Download Digital Radiation Monitor

Transcript
O
O
W.
WW .100Y.C M.TW
WW .100Y.C M.TW
WW .100Y.C M.TW
O
WW 00Y.CO .TW
W
WW 00Y.CO .TW
C
.
W
W
W
Y
W
W
M
.1
.T
00
the Radiation
W.1 Y.COMUsing
.CO .TW
WWMonitor
W.1 Y.COM W
Y
W
W
0
W
W
0
W
.T is the general procedure
00
W
Here
when
M using the Digital Radiation Monitor:
O
W.1to follow
M.T
.100
Digital Radiation
Monitor
W.1 Y.COM W
C
.
O
W
W
Y
W
C
.
0
W
1. .Connect
the Digital Radiation
interface.
.TW
W
T
WW .100Y
.10 MonitorOtoMthe
.TW
100
M
.
W
M
O
W
C
.
O
W
W
C
2.
Start
the
data-collection
software.
(Order Code DRM-BTD)
.
Y
W
C
.
0
W
.TW
W
.TW
10Digital
00Y 3. M
WW .100Y
M
.
.TW
1
.
O
W
M
The
software
will
identify
the
Radiation
Monitor and load a default dataThe Digital Radiation Monitor is used to monitor
alpha,
beta,
W
Y.C
WW 00Y.CO collection
W setup1. You
.CO .TW
0
WW
T
WW
.
0
Y
W
T
.
are
now
ready
to
collect
data.
and gamma radiation. It can be usedW
with
a number
of
1
0
M
.
1
0
M
.
O
1
W
M
.
O
W
C
O
W per specified
interfaces to measure the total number ofW
counts
Y. with the
WW is compatible
Radiation Monitor
following data-collection
.TW
WW .100Y.CThe Digital
.TW
100
0Y.C
W it can
M
.
.TW
0also
M
timing interval. Since it has its own display,
be used
O
1
W
M
.
O
interfaces:
W
C
.
O
W
W
C
W
Y
W
.C
W
W radiation
independent of interfaces in the field toW
measure
W
WW .100Y.• Vernier
M.T
.100
00Y
M.T LabPro®
O
W
M.T
O
W
C
levels. The Radiation Monitor allows students W
to .1
.
O
®
W
WW .100Y
.TW
WW .100Y•.C Vernier
.TLabQuest
WW .100Y.C M.TW
M
•
Detect the presence of a source of radiation.
M
O
W
O
W
.C
® Mini W
O
W
LabQuest
W
W
.TW
W type of WW .100•Y.CVernier
00Y
Y.C
T
•
Monitor counts/interval (rate) as different
of a particular
.
1
0
WW thicknesses
T
M
.
.
0
M
™
O
1
W
CBL 2 W
W • Texas
.C
OM
shielding are placed between the Geiger-Mueller
Radiation Monitor
W. tube of the
CO Instruments
W
W
00Y
WW .10•0Y.Vernier
®
.TW
1
WW .100Y.C M.TW
M.T
SensorDAQ
.
and a beta or gamma source.
M
O
W
O
W
C
O
.C
WW .100Y.
WW to0shield
.TW
•
Compare the effect of different types ofW
materials
or .gamma
WW .Specifications
.TW
00Y
0Y.CbetaM
TW
M
1
M
O
1
W
.
W
radiation.
O
W
W
.CO 712 .(or
WW .100Y.CGM tube
W
0YLND
Y.C how initial
WW Sensor:
TW
equivalent) halogen-quenched
0
0
WW
T
M.Twith a mica end
.
1
0
M
.
•
Set up a histogram with a very long run time
to show
students
O
1
W
M
.
2
O
W
C
O
counts
1.5
.C to 2.0 .mg/cm
Y. per minute
WWat 1000
WW 00curve.
.TWusing a Cesiumrandomness of data develops into a Gaussian
Y.C
WW window,
TW thick. Rated
100
00Y
Wdistribution
M
.
.TW
1
M
.
137
laboratory
standard.
O
1
W
M
.
