Download Atlas Monitor

Transcript
Patient Monitor
Operator Manual
Welch Allyn Medical Division
Part N o
R ev
D escri pti on
EC N #
D ate
Approved
6200-43E
A
New Release of ATLAS Servi ce
Manual
5-40429
10/99
RS/LP
Drawings and/or illustrations and/or part numbers contained in this document
are for reference purposes only. For current revisions call the Welch Allyn
Customer Service phone number listed in Section 1 page 2.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS PATIENT MONITOR i
Contents
PAGE
Section 1: General Information
1.1 About the Atlas ............................................................................................................ 1
1.2 Technical Help Information, Worldwide Tech Support Phone Number ........................... 2
1.3 Product Model Number Structure ................................................................................. 3
1.4 Main Menu Architecture ................................................................................................ 6
1.5 Atlas System Block Diagram ........................................................................................ 7
Section 2: Service (See User Manual 6200-42E for Atlas Specifications)
2.1 Incoming Inspection,Checklist ...................................................................................... 1
2.2 Repair Tests ............................................................................................................. 2-4
Table 2-1 :Tools Required for Service, Calibration and Software Loading ................... 5
Table 2-2:Software/Firmware Revision Levels ............................................................ 6
2.3 Calibration Procedures
BP Calibration - Section 2.3.1 ........................................................................... 7
ETCO2 Calibration (623Models only) - Section 2.3.2 ......................................... 7&8
CO2 Reset (623Models only) - Section 2.3.3 ........................................................ 9
Printer Calibration - Section 2.3.4 ....................................................................... 10
Battery Voltage Calibration (Models 622xx and 623xx only)- Section 2.3.5 .... 10&11
Temperature Measurement Subsystem Calibration- Section 2.3.6 ...................... 12
Set Battery Charge Voltage-Section 2.3.7 .......................................................... 13
2.4 Software
Software Chart#2.4.1 .......................................................................................... 14
Downloading Operating System 2.4 .................................................................... 15
2.5 Downloading NVRAM Text files ............................................................................ 15&16
2.6 Downloading Software and NVRAM Text files ............................................................. 16
2.7 Product Numbering Structure .................................................................................... 17
Section 3: Troubleshooting (Also see Atlas Operator’s manual Appendix E)
3.1 Functional Tests/ Initial Diagnostic Steps ...................................................................... 1
3.2 Technical Troubleshooting Tables: Complaint/Cause/Corrective Action ....................... 12
3.3 Top Level Troubleshooting Index .................................................................................. 15
3.4 Diagnostic Tests and Test Setups ............................................................................... 17
Section 4:
Disassembly and Repair
About Section 4 .................................................................................................................... 1
4.1 Model 200 Dissassembly .............................................................................................. 2
4.2 Model 200 Re-assembly .............................................................................................. 13
4.3 Other Models notes ..................................................................................................... 15
ii WELCH ALLYN ATLAS PATIENT MONITOR
SERVICE MANUAL 6200-43E REV. A
Appendix Section:
A ............................................................................................................... theory of operations
B ...................................................................................................................... repair parts list
C ....................................................................................interconnect diagram 620396 Rev A
D ...................................................................... electrical schematics and circuit board layouts
E ........................... Safety Tests: Required Equipment and Procedures and Test Results Form
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS PATIENT MONITOR iii
Section 1 - General Information
The Atlas combines in one unit all the necessary measurements for patients under anesthesia, for surgical
recovery, or bed side monitoring. See Section 1.3 for a
complete listing of product models and options.
1.1 About the Atlas Monitor
According to the standards of care for Nurse Anesthetists and Anesthesiologists, all patients receiving conscious sedation are to be continuously monitored
throughout the procedure and recovery phase by ECG,
SpO2, and NIBP. CO2 monitoring is a requirement during gas anesthesia (when patient is ventilated).
The Atlas combines a CRT to display ECG and CO2
waveforms and LEDs for the other numeric values to
maximize visibility and viewing angle. Although not
designed to be a transport product, the monitor has an
integral handle and it is small and light enough at 13 lb
to be easily moved. A one hour battery enables the
monitor to be moved with the patient from the surgery
room to recovery room. It also maintains unit operation
for up to an hour when power is interrupted.
IMPORTANT: for a complete description on the function and use of the Atlas, as well as user safety warnings, cautions, and warranty information, read and
understand the Atlas Operator’s Manual part number
6200-42E (English). Other languages are available.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS PATIENT MONITOR 1
Section 1 - General Information
1.2
Help Information
Safety Warnings
All service and repairs must be performed by fully trained
and properly equipped personnel, using genuine
replacement parts and correct procedures. Failure to do
so will invalidate the product warranty.
Read and understand all safety warnings and
service notes printed in this Service Manual and the
Operator’s Manual part number 6200-42E. If in
doubt about any precaution or procedure, for
phone help, or to order additional copies of the
Atlas Operator’s Manual, contact:
Customer Service
Welch Allyn, Inc.
4341 State Street Road, PO Box 220
Skaneatles Falls, NY 13153-0220 U.S.A
Telephone 1-800-535-6663
When calling, refer to the model number on the
bottom of the Atlas. The Model Number is the first three
digits of the Serial number number found on the bottom
of the Atlas.
Treat all returned opened Nasal CO2 Sample Lines
and watertraps as Bio Hazard material and dispose
of them in an approved manner.
Troubleshooting assistance is contained in Section 3 of
this manual to help determine which board is
malfunctioning. This manual does not support repairing
the printed circuit boards.
Year 2000 Information: The Atlas is Y2K compliant and
will not encounter “Year 2000” problems.
2 WELCH ALLYN ATLAS PATIENT MONITOR
SERVICE MANUAL 6200-43E REV . A
Section 1 - General Information
1.3 Product Model Number Structure
621S0
ECG, Nonin SpO2, NIBP
621SP
ECG, Nonin SpO2, NIBP, Printer
622S0
ECG, Nonin SpO2, NIBP, Temp, Respiration, Battery, RS232
622SP
ECG, Nonin SpO2 , NIBP, Temp, Respiration, Battery, RS232, Printer
622N0
ECG, Nellcor SpO2, NIBP, Temp, Respiration, Battery, RS232
622NP
ECG, Nellcor SpO2, NIBP, Temp, Respiration, Battery, RS232, Printer
623SP
ECG, Nonin SpO2, NIBP, ETCO2, Temp, Respiration, Battery, RS232, Printer
623NP
ECG, Nellcor SpO2, NIBP, ETCO2, Temp, Respiration, Battery, RS232, Printer
SUFFIX:
Use letter designation for language localization as follows:
E = English, F= French, G= German, I= Italian, S= Spanish, P= Portuguese C = Chinese,
J= Japanese
Use number designation for line cord localization as follows:
1 = US, Canada, Japan Version
2 = European Version
4 = United Kingdom Version
6 = Australian Version
SERVICE MANUAL 6200-43E REV A
WELCH ALLYN ATLAS PATIENT MONITOR 3
Section 1 - General Information
1.4 Main Menu Architecture
*
Also note that this is for the 623xx system.
•
On a 622xP system, delete the CO2 Reset box, the Calibrate CO2 item, and the CO2
units item.
•
On a 621xP system, delete the CO2 Reset box, the Calibrate CO2 item, the CO2
units item, Respiration speed item, the Temperature units item, and the Battery
test item.
•
On systems without printers (621x0 and 622x0) delete the Printer test pattern item.
*
The Display A/D Channels also lets you press <SET> up and down to display additional
sets of information, but does not change the menu page that you are on, just writes
different information on the right side of the screen.
4 WELCH ALLYN ATLAS PATIENT MONITOR
SERVICE MANUAL 6200-43E REV A
Section 1.5
Atlas System Block Diagram
Section 1 - General Information
SERVICE MANUAL 6200-43E REV A
WELCH ALLYN ATLAS PATIENT MONITOR 5
Section 2 - Service
o
o
o
o
o
o
o
o
o
o
o
o
o
2.1.1 Inspect shipping package and product
for damage. Make a record of possible
shipping damage.
2.1.2 List accessories in box.
power cord
SpO2 probe
ECG leads
ECG lead cable
Cuff(s)
Operator Manual
nasal C02 Line
ECG Electrode(s)
temperature probe
BP tubing
paper
loose parts, describe
o
2.1.3 Clean and disinfect by following the
instructions printed in the Operator
Manual.
o
2.1.4 Operate the Atlas to verify the customer
complaint before making any changes to
the unit. Call the customer if the complaint
is unclear.
2.1 Incoming Inspection
Service Intervals for
Calibration and Maintenance are listed in
Atlas
Operator ’s
Manual Appendix C.
NOTE: Perform REPAIR TESTS in
Section 2.2 to fully inspect the
Atlas monitor before and after
servicing. Refer to Section 3
for Troubleshooting help.
2.1.5 If the unit has caused or is suspected of
having caused an injury of any type:
DO NOT DISASSEMBLE OR REPAIR
THE UN IT IN ANY WAY.
Contact Welch Allyn Customer Service
immediately.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 1
Section 2 - Service
2.2 Repair Tests
BP Leak Test
2.2.1 Blood Pressure System Leakage Test:
Unit must not leak more than 5 mmHg in a 15
second interval while attached to a 100 cc
volume at test pressures of 50mmHg and
250mmHg.
Need:
100cc (+10/-0cc) test cavity
stopwatch
squeeze bulb
2.2.1.1 Connect Atlas to test 100cc volume and
Setra Gage as shown in Figure 2.3.1.1
2.2.1.2 Turn Atlas ON
2.2.1.3 Press Time and Date button to access
Options Menu.
2.2.1.4Press Lead Select button to select
Service Mode. Select Verify Manometer
2.2.1.5Pressurize the Atlas with squeeze bulb
to 50mmHg.
NOTE: Allow reading to stabilize for 15 seconds.
2.2.1.6Observe pressure for 15 additional
seconds. Unit should not leak more than
5mmHg during this time.
2.2.1.7Perform this process at 250mmHg
BP Dump Test
2.2.2 Dump Test:
Unit must be able to deflate a 500 cc volume
from greater than 260.0 mmHg to less than
15.0 mmHg in 10 seconds or less.
Manometer Accuracy Test
2.2.3 Manometer Accuracy Test
Internal temperature of the unit must be less
than 32.0 degrees Celsius before performing
test.
2.2.3.1 The primary transducer must be within +/0.75 mmHg at 0 +/-0.3 mmHg. The safety
transducer must be within +/-1 mmHg at
0+/-0.3 mmHg.
2.2.3.2 The primary transducer must be within +/1.5 mmHg at 50 +/-5.0 mmHg. The safety
transducer must be within +/-1.5 mmHg at
50 +/- 5.0 mmHg.
2.2.3.3 The primary transducer must be within +/1.5 mmHg at 150 +/-5.0 mmHg. The
safety transducer must be within +/-4.5
mmHg at 150 +/- 5.0 mmHg.
2.2.3.4 The primary transducer must be within +/-
2
WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 2 - Service
2.2.4 Deflation Test:
With the unit connected to a large adult cuff
and a target inflation pressure of 200 mmHg*
have the unit perform a complete “normal”
BP cycle.
For steps two and three, the size of the step
must be between 3.0 mmHg and 11.0 mmHg.
Step 4 and all other steps above or equal to
40 mmHg, step size must be between 7.0
mmHg and 11.0 mmHg. All steps below 40
mmHg, except for the last step, will be
between 4.5 mmHg and 10 mmHg. The last
step will be between 0.01 mmHg and 10
mmHg.
2.2.5 Charge Voltage Test:
Check battery charging circuit:
Specification :No Load: 6.85VDC across
right pin (+) and left pin (-) of Main PCB
battery charge connector.
2.2.6 Hardware Fail Safe Tests
2.2.6.1 Over Pressure Test:
Atlas hardware must detect over
pressure on unit pneumatic system
between 296.0 mmHg and 329.0 mmHg.
2.2.6.2 Over 15 mmHg Test:
Atlas hardware must detect if the
pneumatic system has been pressurized
greater than 15 mmHg for more than 155
seconds but less than 180 seconds.
2.2.6.3 Under 15 mmHg Test:
Atlas hardware must detect if the
pneumatic system has been pressurized
less than 15 mmHg for more than 25.0
seconds but less than 35.0 seconds
before alowing new inflation cycle in “nonStat” Auto Mode.
2.2.7 RS232 Test:
The RS232 communication operation
will be confirmed with successful
serial transmit and receive.
2.2.8 Printer Option Test:
The printer must be able to print out the test
pattern . Inspect print quality.
SERVICE MANUAL 6200-43E REV. A
Deflation Test
* Go to service mode
screen and set initial
pressure to 200mmHg.
Charge Voltage Test
Hardware Fail Safe Tests
RS232 Test
Printer Option Test
WELCH ALLYN ATLAS MONITOR 3
Section 2 - Service
ECG Test
NOTE:
Section 3 of this Service
Manual contains
troubleshooting steps for
the ECG subsystem.
These tests will help
determine if the main
board is faulty.
SpO2 Test
NOTE:There is no
calibration for the SpO2 and
Pulse subsystem. If the
performance does not
match up to that expected
using a calibrated simulator,
or the Phantom finger set,
then the subsystem board
must be replaced.
