700 using a BNC cable.
Figure F-5 shows the required board connections.
Page 89 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
OUTB2
INB2
OUTB1
INB1
OUTA1
INA1
MS Windows
based PC
OUTD2
IND2
Tektronix WFM 700
OUTD1
IND1
INC1
OUTC1
INC2
OUTC2
Figure F-5. Upconversion Test Connections
GUI Configuration
Configuration of the CYV15G0404DXB GUI is comprised of the following steps. The typical settings are shown in Figure F-6.
1. Enable an SD-SDI/SMPTE 259M-C signal by selecting 270 Mb/s in the Tx/Rx Rate Box of the GUI.
2.Select “Up Convert Ch B” on channel A
3.Run channels A, B, and C
Page 90 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Figure F-6. Upconversion GUI Settings
Page 91 of 92
[+] Feedback
Quad Independent Channel
HOTLink II™ CYV15G0404DXB
Video PHY Demonstration Board
Results
The output of the upconverted signal may be verified by monitoring the output signal on any HD-SDI waveform monitor (example
Tektronix WFM 700). Figure F-7 and Figure F-8 show the output for an SD-SDI, HD-HDI, and upconverted HD-SDI signal respectively.
Figure F-7. SD-SDI Video Picture
Figure F-8. Upconverted HD-SDI Video Picture
Unused active video samples in active outgoing video lines are set to black. This will result in the black bars at the sides of the
video image in Figure F-8. Some active video lines at the top and bottom of the HD-SDI output are not used, and result in the
black bars above and below the image.
EZ-USB FX2 and HOTLink II are trademarks of Cypress Semiconductor Corporation. PSoC is a trademark of Cypress MicroSystems. Windows is a registered trademark of Microsoft Corporation. All product and company names mentioned in this document
are trademarks of their respective holders.
Page 92 of 92
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
[+] Feedback