O
W
.C
O mantels or
Wsuch as lantern
•
Measure radiation of common radioactive materials,
W
WW a battery
00Ylife of 2000
0Y.C
WWPower:
9-voltM
alkaline
.TW battery provides
1
0One
WW .100Y.C M.TW
M.Thours at normal
.
1
.
old Fiestaware.
O
W
O
W
C
.
W
backgroundYradiation
levels.
.C
.CO .TW
WW .100Y
.TW
WW
•
Monitor variation in background radiation at different
.TW
00±10% typical,
WW elevations.
M
1
00Y
M
.
O
1
Accuracy:
±15%
max.
(mR/hr
and
µSv/hr
modes)
W
M
.
O
.C
O
W of time.
WW 00Y.C
•
Monitor radioactivity in the environment over longW
periods
WW
.TW
W
00Y
Y.C
WDimensions:
TW
1
0
150 x 80M
x .30
mm (5.9" x 3.2"
x 1.2")
W
T
M
.
.
1
0
.
O
1
W
.
O
•
Monitor counts per interval (rate) from a beta or gammaWradiation
source
.C
OMas a
W
W
WW 22500gY
Weight:
(8.C
oz) with.battery
W
W
00Y
Y.C
W
TW installedW
1
0
function of the distance between the source and the
Monitor.
WRadiation
T
M.T
.
.
1
0
M
.
O
1
W
M
.
O
W
Energy
Sensitivity:
referenced
W
Y.C
.CO .TW
Y.C1000 CPM/mR/hr
WW to Cs-137
.TW
WW .100Chirps
.TW
100mode only–can
WWthat allows
M
.
The Digital Radiation Monitor includes a cable (RCD-BTD)
00Ythe monitor
M
Audio Output:
for
each
count
(operational
in
audio
be muted)
O
1
W
M
.
O
O
W
W
W
.C–20°C
Y.C
WW Range:
C
to be connected to a data-collection interface.
W
.
0
Y
W
T
W
.
W
0
0
Y
W
T
Temperature
to
50°C
.
W
M
.1
.T
.10
100 3.5 mm
OM
W
The cable that accompanies the DRM-BTD Radiation Monitor hasW
a.small
OM
WW 00Y.CO
C
.
W
Operating
Range:
C
W
.
Y
W
W
W
0
Y
W
0
0
W digital
(micro-miniature) stereo jack on one end and a white rectangular
.1
.T
0British
M.T
mR/hr:
toO110
W.1 0.001
WW
W.1 theY.COM W
C
.
W
Telecom (BT) plug on the other end. This cable is used to directly
connect
W
Y
W
W
W CPM: .100 0to 350,000M.T
W®, or SensorDAQ
DRM-BTD to the Vernier LabQuest®, LabQuest® Mini, LabPro
.100 ®, OM.T
O
W
WW 1 0to09,999,000
TM
C
Y.C
W
WTotal:
or to the Texas Instruments CBL 2 .
.TW
WW .100Y.
T
.
1
Mcounts
.
M
O
W
O
W
C
µSv/hr:
.
W 0.0100toY1100
W
WW .100Y.C M.TW
1to 3,500
.
CPS:
1
W
O
W
Extended User Manual
WW
WW .100Y.C M.TW
O
W
A more extensive user manual can be viewed from the Digital Radiation
Monitor
WW .100Y.C M.TWHow the Radiation Monitor Works
page of the Vernier web site, www.vernier.com/probes/drm-btd.html.
O
W
The Radiation Monitor senses ionizing radiation by means of a Geiger-Mueller
WW .100Y.C
(GM) tube. The tube is fully enclosed inside the instrument. When ionizing radiation
W
W
NOTE: This product is to be used for educational purposes only. It is not
appropriate
or a particle strikes the tube, it is sensed electronically and monitored by its own
W
for industrial, medical, research, or commercial applications.
display, a computer, or by a flashing count light. When the switch is in the AUDIO
position, the instrument will also beep with each ionizing event. It is calibrated for
1
If you are using a LabPro or CBL 2 for data collection, the sensor will not auto-ID.
Open an experiment file in Logger Pro or manually set up the sensor.
2
O
O
W.