Temperature Test
4
WELCH ALLYN ATLAS MONITOR
2.2.9 ECG Test:
Use a calibrated simulator to check
performance.
NOTE: There is no calibration for the ECG or
impedance Respiration subsystems.
If the performance does not match up to that
expected using a calibrated simulator then
there could be a problem with the cable, leads,
connectors, wiring or the main board itself. If
the main board is faulty then replace it.
2.2.10 SpO2 Tests:
Need:
Appropriate Phantom finger set
SpO2 cuff and cable
Or:
Nellcor or Nonin (as fitted) simulator
(replaces cuff to drive subsystem)
Or:
Calibrated SpO2 simulator that has a cuff
fitting that simulates a perfused finger
Nonin: Settings for NoninPatient Simulator
8000S are 98% O2 / 80 BPM. SpO2 board
accuracy after 25 second stabilization period
must be within +/-2%O2 and +/- 2BPM.
Nellcor: Settings for Nellcor Patient Simulator
SRC-2 are 81% O2 and 112 BPM. SpO2 board
accuracy after 25 second stabilization period
must be within +/-2% O2 and +/- 2 BPM.
2.2.11 TEMP ACCURACY VERIFICATION
Need:
Calibrated thermometer (DIGITAL OR GLASS)
small insulated container with cover for warm water
2.2.11.1Fill container wtih approximately 96 degree
F water
2.2.11.2Attach temperature probe neaqr the sensing
part of the thermometer and insert into the
warm water.
2.2.11.3Accuracy must be within +/- 0.2 degrees F.
SERVICE MANUAL 6200-43E REV. A
Section 2 - Service
Table 2-2:Software/Firmware revision levels
MODEL
Operating System
Boot loader
621S O
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
V7
621S P
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
V7
622S O
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
V7
622S P
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
V7
622NO
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
V 1.2.0.0 12/17/97
622NP
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
V 1.2.0.0 12/17/97
623S P
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
623NP
AA.01.4000, 9/8/99
AA.01.0000, 6/20/99
6 WELCH ALLYN ATLAS MONITOR
Nellcor
Nonin
V7
V 1.2.0.0 12/17/97
Pryon
0.E V1.00
0.E V1.00
SERVICE MANUAL 6200-43E REV. A
Section 2 - Service
2.3.1 BP Calibration :
Need: 500cc vessel (approximate)
calibrated digital manometer
squeeze bulb with one-way valve
tubing and T fittings
PC with HyperTerminal *
serial cable
2.3.1.1 Connect: manometer, bulb, and 500cc vessel
to BP port with “T” connectors, Atlas to PC
with serial cable.
2.3.1.2 Turn AtlasON and start HyperTerminal on PC.
2.3.1.3 Enter commands on Serial interface:
Pangea> bp valve close<ENTER>
Pangea> bp safety off<ENTER>
2.3.1.4 Enter command:
Pangea> bp cal 5000
Do not press <ENTER> yet!
2.3.1.5 Raise pressure with bulb to as close to
50.00mmHg as possible or slightly higher. Let
the pressure bleed down toexactly
50.00mmHg. Now press <ENTER> . Take no
more than 3 minutes for this step.
2.3.1.6 Enter command:
Pangea> bp cal 25000<ENTER>
2.3.1.7 Repeat step 2.3.1.5 with 250.00 as target.
Press <ENTER> when pressure deteriorates to
250.00 mmHG.
2.3.1.8 Enter command:
Pangea> nvram write<ENTER>
2.3.1.9 Disconnect serial cable and instruments and
cycle power on Atlas. BP cal complete.
2.3.1.10 Verify accuracy of pressure settings
by repeating step 2.3.1.3 then 2.3.1.5 and
compare Atlas front panel reading with Setra
readout. Do this at 50.00mm and 250 mm Hg.
2.3.2 ET CO2 Calibration: 623 Models only
Need: Tank of approximately 10% CO2, balance N2
(certified) Blood Gas Mixture
Tubing and T connectors
Watertrap and scrubber
2.3.2.1 Insert water trap. Power up.
2.3.2.2 Place the instrument into Service Mode: Press
Date/Time Lead Select button.
2.3.2.3 Select Calibrate CO2
Message “Remove CO2 water trap” will
appear.
SERVICE MANUAL 6200-43E REV. A
2.3 Calibration
2.3.1 BP Calibration
Caution: Improper use, storage, handling of compressed
gas vessels can cause injury
or death! Follow gas manufacturers safety processes.
500cc volume
Setra
Figure 2.3.1.1
*Access and set up
HyperTerminal:
1-Start
2-Settings
3-Control Panel
4-Add/Remove Programs
5-Windows Setup
6-Communications
7-selectHyperTerminal
8-APPLY
Settings are:
9600 Baud, 8 bit word, 1 stop bit
no parity, no flow control
ANSI character set
Find HyperTerminal in Programs,
Accessories
2.3.2 ET CO2 Calibration
NOTE:Replace water trap
every 6 hrs of use. Treat
water trap and used
NasalCO2 Sample lines
as bio hazard material!
NOTE: The Scrubber looks
similar to a watertrap, but
is filled with white granules.
It is included with model
623XX.
WELCH ALLYN ATLAS MONITOR 7
Section 2 - Service
2.3.2.4
2.3.2.5
2.3.2.6
2.3.2.7
Note: Adjust regulator to
approximately 2 PSI.
valve
CO 2
vent
watertrap
Figure 2.3.2.11
NOTE:Replace water trap
every 6 hrs of use. Treat
water trap and used
NasalCO2 Sample lines
as bio hazard material!
Remove water trap from water trap socket .
Message “Install scrubber” will appear .
Attach scrubber to water trap.
Insert scrubber/water trap assembly into water
trap socket.
Message “Enter span gas value using
<Set> button” will appear.
2.3.2.8 Change the default value (10%) to the value of
span gas being used (calibrated 8% to 12%
concentration known to ±0.01%).
2.3.2.9 Press <BP Start/Cancel>
Message: “Sampling” appears while the
instrument is sampling the scrubber air.
2.3.2.10 When instructed, remove the scrubber from
the CO2 water trap. Do not remove water trap.
2.3.2.11 Attach the calibrated source of CO2 gas
to the CO2 side-stream sampling tube as per
Figure 2.3.2.11
2.3.2.12 Adjust the CO2 regulator just enough to
allow a small amount of gas to flow out of the
vent (approximately 3 PSI).
Important: Once positive flow is
established, let the it flow for one minute
before pressing the Continue button and
actually sampling.
After one minute, press the Continue
button to let the Atlas start sampling CO2. .
2.3.2.13 Press <BP Start/Cancel>
Message: “CO2 calibration successful” or
“CO2 calibration failed” will appear on
the CRT display.
(Note: Serial Communication is not the cause of a failure
if the Prion Serial appears in the Service Screen.
Therefore the problem is with the board or connections
and not serial communication problems.)
2.3.2.14 Press Trend button to Exit.
SR856: CO2 Calibration
beyond the year 2021
8
WELCH ALLYN ATLAS MONITOR
To calibrate the CO2 system in years 2022 or later it is
necessary to reset the system clock to an earlier year,
perform the calibration, and then set the clock to the
correct year again. The service center should keep a
record of this since the Cal display in the Service Mode
screen will be incorrect.
SERVICE MANUAL 6200-43E REV. A
Section 2 - Service
2.3.3 CO2 RESET
Need: Watertrap and Scrubber
2.3.3.1 Press the Date/Time button on the lower
right of the monitor. The Set Date and Time
and Other Options menu will be displayed.
2.3.3.2 Select the Reset CO2 selection by pressing
the CO2/RESP ALARMS Off button.
CO2 Reset screen will appear.
2.3.3.3 Follow the instructions on the screen.
“Remove the CO2 watertrap”.
“Install the CO2 Scrubber onto the CO2
watertrap.”
2.3.3 CO2 RESET
NOTE: The Scrubber looks similar to a watertrap,
but is filled with white granules. It is included
with model 623XX.
2.3.3.4 Remove the tubing from the watertrap and
attach the Scrubber to the watertrap.
2.3.3.5 Insert the watertrap/Scrubber combination
into the watertrap socket.
2.3.3.6 Messages: The system will report that it is
Sampling. The system will then report Reset
Complete.
2.3.3.7 Remove the watertrap/Scrubber from the
watertrap socket.
2.3.3.8 Detach the Scrubber from the watertrap and
reattach the tubing.
2.3.3.9 Replace the watertrap in the watertrap socket.
2.3.3.10 Press Trend to return to the waveform
screen.
SERVICE MANUAL 6200-43E REV. A
NOTE: There may be a
message indicating a 5
minute Warming Up period.
WELCH ALLYN ATLAS MONITOR 9
Section 2 - Service
2.3.4
PRINTER CALIBRATION
Note: Two lines are displayed:
Waveform +128, Text +70
These two numbers are factory
defaults and a good starting point
if the system is printing very
poorly or not at all.
The LEFT<SET> button controls
the Waveform setting, up and
down. The RIGHT <SET> button controls the Text setting, up
and down. Make changes tothe
settings as needed, where a
larger number = darker printing
and a smaller number = lighter
printing. Make initial changes of
about 10 points each time. After
making an adjustment, press
<TREND> to exit the Service
Mode.
2.3.5 BATTERY VOLTAGE
CALIBRATION
2.3.4 PRINTER CALIBRATION
Need:
PC with HyperTerminal
Serial cable
Connector
2.3.4.1 Use HyperTerminal to get strobe width
settings for printer normal for waveforms text for trend
Advanced configuration printing:
Pangea> nvram get
printer_strobe_width_normal<ENT>
(normal value 130)
Pangea> nvram get printer_strobe_width_text <ENT>
(normal value 70)
2.3.4.2 Change values - larger number for darker
printing. Change with:
Pangea> nvram set printer_strobe_width_normal XXX
Pangea> nvram set printer_strobe_width_text YYY
2.3.4.3 Test and reset until satisfied.
2.3.4.4 Press Trend button to exit the Service Mode.
2.3.5 BATTERY VOLTAGE CALIBRATION for models
622XX and 623XX.
NOTE: CHECK BATTERY VOLTAGE CALIBRATION
AFTER REPLACING MAIN PCB.
Need:
DC power supply rated: 7 VDC at 5A
Battery eliminator cable - Atlas battery plug on one
end, interface to the power supply on the other.
There should be access for voltmeter probes at
the Atlas end of the cable when it is installed
DMM / DVM with 10mV resolution on a 10V scale
PC with HyperTerminal
Serial cable and connector
2.3.5.1.
2.3.5.2
2.3.5.3
2.3.5.4
Connect serial cable to PC and Atlas
Remove battery from Atlas
Set the power supply to 6.8V +/- 200mV
Connect the power supply to the Atlas battery
connector.
2.3.5.5 Turn Atlas ON.
2.3.5.6 Reduce the power supply to 6.0V
10
WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 2 - Service
2.3.5.7 Measure the voltage at the battery connector
(at the Atlas) to the nearest 10mV.
NOTE: Do not measure at the power supply, since
cable resistance will introduce error.
2.3.5.8 At the HyperTerminal, type:
Pangea> power cal XXXX<ENTER>
(where XXXX represents the measured voltage in
millivolts no decimal point.) For example, if you
measured 6.010V at the battery connector, use the
command “power cal 6010<ENTER>”.
2.3.5.8 The Atlas will respond:
raw = ZZZZ mV true = 6010 mV OK
(where ZZZZ is the raw uncalibrated reading that the
instrument made.)
2.3.5.9 Reduce the power supply to 5.6 volts. You
should soon hear the “low battery” alarm.
2.3.5.10 Measure the voltage at the battery connector
to the nearest 10mV.
2.3.5.11 At the HyperTerminal, type:
Pangea> power cal XXXX<ENTER>
(where XXXX represents the measured voltage in
millivolts no decimal point.) For example, if you
measured 5.590V at the battery connector, use the
command “power cal 5590<ENTER>”.
2.3.5.12 The Atlas will respond:
raw = ZZZZ mV true = 5590 mV OK
(where ZZZZ is the raw uncalibrated reading that the
instrument made.)
2.3.5.13 Finish by typing: (this will re-boot ATLAS)
Pangea> hw reset<ENTER>
2.3.5.14 Turn Atlas OFF and remove the power
supply.
2.3.5.15 Re-Install the battery.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 11
Section 2 - Service
2.3.6 TEMPERATURE
MEASUREMENT
SUBSYSTEM
CALIBRATION
2.3.6 TEMPERATURE MEASUREMENT
SUBSYSTEM CALIBRATION:
Need:
PC
Serial Cable
HyperTerminal
1kOhm - 2kOhm 1% 1/2watt resistor
Large RCA plug (1/4”) 2 conductor
Short length of wire (optional)
Soldering iron and solder
2.3.6.1Prepare Resistor/Plug assembly.
Solder the resistor across RCA plug
terminals.
2.3.6.2 Plug the resistor assembly into the Atlas
Temperature jack.
2.3.6.3 Connect the Atlas to the PC serial port.
2.3.6.4 Turn the Atlas ON.
NOTE: Temperature display will show a valid
temperature.
