Download EVBUM2159 - NCP3120-23 2 A/3 A HF Buck Evaluation

Transcript
NCP3120QPBCKGEVB,
NCP3121QPBCKGEVB,
NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
NCP3120-23 2A/3A HF
BuckEvaluation Board
User'sManual
http://onsemi.com
EVAL BOARD USER’S MANUAL
Circuit Description
750/2,200 kHz.
Also,
an
onboard
operational
transconductance amplifier (OTA) integrates the error
signal to provide high DC accuracy. The NCP312x also
includes an enable and disable function with externally
controlled soft start and stop.
The NCP312x operates as a voltage-mode, pulse-widthmodulated, (PWM) asynchronous buck converter. Its
operating frequency is adjustable with an external resistor to
ground from 220 kHz to 750/2,200 kHz. minimum
switching frequency of 220 kHz and a maximum
Table 1. EVALUATION BOARD SPECIFICATION
Characteristic
Min
Input Voltage
Output Voltage
Output Current
Typ
Max
Unit
Comments
(Note 1)
7
−
15
V
Vout1
−
3.3
−
V
Vout2
−
5
−
V
Vout1
0
−
2
A
Vout2
0
−
2
A
−
300
−
kHz
−
−
V
EN Tied to SEQ
EN Tied to SEQ
Oscillator Frequency
Enable Threshold High
EN Tied to SEQ
2.0
Sequence Threshold Low
EN Tied to SEQ
−
−
0.8
V
Voltage Ripple
Vout1
−
40
−
mVpk−pk
Vout2
−
40
−
mVpk−pk
Load Regulation
Vout1
−
0.61
−
mV/A
(Vin = 12 V, Iout = 0.5 − 2 A)
Vout2
−
0.21
−
mV/A
Line Regulation
Vout1
−
1.85
−
mV/V
(Vin = 10.8 − 13.2 V, Iout = 2 A)
Vout2
−
3.53
−
mV/V
−
160
−
C
Thermal Shutdown
Dual 2 A/3 A DC−DC Converter Dimensions
1  2
Outlined Area
1. Operation down to 4.5 V requires selecting a lower voltage for Vout2.
 Semiconductor Components Industries, LLC, 2012
November, 2012 − Rev. 1
1
Publication Order Number:
EVBUM2159/D
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
Figure 1. NCP3120 2 A Buck Evaluation Board
Figure 2. NCP3121 3A Buck Evaluation Board
Figure 3. NCP3122 2A HF Buck Evaluation Board
Figure 4. NCP3123 3A HF Buck Evaluation Board
http://onsemi.com
2
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
BOARD DETAILS
Figure 5. Top Layer
Figure 6. Bottom Layer
Figure 7. Silkscreen Layer
http://onsemi.com
3
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
Figure 8. Schematic for the NCP3120 Buck Evaluation Board
http://onsemi.com
4
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
Figure 9. Schematic for the NCP3121, NCP3122 and NCP3123 Buck Evaluation Boards
http://onsemi.com
5
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
0 .1. ref
Falling comp
SHDN 1
PG 1
0 .9 . ref
pg 1
HS protection 1
COMP 1
Error Amplifier
FB 1
VIN
Delay
R
PWM
EOTA 1
HS1
CON TR OL
LOGIC 1
0o
S
SW 1
1V
GND 1
10 u
SS 1
TRACK 1
SS 1
Soft Start &
Tracking Control
(MUX1)
OSCILLATOR
RT
AVIN
FB1
10 u
Signal
Voltage
0. 5V
Overload
Protection
ref (0.8 V)
AGND
SHDN 1
SEQ1
EN 1
EN 2
SHDN 1
Power
Sequencing 1
TRACK 2
AVIN
STAR TU P
UVL O
TH ER MAL
SH U TD OWN
Power
Sequencing 2
Reference
0. 8V
ref (0 .8V )
ref (0.8 V)
GND 2
SHDN1 SHDN2
1V
SEQ 2
SS2
SHDN2
SHDN 2
10u
SS 2
Soft Start &
Tracking Control
(MUX2)
HS protection 2
FB2
10u
VIN
0 .5V
Overload
Protection
180o
COMP 2
S
Error Amplifier
PWM
EOTA 2
R
HS 2
CON TR OL
LOGIC 2
FB 2
SW 2
pg 2
0 .9 . ref
PG 2
Delay
0 .1. ref
Figure 10. NCP 3120 Block Diagram
http://onsemi.com
6
Falling comp
SHDN 2
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
Table 2. PIN DESCRIPTION
Pin
Symbol
1, 31, 32
SW1
2−7
VIN
8–10
SW2
Description
Switch node of Channel 1. Connect an inductor between SW1 and the regulator output.
Input power supply voltage pins. These pins should be connected together to the input signal
supply voltage pin.