WW .100Y.C M.TW
WW .100Y.C M.TW
WW .100Y.C M.TW
O
O of relative intensities W
WW 00Y.CO .TW
W
C
Cesium-137, but also serves as an
excellent
indicator
forW
other 0Y.C
W
.
W
W
W
Y
W
T
.
0
.1
.T
the Radiation
Your Classes
OM
sources of ionizing radiation.W
GammaW
radiation
per
.100 is measured
W.1 Y.COMUsing
.Cin
OM in milli-Roentgens
WWMonitor
W
Y
W
C
W
.
0
W
W
.TMonitor
W
0
0
Y
W
T
hour. Alpha and beta are measured
(CPM).
About
5
to
25
counts
at
Here
are
some
examples
of
how
the
Radiation
can be used in a science
.
1
0
0
W in counts/minute
T
M
.
.
1
0
M
.
O
1
W
M
.
O class.
W
C
.
O
W
W
random intervals (depending on location
and
altitude)
can
be
expected
every
minute
C
W
.
Y
W
C
W
.
0
Y
W
T
.
W
0
Y
W
WWradiation.
from naturally occurring background
M.T
.100
OM
W.1Studies
vs. Distance
M.T
.100
OCounts/Interval
W
C
.
O
W
W
C
.
Y
W
C
. mica window
0 collected
W below
W window.
.TbyWmonitoring gamma radiation at
The end of the GM tube has a thinW
mica
This
W by .100Y The
.TWin the two graphs
10were
data
M
.
.TW is protected
00Y
M
O
1
W
M
.
O
W
O to reach the GM tube and
the screen at the end of the sensor. It allows
particles
W
W collected with the run
fromW
a Radiation
were
W
0Y.C Data
WWalpha
W and gamma
0Monitor.
Y.C beta.particles
WW .100Y.C various
Tdistances
.
1
0
T
M.Tinterval, the source was moved
.
be detected. The mica window will W
also sense.low
energy
0
M
O
1
intervals
set
at
100
seconds.
After
each
100
second
W
M
O
W
C
W or the Y
Y. distance
.CO
radiation that cannot penetrate the plastic
side
of the tube.
WW
.TW
WW .100Y.Cone centimeter
the source.
is proportional to time
.TW further from
100 Since O
WWcasethrough
M
.
.TWNote: Some
M
W
M
.100 the mica
very low energy radiation cannot be detectedW
window.
O
W
C
.
O
(300
seconds
in
the
first
graph
corresponds
to
3
cm
in
the
W
C
Wsecond graph; 400 seconds
.
W
.Ttime
00Ymade using
WW .100Yto
.TWa new distance
1
WW .100Y.C M.TW
M
.
4
cm,
etc.),
column
was
divided by 100. The
M
O
W
.C to the .–2
O
Further Tips for Monitoring Radiation
Wdistance
W
W
.CO fit shown
Y
WW 00Y
C
W
.
curved
corresponds
to
raised
power
(inverse squared).
0
W
T
W
W
0
Y
W
T
0
M.
.1
To measure gamma and X-rays, hold theW
back ofW
the
Monitor
W.1 Y.COM W
M.T toward the
.10Radiation
O
W
O
W
C
.
.C cannot
Y
W
W
source of radiation. Low-energy gamma radiation
KeV)
the WW
.TW
WW (10–40
M.T
.100
.Tpenetrate
100
00Y
M
.
O
1
W
M
.
O
W
C
.
O
side of the GM tube, but may be detected through
the
end
window.
W
W
W
Y
.C
W
WW .100Y.C M.TW
WW
TW
M.T
.100
.of
00Y source
To detect alpha radiation, position the monitor
so the suspected
radiation
is
O
1
W
M
.
O
W
C
O
W
WW .100Y.
.TW
next to the GM window. Alpha radiation willW
notW
travel far00through
W the
Y.C air, so
WW .100Y.C M.TW
M
.Tput
O
1
W
M
.
O
W
source as close as possible (within 1/4 inch) to the screen
without
it. Even a
O
.Ctouching
WW .100Y.C M.TW
WWparticle
W
Ycan
WW .100Y.C M.TW
0
Walpha
T
.
humid day can limit the already short distance an
travel.