2.3.6.5 Start HyperTerminal on the PC.
2.3.6.6 At the Pangea prompt, type:
Pangea>temp cal xxxxxx<ENTER>
(where the xxxxxx is the value of the precision resistor
in centiOhms- Specify the Ohms, tenths, and
hundredths of Ohms with no decimal point- for
example, a 1200.00 Ohm resistor would be:
Pangea>temp cal 120000<ENTER>
2.3.6.7 Wait four seconds then type:
Pangea>temp state<ENTER>
2.3.6.8 Displayed resistance will be within 0.5
Ohms of the value that you entered.
The Offset should not exceed 5.0 Ohms.
NOTE: The system will silently fail (without error) if it
is unable to calibrate properly. Therefore you
must manually verify that this resistance is
correct.
2.3.6.9 Turn the Atlas OFF.
2.3.6.10Unplug the resistor/plug assembly.
2.3.6.11 Remove the serial cable.
2.3.6.12Check the accuracy of the
temperature sensing system using the
process described in Section 2.2.11
12
WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 2 - Service
2.3.7 Set battery charging voltage:
Specification :No Load: 6.85VDC
Need: DVMM
2.3.7.1 Remove battery from unit and unplug.
2.3.7.2 Use DVMM to check across right pin (+)
and left pin (-) when viewed looking into
the battery compartment.
2.3.7.3 Adjust potentiometer R338 to obtain
6.85VDC. (It is located at the right of the
battery jack.
Turn it counterclockwise to increase the
charging voltage.
SERVICE MANUAL 6200-43E REV. A
2.3.7 Set Battery Charge
Voltage
WELCH ALLYN ATLAS MONITOR 13
C ondition
Action
D etails
Advanced
C onfiguration
(user set
preferences using
front panel controls
Initializ e
N VR AM using
hyperterminal
D ow nload
operating system
using w indow s
R eC alibrat
Atlas?
(BP, Power,
temperature
and not C O2)
S eq u en ce
1
A1
B1
C1
D1
E1
F1
G1
H1
I1
Software
Updgrade
Uni t has no
problems
Use the new
download uti li ty
"atlas_dl.exe"
HyperTermi nal not
requi red.
YES
"atlas_dl.exe" loads
nvram_common.txt fi le
whi ch overwri tes all
previ ous setti ngs wi th
defaults. After repai r,
please check all user
preference setti ngs
(Advanced
C onfi gurati on Menu)
and ALARM setti ngs
and set them the way
the uni t was recei ved.
NO
YES software
i nformati on resi des
i n C PU
N O Wi th
atlas_dl.exe
program the
cali brati on
constants are
not changed.
1. Run
atlas_dl.exe
2. C heck alarm
setti ngs and other
consumer
preference
advanced
confi gurati on
setti ngs.
A2
B2
C2
D2
E2
F2
G2
H2
I2
Mai n board
fai led
Just replaci ng
Mai n board.
The ori gi nal
C PU board i s
OK.
Replace Mai n
board, i ni ti ali ze
nvram, and
recali brate.
Need HyperTermi nal
for setti ng nvram and
cali brati on.
Yes..Same as above
YES
N O: operati ng
system resi des i n
C PU whi ch was
untouched.
YES the
NVRAM of the
new mai n
board wi ll not
have the correct
cali brati on
constants.
1-Set NVRAM
2-Recali brate
3-C heck alarm
setti ngs
A3
B3
C3
D3
E3
F3
G3
H3
I3
C PU board
fai led
Just replaci ng
C PU board.
The ori gi nal
Mai n board i s
OK.
Replace C PU
board and load
operati ng
system.
Need atlas_dl.exe fi le
Yes..Same as above
NO
YES
software
i nformati on resi des
i n C PU
NO
1-download
operati ng system
2-C heck alarm
setti ngs and other
consumer
preference
advanced
confi gurati on
setti ngs
A4
B4
C4
D4
E4
F4
G4
H4
I4
Both C PU
and mai n
board fai led
Replaci ng
both the C PU
and Mai n
boards.
Replace both
boards, use
atlas_dl.exe,
reconfi gure,
cali brate.
Need HyperTermi nal
for setti ng nvram and
cali brati on.
Yes..Same as above
YES
YES
software
i nformati on resi des
i n C PU
YES the
NVRAM of the
new mai n
board wi ll not
have the correct
cali brati on
constants.
1-Run atlas_dl.exe
2-Set nvram
3-Recali brate
4-C heck/set alarm
setti ngs
2
Section 2 - Service
3
4
SERVICE MANUAL 6200-43E REV. A
Situation
14 WELCH ALLYN ATLAS MONITOR
Software Chart 2.4.1
X4
Section 2 - Service
2.4 Downloading Operating System
When required: to load latest revision software*
on a fully functioning Atlas or to reload software
after replacing the MCU board. The
atlas_dl.exe program loads the following files:
atlas.out.gz
nvram_common.txt
nvram_(model#).txt **
nvram_(language).txt **
Equipment or supplies required:
PC with Windows ‘95/NT
Serial cable with connector: (COM1to PC)
File : atlas_dl.exe
2.4.1 Connect serial cable between Atlas and
PC COM1
2.4.2 Double click “atlas_dl.exe” explorer window
2.4.3 After downloading is complete, check alarm
and other User controlled advanced
configuration settings since these are ‘reset’ by
this downloading process.
2.4 Downloading Operating System
(when upgrading software or
replacing CPU board)
**Note: Hyperterminal
queries the Atlas to determine which model number
and language to download.
Note: If Atlas calibration
was satisfactory prior to
downloading software
then recalibration is not
required.
Downloading Operating System complete
2.5 Downloading NVRAM files with Hyperterminal*.
The NVRAM resides on Main Board. Hyper
terminal loads the following files:
cal_init.txt
common.txt
(model#).txt **
(language).txt,**
printer.txt (if required),
or no_printer.txt.
2.5.1Connect serial cable between Atlas and
PC COM1 as in 2.4 above.
2.5.2Open HyperTerminal program on PC:
START
PROGRAMS
ACCESSORIES
HYPERTERMINAL
2.5.3Turn Atlas ON. You should see some
version information and a prompt:
Pangea>
2.5.4 Transfer Text files:
(TRANSFER/SEND TEXT FILE)
NVRAM_CAL_INIT.TXT (only if main board has been
replaced)
SERVICE MANUAL 6200-43E REV. A
2.5 Downloading NVRAM
Text files
after replacing Main Board
*Configure HyperTerminal
9600 Baud
8 bits
1 stop bit
no parity
no flow control
WELCH ALLYN ATLAS MONITOR 15
Section 2 - Service
2.5 Downloading NVRAM
Text files
when replacing Main Board
continued
2.6 Downloading Software &
NVRAM Text files
after replacing Main Board
AND CPU board
NVRAM_COMMON.TXT
NVRAM_NO_PRINTER.TXT
or
NVRAM_PRINTER.TXT
NVRAM_(model 200,210,220).TXT
NVRAM_<LANGUAGE>.TXT
2.5.5 After these text files are transferred,
Type the following serial commands to update
the serial number:
nvram set serial___ (last 3 digits of serial#)
nvram write
hw reset (hardware reset restarts Atlas and
saves the new settings)
2.5.6 Verify the serial number correct
2.5.7 Recalibrate Atlas unit. After calibration is
complete.
2.5.8 Check alarm settings and User selected
advanced Configurations
2.6 Downloading Software & NVRAM Text files
2.6.1 Use atlas_dl.exe as in step 2.4. to Program
new CPU board.
2.6.2 Use HyperTerminal as in step 2.5 to set
NVRAM on new Main Board.
2.6.3 Recalibrate Atlas
2.6.4 Check alarm settings and User selected
advanced Configurations
NOTE: Firmware Download
Software versions of OEM boards are not field
upgradeable. (SpO2 boards or the CO2 board.)
Replace the subsystem board with a higher
(current) version if necessary.
16
WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 2 - Service
2.7 Product Model Number Structure
621S0*
ECG, Nonin SpO2, NIBP
621SP*
ECG, Nonin SpO2, NIBP, Printer
622S0**
ECG, Nonin SpO2, NIBP, Temp, Respiration, Battery, RS232, Nurse Call
622SP**
ECG, Nonin SpO2, NIBP, Temp, Respiration, Battery, RS232, Printer, Nurse Call
622N0**
ECG, Nellcor SpO2, NIBP, Temp, Respiration, Battery, RS232, Nurse Call
622NP**
ECG, Nellcor SpO2, NIBP, Temp, Respiration, Battery, RS232, Printer, Nurse Call
623SP**
ECG, Nonin SpO2, NIBP, ETCO2, Temp, Respiration, Battery, RS232, Printer, Nurse Call
623NP**
ECG, Nellcor SpO2, NIBP, ETCO2, Temp, Respiration, Battery, RS232, Printer, Nurse Call
SUFFIX:
Use letter designation for language localization as follows:
E = English, F= French, G= German, I= Italian, S= Spanish, P= Portuguese C = Chinese, J= Japanese
Use number designation for line cord localization as follows:
1 = US, Canada, Japan Version
2 = European Version
4 = United Kingdom Version
6 = Australian Version
Specifications: See Operator Manual
Specifications for all of the above listed models of Atlas including performance, accuracy,
range, size, weight, power, environmental, are documented in an appendix to the User
Manual.
* Model 200 Main Board and Schematic 200
** Model 220 Main Board and Schematic 220
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 17
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
1. Review customer complaint and determine if it is
safe to plug in and turn on Atlas
2. Plug in Atlas, no sensors attached.
3. Check for AC~ LED lit.
4. Install paper in printer if fitted.
Note: “Idle” screen is normal
waveform display.
5. Turn on power
6. Green light in power button.
7. Loud beep when button pressed.
8. Three dashes in SYSTOLIC.
9. Three dashes in DIASTOLIC.
10. Two dashes in SpO2 (takes several seconds after BP
dashes come on).
11. Three dashes in PULSE (takes several seconds after
BP dashes come on).
12. Pleth: none, or a single bar at the bottom, or two bars at
the bottom.
13. No lights in TEMP.
14. No lights in ALARMS OFF buttons.
15. X lit on AUTO.
16. AC~ lit
17. CRT display comes on slowly if cold, quickly if still warm
from last use.
18. May see version string in center if comes on quickly, not
a problem if not seen because it comes on slowly.
19. CRT: three dashes for Heart Rate
20. Heart picture
21. Lead select symbol
22. Scale bar
23. One or two lines of dashes for waveforms – depends
upon settings.
24. Three dashes for MAP – or blank, depends upon
settings.
25. Error message(s) at bottom of screen?
26. If 622 or 623, pull AC cable. Should be no change
except AC~ unlit.
26.1.
If errors of low, very low or depleted battery,
or if system dies, plug back in and repeat
test in 2 hours.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 1
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
Plug AC back in.
MENU TESTS
27. Press <DATE/TIME><TREND>
28. Get Advanced Configuration menu.
29. Write down all settings for resetting to customer preference later.
30. Set language to your native tongue if necessary to
allow you to write down the other settings. The top
item is always the language, press either <SET> button
to step through list.
31. Press <PRINT> if printer fitted.
32. Press <TREND> to return to idle screen.
33. Press <DATE/TIME>
34. Get date/time menu.
35. Verify date/time, set if necessary.
35.1.
Bad date may indicate battery problem. If
date was bad, turn off unit, pull power cable,
wait 5 minutes reconnect power cable, turn
on unit. Check date again.
35.1.1.
If date comes back bad: Replace
main board Model 200. Model 210,
220, if battery not dead replace main
board.
Press Date/Time to return to waveform screen if needed.
36. Press <DATE/TIME><LEAD SELECT>
37. Get Service Mode menu.
38. Examine version/configuration data in lower half of
menu, and write it all down.
39. Press <SELECT> to highlight Reset to factory defaults.
40. Press <BP START/CANCEL> to reset configuration.
41. Press <TREND> to return to idle screen.
42. Press <DATE/TIME><TREND>
43. Get Advanced Configuration menu.
44. Set language to your native tongue if necessary
44.1.
We have just reset to factory defaults.
Compare settings to factory defaults appropriate for the country – in Operator manual. If not
matching, indicates memory problems.
Changing only the language should not change
any of the other factory default settings.
45. Press <DATE/TIME><LEAD SELECT>
2 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
46. Get Service Mode menu.
47. Press <Select> to highlight CRT test pattern.
48. Press <BP START/CANCEL> to show test pattern.
Examine display.
49. Press any key to end display.
50. Press <Select> to highlight Printer test pattern (if
fitted).
51. Press <BP START/CANCEL> to start test pattern.
52. Printer should print test pattern.
53. Press any key to end display.
54. Examine printout.
55. Press <Select> to highlight LED test .
56. Press <AUTO> to turn on all LEDs .
57. Press <BP START/CANCEL> to show automatic test
pattern.
58. Watch for a while, look for glitches in pattern.
59. Press <Set> to go to manual mode and step through
individual segments if needed to observe a problem.
60. Press <Select> to highlight Button test.
61. Press <BP START/CANCEL> to start test.
62. Press every button on system, <BP START/CANCEL>
last.
62.1.