Switch node of Channel 2. Connect an inductor between SW2 and the regulator output.
11
GND2
12
SS2
Power ground for Channel 2
13
COMP2
14
AGND
15
FB2
Feedback Pin. Used to set the output voltage of Channel 2 with a resistive divider from the output.
16
RT
Resistor select for the oscillator frequency. Connect a resistor from the RT pin to AGND to set the
frequency of the master oscillator.
17
TRACK 2
Tracking input for Channel 2. This pin allows the user to control the rise time of the second output.
This pin must be tied high in the normal operation (except in the tracking mode).
18
TRACK 1
Tracking input for Channel 1. This pin allows the user to control the rise time of the first output. This
pin must be tied high in the normal operation (except in the tracking mode).
19
SEQ2
20
EN2
21
SEQ1
Soft-start control input for Channel 2. An internal current source charges an external capacitor
connected to this pin to set the soft-start time.
Compensation pin of Channel 2. This is the output of the error amplifier and inverting input of the
PWM comparator.
Analog ground; connect to GND1 and GND2.
Sequence pin for Channel 2. I/O used in power sequencing. Connect SEQ to EN for normal
operation of a standalone device.
Enable input for Channel 2.
Sequence pin for Channel 1. I/O used in power sequencing. Connect SEQ to EN for normal
operation of a standalone device.
22
EN1
Enable input for Channel 1.
23
PG2
Power good, open-drain output of Channel 2. Output logic is pulled to ground when the output is
less than 90% of the desired output voltage. Tied to an external pull-up resistor.
24
PG1
Power good, open-drain output of Channel 1. Output logic is pulled to ground when the output is
less than 90% of the desired output voltage. Tied to an external pull-up resistor.
25
AVIN
Input signal supply voltage pin.
26
FB1
Feedback Pin. Used to set the output voltage of Channel 1 with a resistive divider from the output.
27
AGND
28
COMP1
29
SS1
30
GND1
Exposed Pad (GND)
Analog ground. Connect to GND1 and GND2.
Compensation pin of Channel 1. This is the output of the error amplifier and inverting input of the
PWM comparator.
Soft-start/stop control input for Channel 1. An internal current source charges an external capacitor
connected to this pin to set the soft-start time.
Power ground for Channel 1.
The exposed pad at the bottom of the package is the electrical ground connection of the NCP312x.
This node must be tied to ground.
http://onsemi.com
7
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
PERFORMANCE INFORMATION
The following Figures show typical performance of the
NCP312x in this evaluation board.
90
95
Vin = 10.8 V
90
EFFICIENCY (%)
85
EFFICIENCY (%)
Vin = 10.8 V
Vin = 13.2 V
Vin = 12 V
80
75
70
65
Vin = 12 V
85
80
75
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
70
2.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
Iout (A)
Figure 11. Efficiency for Vout1 = 3.3 V
Figure 12. Efficiency @ Vout2 = 5 V
1.8 2.0
4.998
3.3745
4.997
Vin = 13.2 V
3.3740
Vin = 13.2 V
4.996
3.3735
4.995
3.3725
Vout (V)
3.3730
Vin = 12 V
3.3720
4.994
Vin = 12 V
4.993
4.992
3.3715
3.3710
3.3705
3.3700
0
Iout (A)
3.3750
Vout (V)
Vin = 13.2 V
0
0.5
Vin = 10.8 V
4.991
Vin = 10.8 V
4.990
1.0
1.5
2.0
4.989
0
Iout (A)
0.5
1.0
1.5
2.0
Iout (A)
Figure 13. Load Regulation vs. Vin for Vout1 = 3.3 V
Figure 14. Load Regulation vs. Vin for Vout1 = 3.3 V
http://onsemi.com
8
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
PERFORMANCE INFORMATION (Continued)
Figure 15. Load Transient − Vout1 (Vin = 12 V, Iout = 200 mA −to− 2 A −to− 200 mA)
(CH1 = Vout1, CH4 = Iout1)
Figure 16. Load Transient − Vout2 (Vin = 12 V, Iout = 200 mA −to− 2 A −to− 200 mA)
(CH1 = Vout2, CH4 = Iout2)
Figure 17. Switching Waveforms Vout1, Vout2, VSW1, VSW2
CH1 = Vout1, CH2 = Vout2, CH3 = VSW1, CH4 = VSW2)
http://onsemi.com
9
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
PERFORMANCE INFORMATION (Continued)
Figure 18. Ratiometric Startup of Vout1/2 with Power Good Outputs
(CH1 = Vout1, CH2 = Vout2, CH3 = PG1, CH4 = PG2)
Figure 19. Switching Waveforms Showing 1805 Phase Shift Operation
(CH1 = VSW1, CH2 = VSW2, CH3 = IL1, CH4 = IL2)
http://onsemi.com
10
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
PERFORMANCE INFORMATION (Continued)
Hiccup Overload Protection
When the NCP312x detects an overload condition (FB
voltage falls to 0.5 V), switching stops, the soft start
capacitor is discharged to 0.1 V and again charged to 1 V.