0
O
W
O
W
OM
W.1 Yof
.Cradiation.
WW .100Y.C M.TW
To detect beta radiation, point the end window toward
Beta
W
WW .100Y.C M.TW
0
WW the source
T
.
0
radiation has a longer range through air than alpha particles,
usually
OM be
WW 00Y.CO .TW
W.1but can
WW 00Y.CO .TW
C
.
W
W
W
Y
W
0
W
T
shielded (e.g., by a few millimeters of aluminum). High energy
.1
W.1 Y.COM W
M.may be
.10beta particles
OM
W
O
W
W
C
.
W
C
monitored through the back of the case.
W
Y
W
.T
W
00
W
WW .100Y.
M.T
.100
W.1 Y.COM W
M.T
O
W
To determine whether radiation is alpha, beta, or gamma, hold
the backC
ofOthe
W
W
C
.
.
W
WW .100Y
.TW
monitor toward the specimen. If there is an indicationW
ofW
radioactivity,
M.T
.100
.TW
00Yit is most
M
O
1
W
M
.
O
W
C
Counts/interval
vs.
time
and
distance
.
O
W
W
likely gamma or high energy beta. Place a piece of aluminum
about 3 mm
(1/8")
WW .100Y
WW .100Y.C M.TW
0Y.C isM
WW
M.T
.TW
0radiation
O
1
thick between the case and the specimen. If the indication
stops,
the
most
W
.
O
W
.C
O
W
W
.C Shielding
likely beta. (To some degree, most common radioactive isotopes
WW .100Yvs.
Counts/Interval
.TWStudies W W.100Y OM.TW
0Y.Cbeta and
WW emit
.TW
0both
M
1
M
.
O
W
O the
gamma radiation.) If there is no indication through the back ofWthe
Wcase, position
The data
Y.Cwere .TW
WW .100Y.C M.TW
0here
Y.Cit is .TW
WW shown
0
0
W is an indication,
1
end window close to, but not touching, the specimen. If there
0
collected
by
monitoring
gamma
M
.
O
W
M
O
W
W.1 and
Wwith
W
.C
probably alpha or beta. If a sheet of paper is placed betweenW
theW
window,
theO
Y.C
WW .100Y.C
radiation
an0increasing
W
0
Y
W
T
.
0
T
.
M
.10 particles
indication stops, the radiation is most likely alpha. (Note: In order toWavoid
W.1 of silver
number of
OM
WW
.COfoil .TW
Wpieces
C
.
Y
W
W
W
0
Y
W
falling into the instrument, do not hold the specimen directly above
the
end
0
0
W
placed between .the
source andMa
.T
0
O
W 1 Data
W.1 Y.COM W Radiation W
window.)
Monitor.
was
W
Y.C
W
0
W
0
0
W
T
.
1
0
M.atT
collected with W
the. run interval
set
.1 (RF), OM
The Radiation Monitor does not detect neutron, microwave, radio frequency
O
W
C
Y.
WWAfter.each
laser, infrared, or ultraviolet radiation. It is calibrated for Cesium-137,
0Y.C M.TW 100 seconds.
WW and .is10most
100
W
100 second interval,
Wdetect Y.CO
accurate for it and other isotopes of similar energies. Some isotopes itW
will
W another piece
Wwas
.TW of silver foil
00
placed between
relatively well are cobalt-60, technicium-99m, phosphorus-32, andW
strontium-90.
1
M
.
O
W
C
.
the
source
and
the
W
Some types of radiation are very difficult or impossible for this GMW
tube to detect.
.TWMonitor. Since theRadiation
00Y
Counts/interval vs. thickness of filter
1
M
.
number of
O
W
Beta emissions from tritium are too weak to detect using the Radiation Monitor.
C
.
W
Y
pieces is proportional to time
Wtube and.1give
00
Americium-241, used in some smoke detectors, can overexcite the GM
W
(300 seconds corresponds to 3 pieces of foil, 400 seconds to 4 pieces of foil, etc.), a
W
an indication of a higher level of radiation than is actually there.