Verify that buttons match up with their names,
and that all buttons are functional.
62.1.1.
If names don’t match, indicates
memory corruption: Replace main
board
63. Press <Select> to highlight Display A/D channels
(three or four screens worth)
63.1.
Write down all values for later review.
63.2.
Press <Set> and write down all values for
each screen.
64. Press <Trend> to return to Idle screen.
65. Connect the BP port to the BP simulator.
66. Set the simulator for a normal reading (140/80,
100BPM, NSR).
67. Press <BP START/CANCEL>
67.1.
System should start pump, display manometer value in SYSTOLIC LED; this value
should track and be very close to pressure
SERVICE MANUAL 6200-43E REV. A
BP test
WELCH ALLYN ATLAS MONITOR 3
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
displayed by manometer in BP simulator (if
fitted). Largest number shown in SYSTOLIC
should be very close to the Initial pressure
setting recorded above from Advanced
Configuration.
67.2.
System should step down pressure, showing
step values in SYSTOLIC LED, and then display correct SYSTOLIC and DIASTOLIC
values. System may show MAP value depending upon country.
68. Press <DATE/TIME><TREND> to get to Advanced
Configuration menu.
69. Press <Select> to highlight Initial pressure.
70. Press <Set> to change Initial pressure to 280 mmHg.
71. Press <Select> to highlight MAP.
72. Press <Set> to change MAP to Yes.
73. Press <TREND> to return to idle screen.
74. Press <BP START/CANCEL>
75. System should start pump, display manometer value in
SYSTOLIC LED; this value should track and be very
close to pressure displayed by manometer in BP
simulator (if fitted). Largest number shown in SYSTOLIC should be very close to the Initial pressure
setting of 280 mmHg.
75.1.
If pressure shown exceeds 300 mmHg:
Recalibrate BP
76. System should step down pressure, showing step
values in SYSTOLIC LED, and then display correct
SYSTOLIC and DIASTOLIC values. System should
show MAP value. MAP value should match what is
shown by simulator.
77. Set simulator to highest Systolic <=250, lowest Diastolic >= 30, and lowest heart rate >=30.
78. Press <AUTO>
79. X goes unlit, 1 flashes for 10 seconds.
80. 20 seconds after 1 stops flashing, BP measurement
starts.
81. BP reading as above.
81.1.
If BP does not start: Replace main board
81.2.
If BP measurement incorrect recalibrate
4 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
82. No less than 30 seconds after completing the measurement another measurement should start. While it is
pumping up, press <BP START/CANCEL>. Measurement stops immediately and pressure is dumped (as
seen on manometer on simulator).
82.1.
If measurement does not stop immediately:
Main board or button.
82.2.
If pressure does not drop below 10mmHg
immediately: Main board
83. Press <AUTO> and X lights up (not flashing).
84. Disconnect the tubing from the BP port on the Atlas.
85. Press <BP START/CANCEL> and note the time (to the
second).
86. The BP should abort with an alarm after no longer than
one minute.
87. Cycle power on Atlas, connect a 5 lead cable set to the
simulator.
88. Configure the simulator for NSR 100BPM and Impedance Respiration.
89. Plug the cable into Atlas.
90. Press <DATE/TIME> <TREND> to access Advanced
Configuration menu.
91. Press <Select> to highlight ECG lead set and press
<Set> to select 5 wire.
92. Set ECG gain to Automatic.
93. Set ECG speed to 25mm/s.
94. Set ECG bandwidth to Monitor.
95. Set Second trace selection to ECG.
Press <TREND> to return to idle screen
Should see:
95.1.
ECG cascading onto second line
95.2.
Scale bar on left of top line
95.3.
Heart rate displayed as set on simulator
95.4.
Lead Selected = II
95.5.
Pulse tone high pitched
ECG
Note: Simulator must support impedance respirator.
Press <LEAD SELECT> and step through each of the lead
settings.
Should see:
95.6.
Different looking ECG waveforms
95.7.
Heart Rate will go to dashes and alarms on
some leads
96. Set lead selected to II
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 5
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
97. Press <DATE/TIME><TREND> to access Advanced
Configuration menu.
98. Change Second trace selection to Respiration.
99. Press <TREND> to return to idle screen.
100. Should see:
100.1.
ECG on top line
100.2.
Scale bar on left of top line
100.3.
Heart rate displayed as set on simulator
100.4.
Lead Selected = II
100.5.
Pulse tone high pitched
100.6.
Respiration trace on second line
100.7.
Respiration rate displayed as set on simulator.
101. Disconnect ECG simulator
SpO 2
102.
103.
104.
105.
106.
Temp
CO 2
6 WELCH ALLYN ATLAS MONITOR
Connect SpO2 cable and cuff and install cuff on
simulator (or your finger).
Set simulator to normal readings.
See pleth signals immediately.
See SpO2 percentage within several seconds .
See Pulse display at the same time as SpO2
percentage.
107.
108.
Disconnect SpO2 cuff from simulator.
See error “SpO2 cuff not detected”.
109.
110.
Unplug SpO2 cable from Atlas.
See error “SpO2 cable not detected”.
111.
112.
113.
Temp display is blank.
Connect temp probe.
See temp display of ambient temperature.
114.
115.
Disconnect temp probe.
Temp display becomes dashes. No alarm or error
116. Press <DATE/TIME><TREND>
117. Get Advanced Configuration menu.
118. Set Second trace selection to CO2.
119. Press <TREND> to return to idle screen.
120. Insert watertrap with tubing attached.
121. Should see:
121.1.
Hear pump motor start.
121.2.
See solid line waveform on lower trace.
121.3.
See dashes in Respiration Rate.
121.4.
See dashes in mmHg (or % or kPa, as
configured).
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
122. Breathe gently and repeatedly over end of tubing
123. Should see:
123.1.
See waveform within seconds of breathing
123.2.
See respiration rate non zero within one
minute.
123.3.
See CO2 concentration non zero within one
minute.
124.
125.
126.
127.
128.
129.
130.
131.
132.
System must have been plugged in for 24 hours for
a real battery test to guarantee that battery is fully
charged, but for functional test we can try it:
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <SELECT> to highlight Battery test
The menu reports
Battery Low Time XXX and
Battery Dead Time YYY
These are the results from the last battery test. The
Battery Low Time is the time in hours and minutes
that the battery ran in the last test until the Low
Battery alarm started, and the Battery Dead Time is
the time from the beginning of the Low Battery Alarm
until the system turned itself off when the battery
voltage reached the cutoff level.
Note: 2:08 means 128
minutes which is the default
setting indicating a battery
test has never been made
before.
Write down the Battery Low Time and Battery Dead
Time
Unplug AC cord to start battery test
The timers will begin. Leave the system until it
powers down. Plug in AC and turn the system on,
enter the Service Mode menu, select Battery Test
again, and write down the new values. Compare
these to the previous values, and to the minimum
specification: Battery Low Time = 1 Hour
Battery Dead Time = 10 Minute minimums.
Replace the battery if performance falls below
specification
NOTE: Configuration settings for printing are different for
text pages (Advanced Configuration and Trend displays)
and for waveforms.
133.
BATTERY
PRINTER
Connect ECG simulator to generate a sample
waveform.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 7
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
134.
Press <PRINT> and look at waveform printout. Look
for darkness, thickness of lines, legibility of text,
blurring, “blooming” of text.
135.
136.
137.
Press <DATE/TIME><TREND>
Get Advanced Configuration menu.
Press <PRINT> and look at text printout.
137.1.
If feeding problems: Mechanical inspection
of printer, replace motor, drive platten.
137.2.
If waveforms too light or dark: Calibrate
137.3.
If text too light or dark in configuration screen,
press <Select> until “Printer test pattern” is
highlighted then press <HR Alarms Off>
button, then press <Set> to lighten or darken
print.
137.4.
If incorrect printout, missing elements, miss
ing grid, etc: Troubleshoot further
Software/firmware
138.
ALARMS/SOUNDS
Review versions written down earlier and compare
to latest available, and also make sure that all
components are compatible with each other. See
table 2.6 in this document.
Power-on beep
139. Turn off system, and turn on. Should hear loud
Power-on beep.
ECG pulse tone, pulse volume control, saving settings, <HR ALARMS Off> button
140. Connect ECG simulator.
141. Should hear: heart rate beep, at constant high pitch
142. Press SpO2 volume button “-“ 8 times. Should get
quieter and finally silent.
8 WELCH ALLYN ATLAS MONITOR
143.
144.
145.
Press <DATE/TIME><PRINT> to Save settings.
Turn system off and back on.
Pulse tone should be silent even though heart rate is
shown.
146.
Press SpO2 volume button “+” 8 times. Should get
audible and then louder.
147.
Disconnect ECG cable
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
148.
149.
150.
151.
152.
153.
3.1 Functional Test and Initial Diagnostic
Should hear Technical alarm and see error message.
Press <HR ALARMS Off> button.
Should stop Technical alarm sound, and erase error
message, and light LED in <HR ALARMS OFF>
button.
Press <HR ALARMS OFF> button again.
Should hear Technical alarm sound, see error
message, LED unlit in <HR ALARMS Off> button.
Turn system off and on.
SpO2 pulse tone
154. Attach SpO2 cable and cuff, and attach to simulator
or finger.
155. Should hear heart rate beep, different tone than
when ECG was connected.
156. Change SpO2 setting on simulator, or hyperventilating,
hold breath, should hear tone pitch change up or down
tracking simulator setting.
Limit Alarm, alarm volume control, Silence button,
Technical Alarm, <SpO2 ALARMS Off> button
157. Press right <Select> button until SpO2 LO is flashing, press right <Set> UP to change SpO2 LO
setting to 99.
158. Wait until SpO2 LO stops flashing.
159. Set simulator to SpO2 at 90%.
160. Should hear Limit alarm.
161.
162.
Press <Alarm Volume> “-“ eight times. Should get
quieter but not silent.
Press <Alarm Volume> “+“ eight times. Should get
louder.
163.
Press <Silence> and start stopwatch. Should be
quiet for the time set in Advanced Configuration
menu, then alarm comes back on.
164.
165.
Disconnect SpO2 cable from Atlas.
Should hear technical alarm, see error message
“SpO2 cable not detected”
Press <SpO2 ALARMS Off> button.
Should stop Technical alarm sound, and erase error
message, and light LED in <SpO2 ALARMS OFF>
button.
Press <SpO2 ALARMS OFF> button again
Should hear Technical alarm sound, see error message, LED unlit in <SPO2 ALARMS Off> button.
Turn system off and back on.
166.
167.
168.
169.
170.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 9
Section 3 - Troubleshooting
3.1 Functional Test and Initial Diagnostic
<CO2/RESP ALARMS Off> button
171. Press <DATE/TIME><TREND>
172. Get Advanced Configuration menu
173. Set Second trace selection to CO2
174. Press <TREND> to return to idle screen
175. Insert CO2 watertrap with hose
176. Breath into hose until waveform is displayed
177. Remove CO2 watertrap
178. Should hear Technical alarm and see error message. - “CO2 watertrap not detected”
179. Press <CO2/RESP ALARMS Off> button.
180. Should stop Technical alarm sound, and erase error
message, and light LED in <CO2/RESP ALARMS
OFF> button.
181. Press <CO2/RESP ALARMS OFF> button again.
182. Should hear Technical alarm sound, see error
message, LED unlit in <CO2/RESP ALARMS Off>
button.
183. Turn system off and back on
<BP ALARMS Off> button
184. With no hose connected to BP port, press <BP
START/CANCEL> button
185. Place finger over BP port, blocking flow, causing BP
to detect overpressure and abort
186. Should hear Technical alarm and see error message. - “Check blood pressure cuff”*
187. Press <BP ALARMS Off> button.
188. Should stop Technical alarm sound, and erase error
message, and light LED in <BP ALARMS OFF>
button.
189. Press <BP ALARMS OFF> button again.
190. Should hear Technical alarm sound, see error
message*, LED unlit in <BP ALARMS Off> button.
191. Turn system off and back on.
Battery tone
192. Disconnect AC power on running system.
193. Connect BP hose to simulator
194. Press <AUTO> to select 1 minute intervals
195. Wait for battery to run down. With fully charged
battery, after no less than 50 minutes, should hear
single tone, get message that system will shut down
in 10 minutes.
10 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
196.
197.
198.
3.1 Functional Test and Initial Diagnostic
Should hear tone again in two minutes, and again
two minutes after that.
Five minutes after first message, should start hearing tone every minute, and get message that 5
minutes remain until shutdown.
Ten minutes after first message, should hear technical alarm, see a printout of Trend data if there is any
unprinted trend data accumulated, (which there is,
we have been running BP measurements) and error
message that system shutdown is imminent.
All the possible error messages are documented in an
appendix to the Operator’s Manual.
SERVICE MANUAL 6200-43E REV. A
SELF DIAGNOSTIC
ERROR MESSAGES
WELCH ALLYN ATLAS MONITOR 11
Section 3 -Troubleshooting
3.2 Chief Complaint, Cause and Corrective Action
Corrective Action
Cause
Complaint
Power
Will not power up in AC
No wall power
Wrong wall power voltage/frequency
Fuse in power supply
Fuse in neutral wire
Power supply failure
LEDs
Random LSD segments unlit
Subsystem LEDs unlit
LED intermittent, dim, flickering
Failed LED
Subsystem problem
Failed LED
LED 1
Check subsystem LED 1
Replace Display board
Failed switch
Failed subsystem
Possible loose display board
Failed switch
Button 1
Check subsystem
Tight display board mounting screws.