The output of the error amplifier is also tied to ground
(output transistor is closed) during the soft start capacitor
discharge. If the output voltage is still below the overload
condition voltage (0.5 V), the cycle repeats, as shown in
Figure 20.
The NCP312x uses hiccup mode protection to protect the
power supply from damage during overload conditions.
During normal operation, the external soft start capacitor is
pulled up by a current source that delivers 10 mA to the SS
pin capacitor. This current source continues to charge the
soft start capacitor until it reaches the saturation voltage of
the current source (typically 4 V).
Figure 20. Hiccup Overload Protection Description (VIN = 12 V)
Figure 21. Switching Waveforms Showing Hiccup Overload Protection
(CH1 = VSW1, CH2 = VSW2, CH3 = IL1, CH4 = IL2)
http://onsemi.com
11
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
Table 3. BILL OF MATERIAL FOR THE NCP312x EVALUATION BOARD (Note 2)
Designator
Qty.
Description
Value
Tolerance
Footprint
Manufacturer
Manufacturer
Part Number
Substitution
Allowed
Lead
Free
RT
1
Resistor
240 kW
1%
1206
VISHAY
RCA1206240KFKEA
Yes
Yes
RVIN, R14,
R24
1
Resistor
100 W
1%
1206
VISHAY
RCA1206100R0FKEA
Yes
Yes
R1
1
Resistor
75 kW
1%
1206
VISHAY
RCA1206100KFKEA
Yes
Yes
R5, R22
2
Resistor
47 kW
1%
1206
VISHAY
RCA120647K0FKEA
Yes
Yes
R6, R23
2
Resistor
15 kW
1%
1206
VISHAY
RCA120615K0FKEA
Yes
Yes
R7, R8
2
Resistor
10 kW
1%
1206
VISHAY
RCA120610K0FKEA
Yes
Yes
R12
1
Resistor
68 kW
1%
1206
VISHAY
RCA120668K0FKEA
Yes
Yes
R13
1
Resistor
13 kW
1%
1206
VISHAY
RCA120613K0FKEA
Yes
Yes
R15, R25
2
Resistor
4k7
1%
1206
VISHAY
RCA12064K70FKEA
Yes
Yes
R16
1
Resistor
5k1
1%
1206
VISHAY
RCA12065K10FKEA
Yes
Yes
R26
1
Resistor
3k3
1%
1206
VISHAY
RCA12063K30FKEA
Yes
Yes
C1, C15,
C25
3
Ceramic Capacitor
22 mF
10%
1210
Kemet
C1210C226K4PAC
Yes
Yes
C2, C3,
C11, C21
4
Ceramic Capacitor
100 mF
10%
1206
Epcos
B37872A5104K060
Yes
Yes
C12, C22
2
Ceramic Capacitor
22 mF
10%
1206
Epcos
B37872A5223K060
Yes
Yes
C14, C24
2
Ceramic Capacitor
220 mF
10%
1206
Epcos
B37871K5221J060
Yes
Yes
L11, L21
2
Inductors
22 mF
20%
DO3340P
Coilcraft
DO3340P−223
No
Yes
LD1, LD2
2
LED Diode − Green
LED 3 mm
−
3 mm
KingBright
L−7104GD
Yes
Yes
D11, D21
2
Low Vf Schottky
Rectifier (Note 3)
MBRS240/
MBRS340/
MBRS360
−
SMB/SMC
(Note 4)
ON Semiconductor
MBRS240LT3G/
MBRS340LT3G/
MBRS360LT3G
No
Yes
IC1
1
Dual 2 A/3 A
Switching Regulator
(200−750 kHz/
200−2,200 kHz)
NCP312x
(Note 2)
−
QFN32
(55 mm)
ON Semiconductor
NCP312xMNTXG
(Note 2)
No
Yes
JP1, JP2,
JP7, JP8
4
3 Pin
3 Pin
−
2.54
Harwin
M20−9990305
Yes
Yes
JP3, JP4,
JP5, JP6,
JP9, JP10,
JP11, JP12,
JP13, JP14,
JP15, JP16
12
RM 2.54 mm, PCB
pin’s
Jumper −
PCB pin’s
−
2.54
Harwin
M20−9990205
Yes
Yes
Jumper
8
Jumper, RM
2.54 mm
Jumper
−
2.54
Harwin
M7686−05
Yes
Yes
R3, R4
(Note 5)
2
Resistor
NU
1%
1206
−
−
Yes
Yes
C13, C16,
C23, C26
(Note 5)
4
Ceramic Capacitor
NU
10%
1206
−
−
Yes
Yes
Plastic
Distance
4
Plastic distance
−
−
L 5 mm
−
−
Yes
−
Screw
4
M3 Screw
−
−
D 36 mm
−
−
Yes
−
Connecting
Ext. Points
17
Connecting external
points
−
−
−
−
−
Yes
−
2.