W
new column, pieces of silver foil, was made using time divided by 100.
3
4
O
O
W.
WW .100Y.C M.TW
WW .100Y.C M.TW
WW .100Y.C M.TW
O
WW 00Y.CO .TW
W
WW 00Y.CO .Background
C
W
.
W
W
Half-life Determination (counts/interval
vs.
time)
Radiation
W
Y
W
T
W
.T
00
W.1 Yin.COM W
W.1 Y.COMHereW
Using a daughter isotope generator,
is an experiment
Wperformed
W.1 Y.COM W
W
W
W
W
.Tdays before airlines insisted
W
M.T
.100
it is possible to generate isotopes
the
M
.100
O
W
M.T
.100
O
W
C
.
O
W
W
W
Wturn off your
.C
with a relatively short half-life. AWW
Wpersonal.100Y
WW .100Y.C that
.Tyou
M.T
.TW
00Y
M
O
1
W
M
.
O
solution that selectively dissolves a
computer
before
takeoff.
It
shows
W
C
W
Y.
.CO .TW
WW takeoff
.TW
WW .100Y.C theMcounts/interval
.TW
short half-life daughter isotope is WW
between
100
M
.
00Y
O
1
W
M
.
O the time the plane reached
W
passed through the generator. The
W
WW its.100Y.C M.TW
WW 00Y.CO .TW
WW .100Y.C and
Taltitude
.
M
linear plot of natural log of decay W
cruising
of
39,000
ft. W
O
W
W.1 Y.COM W
Y.C
WW 00Y.CO .TW
0
W
W
.TW
rate vs. time can be used to
0
W
1
0
W
M
.
.T
1
0
M
.
O
1
W
M
.
O
Curricular
Materials W
W
determine the half-life of the
.C
W
.C
W
WW 00Y.CO .TW
00Y
WW .100YNuclear
TW with Vernier
.
1
M.Tduring an airline flight
.
daughter isotope, using the formula W
Radiation
by
M
O
1
Radiation
W
M
.
O
W
C
.
O
W
.C Gastineau
ln 2 = k•t1/2
John
WW .100Y
.TW
WW .100Y
.TW
WW .100Y.C M.TW
M
M
O
W
where k is the decay rate constant
O
Half-life
determination
W
This
has six
O
W
WexperimentsWW .100Y.C M.TW
Y.Cbook
WW .100written
.TDigital
and t1/2 is the half-life of the
WW .100Y.C M.TW
for
the
Radiation Monitor.
Each of the
M
O six experiments has a
O
WW or00LabQuest
W
daughter isotope (in minutes).
W calculator version
.COversion
Y.C Mini),
WW computer
C
(for
LabPro,
LabQuest,
W
.
Y
W
W
W
0
Y
W
T
.
0 LabProM
W
M.Tas aastandalone
.1 (for LabQuest
.Tk, is equal to
1(for
.
O
W
In the plot of natural log of decay rate vs. time, the W
decay
M
.100rate constant,
or
CBL
2),
a
LabQuest
version
device),
O
W
C
W
W
Y.
W
W
.CO
0Radiation
Y.C version
WThe
Tincluded
W
.
W
0
0
Y
W
T
–m. Using the slope value of m = –0.217 in the
here,
the
half-life
was
.
and
Palm®
(for
LabPro).
Nuclear
CD
with
the book
1
0
0
Wexample
T
M
.
.
1
0
M
W
W.contains
.CO .TW
W.1 Y.COM W
calculated to be 3.19 minutes.
C
theOword-processing
filesW
forW
all student0Y
experiments.
.
W
W
Y
W
0
W
.T
W
.100
W.1 Y.COM W
M.T
.100
OM
W
O
W
W
C
.
W
C
W
Y
W
.T
W
W Radioactive
Histogram Data Analysis
WW .100Y.
.100
Sources
M.T
.100
OM
W
M.T
O
W
C
.
O
W
W
C
For an easy in-class experiment, set
W may be.1able
.TW Coleman
00Yto obtainMpre-1990
0Y. have radiation
WWIf you
.TW sources, you
WW .100Y.C M.TW
10don’t
M
.