Button 1
Failed speaker or disconnected
Failed main board
Software corruption
Reload software
sound 1
Failing battery
Battery 1
Paper inserted incorrectly
Door not latched
Failed printer
Software adjustment needed
Software adjustment needed
Failed printer
Printer cable
Paper inserted backwards
Wrong kind of paper
Failed printer
Printer 1
Buttons
Button not functional
Button sticking under front bezel
Button intermittent or difficult to
make contact
sounds
No sound at all
Battery
Insufficient life
Printer
Feed problems
Waveform print quality
Text print quality
Not functional
Feeding but not printing
Printer 1
Printer 1
Printer 1
Printer 1
CRT
CRT is blank
CRT cables
CRT 1
Reinstall software
Failed CRT
Failed Deflection board
Failed Main Board
12 WELCH ALLYN ATLAS MONITOR
Service Manual 6200-43E Rev. A
Section 3 -Troubleshooting
3.2 Chief Complaint, Cause and Corrective Action
Cause
Complaint
Corrective Action
ECG
ECG waveform not displayed
(dashed lines)
Patient electrodes
ECG 1
Lead wires
Cable
ECG cable connection
Failed main board
ECG waveform not properly scaled
Possible patient physiology problem
ECG gain set to 10mm/mV in
Advanced Configuration
Check gain setting
Reinstall software
ECG 1
ECG waveform not cascading
Incorrect Advanced Cofiguration
setting
Change Advanced Configuration setting to:
Second trace source = ECG; ECG gain =
automatic
Heart rate not detected
Patient electrodes
Lead wires
Cable
ECG cable connection
Failed main board
Possible patient physiology problem
Patient with Pacemaker?
ECG 1
Heart rate disagrees with Pulse rate
Possible patient physiology problem
Patient with Pacemaker?
Repeat on another patient
ECG 1
SPO2 1
Compare manual palpation
Reinstall software
Possible patient physiology problem
Does patient have abnormal ECG?
Repeat on another patient
ECG 1
Sp02 displays not active
Incorrect brand sensor
Failes Sp02 board
Failes Sp02 sensor
SPO2 1
Sp0 2 displays inaccurate
Possible patient physiology problem
Sp02 1
Possible patient physiology problem
Poor signal LA/RA placement
ECG 1
Use modified electrode placement on chest
walls
Heart rate disagrees with manual
palpation
SPO 2
Impedance Respiration
IR waveform not displayed (dashes)
Service Manual 6200-43E
Rev. A
WELCH ALLYN ATLAS MONITOR 13
Section 3 -Troubleshooting
3.2 Chief Complaint, Cause and Corrective Action
Corrective Action
Cause
Complaint
BP
BP measurements inaccurate
Incorrect cuff size
Incorrect cuff placement
Possible patient physiology problem
Calibration needed
Pressure leak
Try different cuff - refer to Operator Manual for
sizing information and proper cuff placement.
Calibrate
BP1
BP not working
BP1
Auto not working
BP1, Button 1
Cuff pressure too high
BP1, Calibrate
Cuff Pressure too low
BP1, Calibrate
Incorrect cuff size
Incorrect cuff placement
Patient movement
Possible patient physiology problem
Calibration needed
Pressure leak
Try different cuff - refer to Operator Manual for
sizing information and proper cuff placement.
Cannot achieve target pressure
Calibration needed
Initial pressure set too low for patient
physiology
Calibrate
BP1
Hold pressure too long
Software problem
Valve problem
BP1
Reload Software
Replace main board
Dumps pressure while inflating
Software problem
Valve problem
Hardware sensor problem
BP1
Reload Software
Replace main board
Incorrect probe placement
Possible patient physiology problem
Poor physical contact with patient
Excess aiflow, sunlight on probe
Failed probe
See Probe insert material
Language set wrong
Top entry is always language. Step through
choices with <SET> button while top item is
hightlighted
Does not work
Intermittent signal
Relay failure
Cable
Cable connection
Connect Ohmmeter across pins 1 and 8.
Expect infinity. Force an alarm state and
expect 0 Ohms.
Brief signals
Battery tone errors
Battery warnings will signal Nurse
Call for only a second , every minute
or two
Connect AC
Cannot take reading in time
Calibrate
BP1
TEMP
Readings inaccurate
Cannot read -wrong language
Use gel, adhesive tape to improve contact
Protect probe from light, airflow
Temp 1
Nurse Call
14 WELCH ALLYN ATLAS MONITOR
Service Manual 6200-43E Rev. A
Section 3 - Troubleshooting
Remove all instrument cables and hoses
Install printer paper if printer is fitted
3.3 TOP LEVEL
TROUBLESHOOTING
INDEX
Review customer complaint and determine if it is safe
to plug in and turn on Atlas
If not safe to power up: smoke/flames/smell reported?
Goto Power 1
Check power available light
Goto Power 2
Check power-up state
Goto Power 3
Set language and Preserve customer settings
Goto Test Setup 1
Check date/time
Goto Test Setup 2
Reset to factory defaults
Goto Test Setup 3
Check software/firmware
Goto Test Setup 4
Check CRT Alignment Test
Goto CRT 1
Check Button Test
Goto Button 1
Check Display A/D Channels
Goto A/D 1
Check LED test
Goto LED 1
Check Printer alignment test
Goto Printer 1
Check Printer function
Goto Printer 2
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 15
Section 3 - Troubleshooting
3.3 TOP LEVEL
TROUBLESHOOTING
INDEX
Check Battery
Goto Battery 1
Check Alarms/Sounds
Goto Sound 1
Check BP
Goto BP 1
Check ECG
Goto ECG 1
Check SPO2
Goto SPO2 1
Check Temp
Goto Temp 1
Check CO2
Goto CO2 1
16 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.4
Disassemble and inspect power supply, wires
Check fuse in power supply
Check fuse in neutral wire to power supply
Test power supply on bench
Check fuse in battery cable
If AC~ not lit, check power cord continuity, outlet power
available
Check connection at appliance inlet
Goto Power 1
Turn on power
Green light in power button
If not lit, goto LED 1
Diagnostic Tests
Power 1
Power 2
Power 3
Loud beep when button pressed
If not heard, goto Sound 1
Fan running (622xx and 623xx)
If not running, goto Fan 1
Three dashes in SYSTOLIC
Three dashes in DIASTOLIC
If not seen, goto LED 1
If passed, goto BP 1
Two dashes in SPO2 (takes several seconds after BP
dashes come on)
Three dashes in PULSE (takes several seconds after BP
dashes come on)
Pleth: none, or a single bar at the bottom, or two bars at the
bottom
If not seen, goto LED1
If passed, goto SPO2 1
No lights in TEMP (622xx and 623xx)
If any are lit, goto Bad Boot 1
No lights in ALARMS OFF buttons
If any are lit, goto Bad Boot 1
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 17
Section 3 - Troubleshooting
3.4 Diagnostic Tests
X lit on AUTO
If not lit, or a number lit, goto Bad Boot 1
AC~ lit
If not lit, goto LED 1
CRT display comes on slowly if cold, quickly if still warm
from last use.
May see version string in center if comes on quickly, not a
problem if not seen because it comes on slowly
CRT: three dashes for Heart Rate
Heart picture
Lead select symbol
Scale bar
One or two lines of dashes for waveforms – depends upon
settings
Three dashes for MAP – or blank, depends upon settings.
If not seen goto CRT 2
Error message(s) at bottom of screen?
If message, review cause in User Guide
If 622xx or 623xx, pull AC cable. Should be no change
except AC~ unlit.
If system dies immediately, check fuse on battery
cable
If fuse is OK, either charge battery for 2+
hours or goto Battery 1
If errors of low, very low or depleted battery, plug
back in and repeat test in 2 hours
Test Setup 1
18 WELCH ALLYN ATLAS MONITOR
Press <DATE/TIME><TREND>
Get Advanced Configuration menu
Set language to your native tongue if necessary to
allow you to write down the other settings. The top
item is always the language, press either <SET> button to
step through list.
Write down all settings for resetting to customer preference
later
Press <PRINT> if printer fitted
If printer problems, goto Printer 1
Press <TREND> to return to idle screen
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.4
Press <DATE/TIME>
Get date/time menu
Verify date/time, set if necessary.
If date was significantly wrong, goto Date 1
Press <TREND> to return to idle screen
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Examine version/configuration data in lower half of menu,
and write it all down
Press <SELECT> to highlight Reset to factory defaults
Press <BP START/CANCEL> to reset configuration
Press <TREND> to return to idle screen
Press <DATE/TIME><TREND>
Get Advanced Configuration menu
Set language to your native tongue if necessary
We have just reset to factory defaults. Compare settings
to factory defaults appropriate for the country – in Operator
manual if not here too.
If not matching, goto NVRAM 1
Press <TREND> to return to idle screen
Diagnostic Tests
Test Setup 2
Test Setup 3
Compare version numbers from Test Setup 3 to table in
Service Guide
Test Setup 4
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <SELECT> to highlight CRT Test pattern
Note screen alignment
If misaligned, mechanical adjustment required on
disassembled unit
Press <TREND> to return to idle screen
CRT 1
If no display at all on CRT:
Check connections:
CRT to Yoke cable
CRT to Anode cable
CRT to Deflection board
Deflection board to Main board cable
Replace CRT
Replace Deflection board
Replace Main board
SERVICE MANUAL 6200-43E REV. A
CRT 2
WELCH ALLYN ATLAS MONITOR 19
Section 3 - Troubleshooting
3.4 Diagnostic Tests
If distorted display on CRT:
Check connections:
CRT to Yoke cable
CRT to Anode cable
CRT to Deflection board
Deflection board to Main board cable
Replace Deflection board
Replace CRT
If good display but some items are distorted or missing
from CRT display:
If ECG waveform, heart rate, lead selected, heart
symbol missing:
Replace Main board
Button 1
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <Select> to highlight Button test
Press <BP START/CANCEL> to start test
Press every button on system, <BP START/CANCEL> last
Verify that buttons match up with their names, and that all
buttons are functional.
If a button does not report its name, goto Button 2
If a button reports the WRONG name, goto NVRAM
1
Press <Trend> to return to Idle screen
Button 2
If a single button does not report its name: Replace Display board
If multiple or all buttons do not report their names:
Check Display board to main board cable
Replace Display board
Re-install software
Replace CPU board
Replace Main board
20 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.4
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <Select> to highlight Display A/D channels (three
or four screens worth)
Write down all values for later review
Need to provide tables of reasonable values, troubleshooting pointers
Press <Set> and write down all values for each screen
If data missing, corrupt or questionable, goto
NVRAM 1 or Replace Display Board?
Press <Trend> to return to Idle screen
Diagnostic Tests
A/D 1
LED 1
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <Select> to highlight LED test
Press <AUTO> to turn on all LEDs
Press <BP START/CANCEL> to show automatic test
pattern
Watch for a while, look for glitches in pattern
Press <Set> to go to manual mode and step through
individual segments if needed to observe a problem
If any failed LEDs, multiple segments lighting at
once, or other problems: Replace Display Board
Press <Trend> to return to Idle screen
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <Select> to highlight Printer test pattern (if fitted)
Press <BP START/CANCEL> to start test pattern
Printer should print test pattern
Press any key to end printing
Examine printout
If too dark/too light Goto Printer Settings 1 and
Printer Settings 2
If alignment errors: Adjust printer mechanism
If feeding problems: Adjust printer mechanism,
replace feed roller
If missing sections/rows of printout: Replace Printer
Hardware
If darkness not consistent across page: Replace
Printer Hardware
SERVICE MANUAL 6200-43E REV. A
Printer 1
WELCH ALLYN ATLAS MONITOR 21
Section 3 - Troubleshooting
3.4 Diagnostic Tests
Printer 2
NOTE: Configuration settings for printing are different for
text pages (Advanced Configuration and Trend displays)
and for waveforms.
Connect ECG simulator to generate a sample waveform
Press <PRINT> and look at waveform printout. Look for
darkness, thickness of lines, legibility of text, blurring,
“blooming” of text
Press <DATE/TIME><TREND>
Get Advanced Configuration menu
Press <PRINT> and look at text printout.
If waveforms too light or dark: goto Printer Settings
1:
If text too light or dark: goto Printer Settings 2
If alignment errors: Adjust printer mechanism
If feeding problems: Adjust printer mechanism,
replace feed roller
If incorrect printout, missing elements, missing grid,
etc
Printer Settings 1
22 WELCH ALLYN ATLAS MONITOR
Connect serial cable between Atlas and PC
Start HyperTerminal on PC
At Pangea> prompt, type:
Pangea> nvram get
printer_strobe_width_normal<ENTER>
Write down this value
If problem is that WAVEFORM printout is too light, increase
this number. If the WAVEFORM printout is too dark, decrease this number.