3.
4.
5.
x = 0, 1, 2, 3
2 A 40 V − NCP3120 & NCP3122; 3 A 60 V − NCP3121; 3 A 40 V − NCP3123
SMB − NCP3120 & NCP3122; SMC − NCP3121 & NCP3123
Not used positions.
http://onsemi.com
12
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
TEST PROCEDURE FOR THE NCP312x EVALUATION BOARD
DC Electronic Load
+
A
+
V
−
x
−
DC Power Supply
+
A
+
V
−
−
DC Electronic Load
+
A
+
−
V
−
Figure 22. Test Setup
Test Procedure
The following steps detail the test procedure for all these
boards: NCP3120, NCP3121, NCP3122 and NCP3123
1. Make sure, if the red ringed jumpers are placed
(Figure 22).
2. Connect the test setup as shown in Figure 22.
3. Disable loads = 0 A.
4. Apply an input voltage, VIN = 12 V DC.
5. Check, if VOUT1 = 5 V DC, VOUT2 = 3.3 V DC.
6. Enable loads up to 2 A/3 A*
(*for the NCP3121, NCP3123 Buck Evaluation
Boards)
7. Check, if VOUT1 = 5 V DC, VOUT2 = 3.3 V DC.
8. If yes, test passed successfully.
9. Power down the load.
10. Power down VIN.
11. End of test.
Required Equipment
 Current limited DC Power Supply



(e.g. AGILENT 6653A) − 1pc
DC Volt-Meter able to measure up to 15 V DC
(e.g. KEITHLEY 2000) − 3pcs
DC Amp-Meter able to measure up to 2 A DC
(e.g. KEITHLEY 2000) − 3pcs
DC Electronic Load (e.g. AGILENT 6060B) − 2pcs
http://onsemi.com
13
NCP3120QPBCKGEVB, NCP3121QPBCKGEVB, NCP3122QPBCKGEVB,
NCP3123QPBCKGEVB
CONFIGURATION OF JUMPERS
JP9:
JP10:
JP11:
JP12:
JP13:
JP14:
JP15:
JP16:
JP1: Enable/Disable 1-st Channel (pins 2−3 enabling, 1−2
disabling the channel 1)
JP2: Enable/Disable 2-nd Channel (pins 2−3 enabling,
1−2 disabling the channel 2)
JP3: SEQ1 + EN2
JP4: EN2 + SEQ2
JP5: EN1 + SEQ1
JP6: EN1 + SEQ2
JP7: Tracking 1 ref. level − must connect pins 2−3 for
normal operation
JP8: Tracking 2 ref. level − must connect pins 2−3 for
normal operation, connect 1−2 for Tracking function,
see the configuration table
Internal Tracking 2 Enable
Internal enable 1 of Master voltage Soft start 2
Internal enable 2 of Master voltage Soft start 2
External enable of Master voltage Soft start 1
External enable of Master voltage Soft start 2
Track1 + Track2
Soft start 1 capacitor enable
Soft start 2 capacitor enable
Table 4. CONFIGURATION OF JUMPERS
JP1
JP2
JP3
JP4
JP5
JP6
JP7
JP8
JP9
JP10
JP11
JP12
JP13
JP14
JP15
JP16
−
2−3
2−3
−
−
−
−
−
−
1−2
1−2
−
2−3
2−3
−
−
−
−
−
−
1−2
1−2
−
2−3
2−3
−
−
−
−
−
−
1−2
1−2
1−2
2−3
2−3
−
−
−
−
−
−
1−2
1−2
−
−
−
−
−
−
1−2
1−2
1−2
1−2
1−2
−
−
−
1−2
−
1−2
1−2
−
−
−
1−2
−
Normal Operation − Enable from VIN
2−3
2−3
−
1−2
1−2
Enables are Driven from an External Sources
−
−
−
1−2
1−2
Enable 1 is Driven from VIN, Channel 2 is Disabled
2−3
1−2
−
1−2
1−2
Sequential Sequencing − Enable from VIN
2−3
2−3
1−2
−
−
Enable 1 is Driven from an External Source, Enable 2 is a SLAVE of Enable 1
−
−
1−2
−
−
1−2
2−3
2−3
Internal Tracking − CH1 is MASTER, CH2 SLAVE; Enable from VIN
2−3
2−3
−
1−2
1−2
1−2
2−3
1−2
Enable1 is Driven from External Source, Enable2 is Connected with Enable1
−
−
−
1−2
1−2
1−2
2−3
1−2
1−2
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
14
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
EVBUM2159/D