O
W
up a histogram with a very long run
O
W
C
lantern
mantles
or
other
brands
of
lantern
mantles
(for
a
weak
source
of Thorium).
.
O
W
W
W pottery, watches,
0Yor minerals
Y.Cbe able to
WW clocks,
Tthat
.
0
0
WW
T
.
time and start data collection.
1
0
WW .100Y.C M.TW
You may
also
find
are
M
.
1
W
OM
W.
.CO .TW
O
W
W
C
Whenever the graph “overflows”
.
Y
W
moderately
radioactive.
C
W
.
0
Y
W
W
W
0
Y
W
00
W
M.T order radioactiveW
the top of the graph, it will
OM
W.1 from
M.T
.100
Oactive,
For
something
minerals
any
of theseW
scientific
W.1 Ymore
C
.
O
W
C
.
Y
W
C
W
.
W
.T
automatically be rescaled. This
W
00
0
W
T
.
1
0
WW .100Y
T
supply houses:
M
.
.
1
M
.
O
W
O
W
data collection shows students how
OM
W
WW .100Y.C M.TW
WW .100Y.C M.TW
WW .100Y.C M.TW
initial randomness of data develops
FlinnW
Scientific
Inc..CO
W
O
WW 00Y.CO .TW
W
C
into a Gaussian distribution. A
W
.
Y
W
W
W
0
Y
W
T
.
P.O. Box 219.10
W
M
.1
.T
00
gamma radiation source was used.
W60510 Y.COM W
WW 00Y.CO
W.1 Y.COM W
A distribution
graph
Batavia,
IL
W
W
W
0
W
.T
W
.T
00
.10
Phone (800)W
452-1261
W.1
OM
W
W.1 Y.COM W
C
.
W
W
Y
W
W
Lantern Mantels
www.flinnsci.com
W
.T
W
.100
M.T
.100
OM
W
O
This graph shows a study of old
W
C
.
W
C
W
Y
W Spectrum
W Techniques
WW .100Y.
and new Coleman mantle lanterns.
M.T
.100
M.T
O
W
O
W
C
W Road
These mantles formerly contained
Y.
WValley
WW .100Y.C M.TW 106 Union
100
.
thorium and were often used for
W
Oak
Ridge,
TN
37830
O
W
W
W482-9937
radiation demonstrations. In the
WW .100Y.C M.TW Phone (865)
O
W
early 1990s, Coleman changed the
WW .100Y.C M.TWwww.spectrumtechniques.com
production methods and now the
O
W
mantles are not radioactive.
WW .100Y.C
Canberra Industries
W
800 Research Parkway
W
W
New and old lantern mantles
Meriden, CT 06450
Phone (203) 235-1347
www.canberra.com
5
6
O
.CO .TW
W
Y
WW .100Y.C M.TW
W
0
Y.C
W
0
T
.
1
M
.
OM
WW 00Y.CO .TW
WW 00Y.CO .TW
W
W
Y.C Warranty
W
T
M
.1
.1
M.Vernier
OM
WMonitor
O
The
Digital Radiation
isCmanufactured
by a thirdW
party,
WWand is00Y.CO .TW
.
W
C
W
.
Y
W
W
.T
00
0Y subject
.Tto their warranty.
W.1 Y.COM W
W.1 Y.COM W
OM
W
W
C
.
W
be
Wis warranted
Y This product
Wto the original
.Tfree from defects in materials
00 owner to
M.T
.100
1
M
.
O
100 andOworkmanship
W
M.T
O
W
C
for one year
from the date
.
.Cof purchase
Wwith the exception
WW ofof.the
.TW
00Y
Y.C
WW
.Tand
1the
00Yfor 90 days,
M
.TW tube, which
is warranted
with
the
exception
1
M
.
O
W
M
.100 Geiger-Mueller
O
W
C
W
is not included
in this warranty.
will,W
at W
its own 00Y.
W
.CO which
W
0Y.C Vernier
Ybattery,
WW
TSoftware.
.
1
0
0
T
M.T
.
.
1
0
M
.