Range is 0-256. Set new value with:
Pangea> nvram set printer_strobe_width_normal
XXX<ENTER>
Pangea> nvram write<ENTER>
Where XXX is the new value.
Repeat the test that showed the problem.
Repeat this test-and-set process until ideal value is
achieved
Disconnect serial cable
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.4
Connect serial cable between Atlas and PC
Start HyperTerminal on PC
At Pangea> prompt, type:
Pangea> nvram get printer_strobe_width_text<ENTER>
Write down this value
If problem is that TEXT printout is too light, increase this
number. If the TEXT printout is too dark, decrease this number.
Range is 0-256. Set new value with:
Pangea> nvram set printer_strobe_width_text
XXX<ENTER>
Pangea> nvram write<ENTER>
Where XXX is the new value.
Repeat the test that showed the problem.
Repeat this test-and-set process until ideal value is achieved
Disconnect serial cable
Diagnostic Tests
Printer Settings 2
A bad date may indicate a battery problem. If date was bad,
turn off unit, pull power cable, reconnect power cable, turn on
unit. Check date again.
If date comes back bad:
Model 621xx: test/replace lithium on-board battery
Model 622xx/623xx: charge/test battery
If battery OK/Charged/Replaced repeat Test Setup 2
If still not maintaining date goto NVRAM 2
Date 1
Failure to correctly reset factory defaults indicates memory
problems. Changing only the language should not change
any of the other factory default settings.
Reinstall software and repeat test.
If still failing
Replace CPU board
NVRAM 1
Date comes back wrong and battery already tested good
Reinstall software and repeat test
If still failing
Replace CPU board
NVRAM 2
Save Settings does not work
Reinstall software and repeat test
If still failing
Replace CPU board
NVRAM 2
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 23
Section 3 - Troubleshooting
3.4 Diagnostic Tests
Battery 1
Sound 1
24 WELCH ALLYN ATLAS MONITOR
System must have been plugged in for 24 hours for a real
battery test to guarantee that battery is fully charged.
Press <BP Start/Cancel> to start a BP measurement;
press <BP Start/Cancel> again after three seconds to
abort the measurement – this puts an entry into the Trend
list.
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <SELECT> to highlight Battery test
The menu reports:
Battery Low Time XXX and
Battery Dead Time YYY
These are the results from the last battery test. The Battery
Low Time is the time in hours and minutes that the battery
ran in the last test until the Low Battery alarm started, and
the Battery Dead Time is the time from the beginning of the
Low Battery Alarm until the system turned itself off when the
battery voltage reached the cutoff level.
Write down the Battery Low Time and Battery Dead Time.
Note that the value 2:08 is the default (128 minutes) and
indicates that no test has been run before.
Unplug AC cord to start battery test.
The timers will begin.
Leave the system until it powers down.
One minute before power down, the system should print a
Trend printout (if equipped with printer)
If Trend printout does not occur:
When system powers off, plug in AC and turn the system
on.
Press <DATE/TIME><LEAD SELECT>
Get Service Mode menu
Press <SELECT> to highlight Battery test
The menu reports:
Low Time XXX and
Dead Time YYY
write down the new values. Compare these to the previous
values, and to the minimum specification: Low Time >= 60
minutes; Dead Time >= 10 minutes
If either number is below specification, replace the battery
Power-on beep
Turn off system, and turn on. Should hear loud Power-on
beep.
If beep not heard: Continue with this test. If no other
sounds are heard, Replace Speaker Hardware.
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
3.4
Diagnostic Tests
ECG pulse tone, pulse volume control, saving settings, <HR ALARMS Off> button
Connect ECG simulator with a normal ECG setting.
Should hear: heart rate beep, at constant high pitch.
If heart rate beep not heard, press SPO2 volume
button “+” three times
If heart rate beep still not heard:
If power-on beep was heard, isolate to
CPU/main board. Could also be display
board with a bad button.
Press SPO2 volume button “-“ 8 times. Should get quieter
and finally silent.
If heart rate beep does not change volume: Replace
Display Board
Press <DATE/TIME><PRINT> or <DATE/TIME>
<FREEZE> to Save settings.
Turn system off and back on.
Heart rate beep should be silent even though heart rate is
displayed.
If heart rate beep is not silent on power up: goto
NVRAM3
Press SPO2 volume button “+” 8 times. Pulse tone should
get audible and then louder.
If heart rate beep does not change volume: Replace
Display Board hardware
Disconnect ECG cable
Should hear Technical alarm and see error message.
If alarm not heard:
Press <HR ALARMS Off> button.
Should stop Technical alarm sound, erase error message,
and light LED in <HR ALARMS OFF> button.
If alarm not silenced:
If error message not erased
If LED not lit:
Press <HR ALARMS OFF> button again.
Should hear Technical alarm sound, see error message,
LED unlit in <HR ALARMS Off> button.
If alarm not heard:
If error message not displayed
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 25
Section 3 - Troubleshooting
3.4 Diagnostic Tests
If LED not unlit:
Turn system off and on to clear state.
SPO2 pulse tone
Attach SPO2 cable and cuff, and attach to simulator.
Set simulator to normal heart and SPO2 settings.
Should hear heart rate beep, different tone than when ECG
was connected.
If heart rate beep not heard:
Change SPO2 setting on simulator, should hear tone pitch
change up or down tracking simulator setting.
If pitch does not change with simulator SPO2 percentage changes:
Limit Alarm, alarm volume control, Silence button,
Technical Alarm, <SPO2 ALARMS Off> button
Press right <Select> button until SPO2 LO is flashing, press
right <Set> UP to change SPO2 LO setting to 99.
Wait until SPO2 LO stops flashing (10 seconds).
Set simulator SPO2 at 90%.
Should hear Limit alarm.
If alarm not heard:
Press <Alarm Volume> “-“ eight times. Should get quieter
but not silent.
If alarm volume does not change: Replace Display
Board hardware.
If alarm volume goes all the way to silent: Replace
display board.
Press <Alarm Volume> “+“ eight times. Should get louder.
If alarm volume does not change: Replace Display
Board hardware
Press <Silence> and start stopwatch. Should be quiet for
the time set in Advanced Configuration menu, then alarm
comes back on.
If alarm not silenced for set period:
Disconnect SPO2 cable from Atlas.
Should hear technical alarm, see error message.
If alarm not heard:
If message not shown:
Press <SPO2 ALARMS Off> button.
Should stop Technical alarm sound, and erase error mes26 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
sage, and light LED in <SPO2 ALARMS OFF> button
If alarm not silenced:
If error message not erased
If LED not lit: Replace Display Board hardware
3.4
Diagnostic Tests
Press <SPO2 ALARMS OFF> button again
Should hear Technical alarm sound, see error message,
LED unlit in <SPO2 ALARMS Off> button
Turn system off and back on to clear state.
<CO2/RESP ALARMS Off> button
Press <DATE/TIME><TREND>
Get Advanced Configuration menu.
Set Second trace selection to CO2.
Press <TREND> to return to idle screen.
Insert CO2 watertrap with hose.
Breath into hose until waveform is displayed.
If waveform not displayed after 30 seconds goto
CO2 1
Remove CO2 watertrap.
Should hear Technical alarm and see error message.
Press <CO2/RESP ALARMS Off> button.
Should stop Technical alarm sound, and erase error message, and light
LED in <CO2/RESP ALARMS OFF> button
If alarm not silenced:
If error message not erased
If LED not lit: Replace Display Board hardware
Press <CO2/RESP ALARMS OFF> button again.
Should hear Technical alarm sound, see error message,
LED unlit in <CO2/RESP ALARMS Off> button.
Turn system off and back on to clear state.
<BP ALARMS Off> button
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 27
Section 3 - Troubleshooting
3.4 Diagnostic Tests
With no hose connected to BP port, press <BP START/
CANCEL> button.
Place finger over BP port, blocking flow, causing BP to
detect overpressure and abort.
Should hear Technical alarm and see error message.
If alarm not heard:
If error message not displayed
Press <BP ALARMS Off> button.
Should stop Technical alarm sound, and erase error message, and light
LED in <BP ALARMS OFF> button
If alarm not silenced:
If error message not erased
If LED not lit: Replace Display Board hardware
Press <BP ALARMS OFF> button again
Should hear Technical alarm sound, see error message,
LED unlit in <BP ALARMS Off> button
If alarm not heard:
If error message not displayed
If LED not unlit: Replace Display Board hardware
Turn system off and back on to clear state.
Battery tone
System must have been plugged into AC for at least 2
hours.
Disconnect AC power on running system.
Connect BP hose to simulator.
Press <AUTO> to select 1 minute intervals.
Wait for battery to run down. With fully charged battery, after
no less than 50 minutes, should hear single tone, get message that system will shut down in 10 minutes.
If alarm tone not heard:
If message not shown:
Should hear tone again in two minutes, and again two
minutes after that.
If alarm tone not heard at two minute intervals:
Five minutes after first message, should start hearing tone
every minute, and get message that 5 minutes remain until
shutdown.
If alarm tone not heard at one minute intervals:
If message not shown:
28 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
Ten minutes after first message, should hear technical
alarm, see a printout of Trend data if there is any unprinted
trend data accumulated, (which there is, we have been
running BP measurements) and error message that system
shutdown is imminent.
If alarm not heard:
If message not shown:
If Trend not printed:
Plug system back into AC.
Connect the BP port to the BP simulator.
Set the simulator for a normal reading (140/80, 100BPM,
NSR).
Press <BP START/CANCEL>
System should start pump, display manometer value in
SYSTOLIC LED; this value should track and be very close
to pressure displayed by manometer in BP simulator (if
fitted).
Largest number shown in SYSTOLIC should be very close
to the Initial pressure setting recorded earlier from Advanced Configuration in step Test Setup 1.
System should step down pressure, showing step values in
SYSTOLIC LED, and then display correct SYSTOLIC and
DIASTOLIC values.
System may show MAP value depending upon country and
Advanced Configuration setting.
If in-process display is wrong calibrate or blank:
replace main board
If final Systolic / Diastolic / MAP display is incorrect:
Calibrate BP
3.4
Diagnostic Tests
BP 1
Press <DATE/TIME><TREND> to get to Advanced Configuration menu
Press <Select> to highlight Initial pressure
Press <Set> to change Initial pressure to 280 mmHg
Press <Select> to highlight MAP
Press <Set> to change MAP to Yes
Press <TREND> to return to idle screen.
Press <BP START/CANCEL>
System should start pump, display manometer value in
SYSTOLIC LED; this value should track and be very close
to pressure displayed by manometer in BP simulator (if
fitted).
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 29
Section 3 - Troubleshooting
3.4 Diagnostic Tests
Largest number shown in SYSTOLIC should be very close
to the Initial pressure setting of 280 mmHg.
If pressure shown exceeds 300 mmHg: Replace
Main Board hardware
System should step down pressure, showing step values in
SYSTOLIC LED, and then display correct SYSTOLIC and
DIASTOLIC values.
System should show MAP value. MAP value should match
what is shown by simulator.
If in-process display is wrong or blank:
If final Systolic / Diastolic / MAP display is incorrect:
Calibrate BP
Set simulator to highest Systolic <=250, lowest Diastolic >=
30, and lowest heart rate >=30
Press <AUTO>
X goes unlit, 1 flashes for 10 seconds
20 seconds after 1 stops flashing, BP measurement starts
BP reading as above.
If BP does not start: Replace Main Board hardware
If BP measurement incorrect: Calibrate BP
No less than 30 seconds after completing the measurement another measurement should start.
If measurement does not start automatically: Replace Main Board hardware
While it is pumping up, press <BP START/CANCEL>.
Measurement stops immediately and pressure is dumped
(as seen on manometer on simulator).
If measurement does not stop immediately: Replace
Main Board hardware or Display Board hardware (if
button is the problem)
If pressure does not drop below 10mmHg immediately: Replace Main Board hardware, BP Valve
Press <AUTO> and X lights up (not flashing)
Disconnect the tubing from the BP port on the Atlas.
Press <BP START/CANCEL> and note the time (to the
second)
The BP should abort with an alarm after no longer than one
minute?
30 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
Connect a 5 lead cable set to the simulator and to Atlas.
Configure the simulator for NSR 100BPM and Impedance
Respiration,
Plug the cable into Atlas.
Press <DATE/TIME> <TREND>
Get Advanced Configuration menu.
Press <Select> to highlight ECG lead set
Press <Set> to:
Set ECG lead set to 5 wire
Set ECG gain to Automatic
Set ECG speed to 25mm/s
Set ECG bandwidth to Monitor
Set Second trace selection to ECG
Press <TREND> to return to idle screen
Should see:
ECG cascading onto second line
Scale bar on left of top line
Heart rate displayed as set on simulator
Lead Selected = II
Heart rate tone high pitched
If ECG waveform not seen
If ECG waveform not cascading
In Scale Bar not on top line
If Heart Rate not displayed (or displayed incorrectly)
If Lead Selected not shown
If Heart rate tone not heard
Re-install software
Replace CPU board
Replace Main board
3.4
Diagnostic Tests
ECG 1
Press <LEAD SELECT> and step through each of the lead
settings
Should see:
Different looking ECG waveforms
Heart Rate will go to dashes and alarms on some
leads
Set lead selected to II
Press <DATE/TIME><TREND>
Get Advanced Configuration menu.
Press <Select> to change Second trace selection to
Respiration
Press <TREND> to return to idle screen
Should see:
ECG on top line
Scale bar on left of top line
Heart rate displayed as set on simulator
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 31
Section 3 - Troubleshooting
3.4 Diagnostic Tests
SpO2 1
Note: The Nellcor or Nonin
should be accurate* to the
simulators.
*2% or 3bpm for any inrange settings on the
simulators.
Lead Selected = II
Pulse tone high pitched
Respiration waveform on second line
Respiration Rate displayed as set on simulator
If ECG waveform not seen
If ECG waveform not cascading
In Scale Bar not on top line
If Heart Rate not displayed (or displayed incorrectly)
If Lead Selected not shown
If Heart rate tone not heard
If Respiration waveform not shown
If Respiration Rate not displayed correctly
Re-install software
Replace CPU board
Replace Main board
Disconnect ECG simulator
Turn system off and back on to clear state.
Connect SpO2 cable and cuff and install cuff on simulator
(or your finger).
Set simulator to normal readings.
See pleth signals immediately
If Pleth signals not seen within 10 seconds: goto
SpO2 2
See SpO2 percentage within several seconds
If SpO2 percentage not seen within 1 minute: goto
SpO2 2
See Pulse display at the same time as SpO2 percentage
If Pulse display not seen at same time as SpO2
percentage: goto SpO2 2
Disconnect SpO2 cuff from simulator
Technical alarm sounds
See error “SpO2 cuff not detected”
If alarm not heard: goto Sound 1
If error not seen:
Reconnect SpO2 cuff to simulator
Technical alarm stops
Error message erased
Unplug SpO2 cable from Atlas
Technical alarm sounds
See error “SpO2 cable missing”
32 WELCH ALLYN ATLAS MONITOR
SERVICE MANUAL 6200-43E REV. A
Section 3 - Troubleshooting
If alarm not heard: goto Sound 1
If error not seen: Re-install software
3.4 Diagnostic Tests
Turn system off and back on to clear state.
Verify that proper SpO2 cuff is being used: Nonin or Nellcor
Replace cuff.
Check cable connections between SpO2 board and Main
board
Replace SpO2 cuff socket
Replace SpO2 board
Press <DATE/TIME><TREND>
Get Advanced Configuration menu
Set Second trace selection to CO2
Press <TREND> to return to idle screen
Insert watertrap with tubing attached
Should see:
Hear pump motor start
See dashed line waveform on lower trace
See dashes in Respiration Rate
See 0 in mmHg (or % or kPa, as configured)
If pump motor does not start: goto CO2
If dashed waveform does not start: Perform CO2
calibration
If Respiration Rate does not display dashes: Per
form CO2 calibration
If CO2 concentration is not 0: Perform CO2 calibra
tion
SpO2 2
CO2 1
Breathe gently and repeatedly over end of tubing
Should see:
See waveform within seconds of breathing
See respiration rate non zero within one minute
See CO2 concentration non zero within one minute
If waveform does not track breathing: Perform CO2
calibration
If respiration rate does not show reasonable value:
Perform CO2 calibration
If CO2 concentration does not show reasonable
value: Perform CO2 calibration
If CO2 calibration did not solve problem, replace CO2 board
Remove watertrap from Atlas
Turn system off and back on to clear state.
Press <DATE/TIME><TREND>
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 33
Section 3 - Troubleshooting
3.4 Diagnostic Tests
CO2 2
TEMP1
Get Advanced Configuration menu
Set Second trace selection to CO2
Press <TREND> to return to idle screen
Remove and reinsert watertrap in socket. Make sure that it
seats fully.
If pump does not start:
Insert finger in socket and attempt to press
microswitch
If pump does not start:
Check connections between CO2
board and Main board
Check connections between CO2
receiver and CO2 board
Replace CO2 receiver
Replace CO2 board
Temp display is blank
Connect temp probe
See temp display of ambient temperature
If display is not close to ambient temperature: Calibrate Temp – if out of spec, replace probe, repeat. If
still out of spec, replace main board.
Disconnect temp probe
Temp display becomes dashes
If temp display does not become dashes: Replace
main board
Bad Boot 1
Fan 1
34 WELCH ALLYN ATLAS MONITOR
Turn power off and back on and see if anomaly returns
Re-install software
Repeat test
If problem remains: Replace CPU board
Models 622xx and 623xx:
If fan does not start when power turned on:
Check Fan to Main board cable
Replace Fan
Replace Main board
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
This section is a guide for disassembly and reassembly
of the Atlas Monitor. Always refer to current revision
schematics, diagrams and final safety test procedures
before attempting to service this device.
About Section 4
Do not attempt to service this instrument unless
you have received Service Training from Welch
Allyn or an authorized agent, and are equipped with
approved processes and test equipment. For more
information about this call the Welch Allyn Customer Service phone number listed in Section 1 of
this manual.
General:
The outside housing is removed to provide full access
to all internal printed circuit boards and other components. Most of these are held in position with the surrounding “E-Pac” foam. E-Pac provides shock
absorbtion, ventillation channels, and spaces for the
components and boards. Pneumatic tubing and cables
must be placed correctly in E-Pac to avoid problems with
pinched tubing.
Problems During Service:
A Technical Support phone number is listed in Section 1
of this manual to answer questions you may have during
the servicing of the Atlas Monitor.
Printer:
Print-head, printer motor, and printer roller can be replaced as necessary.
Printed Circuit Boards:
There are no component level repairs for the Printed
Circuit boards. These are replaced if found to be defective. During the warranty period, boards that are found
to be defective should be returned to Welch Allyn.
Abstract of Disassembly
and Reassembly:
EXERCISE
EXTREME CAUTION
WHEN SERVICING
THE ATLAS MONITOR! THE CRT ASSEMBLY AND CRT
DEFLECTION
BOARD OPERATE
ON
APPROXIMATELY
8,000
VOLTS.
CRT:
The CRT and CRT Deflection Board are aligned at the
factory and as such are replaced as a matched set if
one or the other should fail in service.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 1
.
Section
4 - Disassembly and Repair, Domestic
Unplug Monitor from
Mains before disassembly! EXERCISE EXTREME
Model 200
CAUTION WHEN SERVICING
THE ATLAS MONITOR! THE
CRT ASSEMBLY AND CRT DEFLECTION BOARD OPERATE
ON APPROXIMATELY 8,000
VOLTS.
ESD: Circuit boards are sensitive
to static electricity. Use wrist strap,
ESD mats and ESD storage bags.
4.1
MODEL 200 Dissassembly.
4.1.1 Open the paper door and remove the
paper roll. Close paper door.
Place Monitor on a foam pad to
protect the front of the unit and the
pressure fitting on the front of the
unit.
4.1.2 Remove 4 Torx Machine screws with
Torx - 10 screw driver.
4.1.3 Open the rear housing and
disconnect 2 ground wires from
ground lug as well as printer cable..
Caution: Do not pull display cable.
2 WELCH ALLYN ATLASMONITOR
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
4.1.4 Unplug the printer cable from jack
J7 of the Main PCB.
4.1.5 Remove Pump section.
4.1.6 Unplug Display Board Cable from
jack J8 of the Main PCB.
Note: Make sure this end of the cable is
installed in J8 during reassembly so
that cable folds will be correct.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 3
Section 4 - Disassembly and Repair, Domestic
4.1.7 Remove E-Pac from over the CRT.
4.1.8 Unplug CPU/PCB from Main PCB
PCA connector J4.
4.1.9 Unplug CRT socket board.
Do not bend pins.
4 WELCH ALLYN ATLASMONITOR
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
4.1.10 Protect CRT pins with cap T-XXXXX
4.1.11 Unplug Yoke cables from connector
J2 of CRT Deflection Board.
4.1.12 Unplug CRT Deflection Board from
Main PCB with connector tool
T-16654
Do not bend pins.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 5
Section 4 - Disassembly and Repair, Domestic
4.1.13 Unplug 4 connectors from side of
Main PCB.
4.1.14 Remove Power Supply assembly.
4.1.15 Remove alarm speaker.
6 WELCH ALLYN ATLASMONITOR
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
4.1.16 Remove Main PCB from E-Pac and
disconnect tubing and connectors.
4.1.17 Disconnect SpO2 board and
remove it from E-Pac.
4.1.18 Remove main E-Pac section.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 7
Section 4 - Disassembly and Repair, Domestic
4.1.19 Disconnect tubing from fitting.
4.1.20 Remove SpO2 connector from
front panel.
4.1.21Remove CRT ground wire. Do not
remove screw and washer.
8 WELCH ALLYN ATLASMONITOR
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
4.1.22 Remove opposite CRT
`
mounting screw and remove CRT.
4.1.23 Remove Keypad circuit board.
4.1.24 Remove Display PCB.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 9
Section 4 - Disassembly and Repair, Domestic
4.1.25 Remove soft keys from Bezel.
4.1.26 Unscrew Alarm Silence Button
holding screw to remove Silence
button.
4.1.27 Remove printer by depressing tab.
10 WELCH ALLYN ATLASMONITOR
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
4.1.28 Slide printer out of rear housing.
4.1.29 Unplug motor connector.
For reassembly, place
connector on motor
so orange wire is near
mounting screw.
4.1.30 To remove printhead, disconnect
cable from printer PCB.
Lift spring and remove printhead
from printer frame.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 11
Section 4 - Disassembly and Repair, Domestic
4.1.31Remove backing plate.
4.1.32 Remove connector.
Flex circuit is delicate. Therefore,
do not pull on connector.. Use
small screwdriver to pry connector
apart.
4.1.33 For reassembly of printhead, use
long nose pliers to attach cable to
eliminate stress on flex circuit of
printhead.
12 WELCH ALLYN ATLASMONITOR
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
4.1.34 Slide Power Supply cases apart.
4.1.35 Location of Power Supply fuse.
4.2
MODEL 200 Re-assembly.
4.2.1 Reassemble in reverse order of
disassembly with special attention to
paths for cables and tubing.
Two types of screws are used. Display PCB is fastened with self tap.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 13
Section 4 - Disassembly and Repair, Domestic
4.2.2 Detail of Pump/Valve/CheckValve
subassembly for reassembly.
4.2.3 Printer chassis rests on lip at back of
case.
4.2.4 The IEC connector must be
centered in the hole before 4
screws can be installed.
14 WELCH ALLYN ATLASMONITOR
SERVICE MANUAL 6200-43E REV. A
Section 4 - Disassembly and Repair, Domestic
4.2.5 Plug MCU/PCB in like this.
4.3
Other models dissassembly/
reassembly.
Due to the similarities between the
ATLAS models, only key points are
shown. Refer to the latest revision
interconnect drawing, schematics, and
layouts when servicing this product.
SERVICE MANUAL 6200-43E REV. A
WELCH ALLYN ATLAS MONITOR 15
Appendix A
Theory of Operation – Model 622/623
1 DC/DC Power Supply
1.1 Overview:
1.2 On/Off Circuits
1.2.1 Backup Regulator and Micro-Controller
1.2.2 18V boost converter and FET ON/OFF switch
1.3 +12V Boost Converter
1.4 Battery Charger:
1.5 Linear Regulators – 5VDC and 3.3VDC
1.5.1 5V regulator
1.5.2 3.3V Regulator
2 Patient Isolated Circuits
2.1 Isolated Power
2.2 A/D Circuits
2.2.1 PWM A/D
2.2.2 A/D Multiplexer
2.3 Serial Communication
2.4 Signal Isolation
2.5 ECG Circuits
2.5.1 Overview
2.5.2 Defib Protect, RFI Filtering
2.5.3 Front End Buffer - 1st Gain Stage
2.5.4 Wilson Network - Lead Select Mux
2.5.5 Differential Amplifier and Slew rate limit
2.5.6 Right Leg Drive Amplifier
2.5.7 High Pass and Gain Stage
2.6 Temperature Amplifier
2.7 Impedance Respiration
2.7.1 Overview
2.7.2 Signal Source – Current Drive
2.7.3 Differential Amplifier and Peak Detector
2.7.4 Gain and Filtering
2.8 SpO2 Circuits
3 Non-Isolated circuits - A/D and Mux
3.1 A/D – grounded circuits
3.2 A/D Mux – grounded circuits
4 NIBP Circuits
4.1 Overview - Safety:
4.2 Primary Transducer - Amplifier:
4.3 Safety Transducer - Amplifier
4.3.1 Current Source:
4.3.2 Differential Amplifier and Offset Centering:
4.4 Hardware Overpressure:
4.5 Pump and Relay Drive:
5 CRT Deflection Board
5.1 Overview:
5.2 Vertical Amplifier:
5.2.1 Ramp Generator:
5.2.2 Vertical Amplifier:
5.2.3 Zero Adjust:
5.3 Horizontal Amplifier:
5.3.1 Horizontal Gain:
5.3.2 Grid Voltages:
5.4 Video Amplifier:
10/14/99
Appendix A
6 Recorder Electronics
6.1 Overview:
6.2 Power Supply – 24 Switcher
6.3 Motor Driver:
6.4 Temperature Amplifier:
10/14/99
Appendix A
10/14/99
DC/DC Power Supply
1
1.1
Overview:
Atlas Model 622 and 623 can be powered either from AC or battery. A 50W, medical grade, offline
switcher provides 12VDC from a universal AC input (85VAC to 264VAC – 50/60Hz). The battery is a
rechargeable 6-Volt, 6.5 Amp-Hour, Sealed Lead Acid Battery, and will provide about 1.5 hours on a fully
charged battery (Battery Life depends on usage, especially printer usage, NIBP cycles, and CO2
operation).