O
1
W
M
.
discretion,
repair
or
replace
this
instrument
if
it
fails
to
operate
properly
within
this
O
W
C
O
W
.C by.T
Wof the following
WW .100Y.
.TW
Y.C period
WW has.1been
unless the warranty
any
00YvoidedM
M
.TW
00warranty
O
1
W
M
.
O
W of this
O
W circumstances:
C
misuse, abuse, or W
W this warranty;
WW .100Y.C M.TW
W of this instrument
0Y.instrument
Y.C
W neglect.by
Tvoids
.
0
0
T
.
1
0
M
modification
or
repair
anyone
other
than
Vernier
Software
1
M
.
W
Owarranty;
WW 00Y.CO .TW
.COwith .radioactive
W
C
W
.
Y
W
WW voids
this
contamination
of
this
instrument
materials
W
0
Y
W
T
0
M
.T Contaminated instruments
00 this warranty.
Maccepted for servicingWatW.1
Obe
W.1 will
not
.CO .TW
OM
W.1voids Y
C
.
Y
W
C
W
.
0
Y
W
W
W
0
W
.T
00
0 facility.
W
our
W.1 Y.COM W
M.T
.10repair
W.1 Y.COM W
O
W
W
W
C
.
userYis responsible
for his orW
her
.T
Wfor determining
00
W the suitability
.T
00 of thisMproduct
WW The
.1and
W.1 Y.COM W
M.TThe user assumes W
.100 application.
O
intended
all
risk
liability
connected
with
such
use.
W
O
W
W
C
.
W
0
W
.T
0Yconsequential
Y.C is not
Wincidental
WW Vernier
responsible for
.TW
M.T damages arising WW.10
.10or
OM
100Software
M
.
O
W
C
.
O
W
C
W
Y
from the use of this instrument.
W
WW .100Y.
.TW
WW .100Y.C M.TW
M.T
.100
M
O
W
O
W
C
O
W
WW .100Y.
.TW
WW .100Y.C M.TW
WW .100Y.C M.TW
M
O
W
O
W
O
W
WW .100Y.C M.TW
WW .100Y.C M.TW
WW .100Y.C M.TW
O
WW 00Y.CO .TW
W
WW 00Y.CO .TW
C
.
W
W
W
Y
W
W
M
.1
.T
00
W.1 Y.COM W
WW 00Y.CO .TW
W.1 Y.COM W
W
W
W
W
.T
00
W
W.1 Y.COM W
M.T
.100
W.1 Y.COM W
O
W
W
W
C
.
W
.T
W
00
W
WW .100Y
M.T
.100
W.1 Y.COM W
M.T
O
W
O
W
W
C
.
W
W
WW .100Y
WW .100Y.C M.TW
M.T
.100
M.T
O
W
O
W
C
.
O
W
W
W
Y
W
WW .100Y.C M.TW
WW .100Y.C M.TW
M.T
.100
O
W
O
W
C
O
W
WW .100Y.
WW .100Y.C M.TW
WW .100Y.C M.TW
O
WW
W
WW 00Y.CO .TW
C
.
W
W
W
Y
W
0
W
.T
0
M
.1
W.1 Y.COM W
WW 00Y.CO .TW
W
W
W
.T
00
W.1 Y.COM
W.1 Y.COM W
W
W
W
W
.100
M.T
.100
Vernier Software & Technology
W
O
W
W
C
W
W
13979 S.W. Millikan Way • Beaverton, OR 97005-2886
WW .100Y.
T
.
Toll Free (888) 837-6437 • (503) 277-2299 • FAX (503) 277-2440
OM
W
WW .100Y.C M.TW
[email protected] • www.vernier.com
O
W
C
.
WW .100Y
Rev. 2/17/10
W
Logger Pro, Vernier LabQuest, Vernier LabQuest Mini, Vernier LabPro, and other marks shown are our trademarks or
WW
registered trademarks in the United States.
CBL 2, TI-GRAPH LINK, and TI Connect are trademarks of Texas Instruments.
All other marks not owned by us that appear herein are the property of their respective owners, who may or may not be
affiliated with, connected to, or sponsored by us.
Printed on recycled paper.
7
8