The unit will operate from AC when the unit is plugged in, and switches to battery operation when AC is
removed. The battery is automatically charged whenever AC is connected.
The following supplies are generated on the Atlas Main Board:
+12V DC
Input: Output of AC/DC supply or Battery.
Supply for CRT and miscellaneous analog circuits.
+5V DC
Input: Output of Battery Charger or Battery.
Supply for front panel LED’s.
+3.3V DC
Input: +5V DC
Supply for CPU board.
Backup Regulator:
Input Output of AC/DC supply or Battery.
3.3V supply, for real time clock and On/Off circuits.
Battery Charger:
Input: Output of AC/DC supply
Charge SLA battery.
DC/DC Circuits
Block Diagram
Q303
+12VDC
Regulator
AC/DC
Converter
+12V
AC+12V
Backup
Regulator
On/Off
Control
Circuits
On/Off
Battery
Q311
AC Not Present
+5VDC
Regulator
+5V
+3.3VDC
Regulator
+3.3V
D310
Battery
Charger
AC Present
1.2
On/Off Circuits
1.2.1 Backup Regulator and Micro-Controller
A 3.3V low backup regulator, U307, provides power to the On/Off circuits and provides power to the real
time clock on the CPU board. The On/Off circuitry is controlled by the mirocontroller U10. This
Appendix A
10/14/99
controller performs the following functions:
1. Monitors the status of the front panel ON-OFF key. If the unit is off and the ON-OFF key is pressed,
the controller will drive U10-6 high, which will enable power to the remainder of the instrument.
2. At power up, the microcontroller will drive the beeper for about 1 second.
3. At power up, the microcontroller will reset Shift Register U2. This will cause the following:
The front panel LED's are blanked.
The NIBP pump drive is placed in the off state.
4. When the unit is powered on the microcontroller will communicate with the system CPU. When the
front panel ON-OFF key is pressed, the CPU will store away present operating conditions, then issues a
command to the microcontroller to shut instrument power off. U10-6 is driven low which will remove
power from the remainder of the instrument.
1.2.2 18V boost converter and FET ON/OFF switch
The PWM controller, U301, is configured as an 18V boost-converter. An N-Channel MOSFET transistor,
Q303, is used to switch power to the 12V regulator. As Q303 is configured as a high side switch, it is
necessary to develop a gate voltage of proper magnitude to turn Q303 on. Then, to enable power to the
12V regulator, the following takes place:
1. The microcontroller drives U10-6 high, turning transistor Q302 on.
2. Transistor Q301 is switched on, supplying power to the PWM controller, U301.
3. The boost regulator develops 18VDC, which will switch transistor Q303 On.
On/Off Switch
4
2
u307-6
+
C331
4.7uF
VIN
FDBK
SHTDN
6
2
4
D
VOUT
ERR
1
5
V
1
U307
8
7
3
3
Q303
MTP30N06VL
VBackup
+
TAP
SENS
GND
C332
4.7uF
D
LP2951CD-3.3
D
On/Off Circuit
18V Boost - Mosfet Gate Voltage
U301-7
+Vfuse
HS301
L301
1mH
F303
R305
1
4Amp
6078
Q301
MPSW51A
1
3
1
2
4
7
U301-pwr
6
IDC
IPK
ISWC
Vcc
ISWE
D301
MBR2535CTL
R301
10K
C301
330uF
C302
1uF
Q301-b
U301-ct
+
3
TCAP
COMP
8
D302
BAV99L
U301-sw
1
1
C303
470pf
R302
1.96K
Q302-c
R303
51.1K
R304
100K
3
Q302-B 1
+
Q302
2 MMBT3904L
C339
1uF
C42
.047uF
Vbackup
2
3
(Front Panel Key)
4
5
6
On/Off
(pg 3)
U2-Reset
7
U10
Vss
1
Vdd
(pg 1)
PIC-Data
On/Off-Key
14
D
R22
10K
ClkIn/Osc1/RB5
RB0
Clkout/Osc2/RB4
RB1
Vpp/MCLR/RB3
RB2
TC5/TOCK1
RC0
RC4
RC1
RC3
RC2
(To U2)
D620361-MX10000
13
12
11
PIC-Clk
10
9
8
PIC-audio
2
+18V
2
R306
61.9K
5
U301-comp
+
4
+
GND
3
Battery
2
AC+12V
U301
MC34063AD
3
Heatsink
for D301
R307
4.64K
C304
100uF
Appendix A
1.3
10/14/99
+12V Boost Converter
The +12V boost circuit provides regulated 12VDC. The input to the 12V converter is either battery or
12V from the AC/DC converter. The circuit is configured as a boost PWM using current mode feedback.
The PWM controller is a UC3843A. The controller includes an internal 2.5V, 2% reference, and an
external 5V, 2% reference. Nominal output voltage for the boost converter is Vout = [2.5V*(1 +
173.8K/4.64K)] = 12.1V.
The UC3843A requires 8.5V minimum to power on. The maximum voltage allowed on the switching
transistor, Q305, is 15V. To meet both these requirements, the UC3843A is powered from 12.9V (+18V –
5.1V zener diode D303)
When operating from battery, the converter will run at duty cycles over 50%, which requires slope
compensation for a current mode controller. Slope compensation is achieved by summing in part of the
oscillator signal (pin 4) with the current sense line.
The PWM controller is current limited on a cycle to cycle basis by monitoring the voltage on the Isense
line, U302-5. Current limit is activated when the voltage at the sense line reaches 1V. The nominal DC
voltage at Isense is about 0.5V when operating from battery only, and 0.7V when operating from AC.
Then, current limit is set to 5Amps when Atlas in operating on battery and 3Amps when operating on
AC.
Q303-s
+V
3
R308
17.8K
1
U302-pwr
D303
5.1V
+
U302-fb
R309
4.64K
L302-1
+12V Boost
(12.1V nominal)
+18V
L303
Bead
C335
.047uF
C306
1uF
C310
1000uF
+
L302
22uH
R310
10K
D304
MBRS340T3
3
2
4
U302-sense
Q305
MTP30N06VL
1
3
Q305-g
5
R314
10
ISENSE
R315
196
R312
3.83K
2
Q304-e
Q304
MMBT3904L
R313
1.96K
D312
BAV99L
1
R317
7.5K
2 D312-c
3
AC+12V-fuse
+
Q305-s
RT/CT
OUT
GND
7
1
C308
2200pF
U302-out
VREF
8
U302-ct
10
COMP
14
R311
10K
11
12
1
Vc
VFB
PWR-GND
U302-comp
5VRef
Vcc
3
D304-C
+12V
U302
UC3843A
9
C305
5600pF
C307
.047uF
L305
Bead
Q305-d
C305-1
C309
5600pF
R316
0.1
C311
1000uF
+
C312
1000uF
+
C336
.047uF
C313
330uF
Appendix A
1.4
10/14/99
Battery Charger:
The battery charger is a PWM buck converter. The input to the battery charger is 12VDC from the offline
switcher. The UC3843A, normally a current mode controller, is configured for voltage feedback mode.
The UC3843A has an under-voltage lockout for Vcc<8.5V. The controller operates such that with Vcc
less than 8.5V, the reference out is 0V, and will be at 5V with Vcc>8.5V. Then, the reference out (pin 14)
can be used as an AC-ON detect signal.
The switching transistor for the buck converter is a P-Channel MOSFET (Q308). The output drive of the
controller is the wrong polarity for driving a P-Channel MOSFET in a step down mode. Therefor,
transistor Q306 is added to invert the PWM out signal. Fast turn-on of Q308 is provided when Q306 is
low, fast turn-off is though Q307 (configured as an emitter follower).
The battery charger is a current limited - temperature compensated charger. Current limit is set to
1.5Amps. Current through the 0.1Ohm sense resistor R327 is measured with Diff-Amp U305B. When the
charger current is at 1.5Amps, feedback is controlled by Op-Amp U304A. When the current drops below
1.5Amps, the output of U304A goes low, reverse biasing Diode D308, and feedback will be controlled by
Op-amp U304B.
Battery charge voltage is temperature compensated using Thermistor RT301, a 10K negative temperature
coefficient resistor. Voltage over temperature follows the following charge profile:
Temperature
0C
10C
25C
40C
50C
Voltage
7.05V
7.0V
6.85V
6.7V
6.65V
Thermistor
26.9K
20.7K
10K
5.17K
3.45K
For optimum battery life, the float voltage (25C, full charge) should be set to 6.85V +/- 50mV (6.85V +/0.7%). To accomplish this tight tolerance, charge voltage at room temperature will be adjusted with
potentiometer R328. Nominal charge voltage at room temperature is:
Vcharge = 5V * (1 + RA/RB) where,
5V is the reference in U303.
RA is the series/parallel combination of R335, R336, and RT301 (nominal 3.465K @ 25C).
RB is the series combination of R337and R338 (nominal 936 Ohms)
It is necessary to minimize current out of the battery when the unit is off. To reduce off current, transistor
Q309 disconnects the battery from the battery sense resistors when AC in off. In addition, diode D307 is
added to prevent current from flowing from the battery into the battery current sense circuit, and to the
output of the AC/DC converter.
Appendix A
10/14/99
F301
4Amp
Bat-fuse
Q308
MTP23P06V
AC+12V-fuse
3
1
1
D305
BAV99L
1
C320
.01uF
R332
19.6K
U304-2
5
Current Limit
(1.5 Amp)
R321
27.4K
D308
U303-ct
BAV99L
2
1
1
U304A
MC34072
2
3
U305-pwr
Ref-Batcharge
R333
19.6K
U304-3
C322
.047uF
8
3
R322
10K
7
U305B
MC34072
4
R324
10K
+12V
R341
10K
Ref-Batcharge
AC+12V-fuse
Batt-fb
C321
.01uF
R334
19.6K
R339-2
4
7
U304-6
5
U304-5
R343
10K
R343-1
D309
BAV70L
Q309-3
R336
7.5K
Float Voltage
AC+12V-fuse
R344
10K
ACON
Q310-b 1
1
Bat-Adj
RT301
10K
RT301-1
R337
8.87K
8
U304B
MC34072
6
+
U304-7
R342
19.6K
1
R335
4.32K
-
R340
10K
2
Q309
MMBT3906L3
Ref-Batcharge
Q309-b
R339
19.6K
2
ACON
4
U305-5
3
Q306
2MMBT3904L
1
U303-5
6
Q306-c
8
5
R323 1.96K
U304-1
C316
2200pF
R330
33.2K
2
U303-out
ISENSE
Q306-b
11
Vc
Vcc
12
RT/CT
GND
7
OUT
PWR-GND
R320
7.5K
10
COMP
8
C315
.047uF
33.2K
U303
UC3843A
VREF
R331
U305-6
9
14
VFB
R329
1K
3
+
1
R328
1K
-
3
U303-cp
C338
.047uF
+
Q307-e
R325
1.96K
R319
19.6K
C319
1000uF
D306
MBRS340T3
Q308-g
D307-A
1
C314
.047uF
U303-fb
C319-1
R326
10
Q307
MMBT3904L
3
2
R318
10K
Q308-d
2
4
C318
330uF
+
Input to 5V and
3.3V linear
regulators.
3
C337
.047uF
D307
MBRS340T3
R327
0.1
t
L306
Bead
C340
.047uF
L304
47uH
+
F302-2
AC+12V
To Linear Regulators
Battery
Charger
F302
4Amp
-
Battery
3
Q310
2MMBT3904L
R338
2
R345
10K
3
1K
1.5
Linear Regulators – 5VDC and 3.3VDC
1.5.1 5V regulator
A series pass 5V regulator is built using transistor Q312 and op amp U305A. The reference for the
regulator is the 5V reference from the PWM control IC U302. The output of the 5V regulator is turned off
when the unit is turned off. When the 18V-boost circuit is shut down, power is removed to U302, and then
the U302 reference is driven to 0V. Setting the reference to 0V will cause op amp U305 to turn the series
pass transistor Q312 off.
When operating from AC, transistor Q310 is turned on, which will turn transistor Q311 off. Power to the
5V regulator is then provided through Diode D310 from the output of the battery charger circuit. Note that
this voltage tap is before the current sense resistor, then load current on +5V does not affect the battery
charger current limit circuit. When AC is removed, the AC-On signal goes low, and Q310 turns off. The
gate of Q311 is then pulled up to 11.4V (12V – Vdiode). Transistor Q311 then turns on, and the 5V
regulator is powered from the battery.
1.5.2 3.3V Regulator
3.3VDC is derived using a three terminal regulator. The output of the 5V regulator is used to power the
3.3V regulator. The 3.3V regulator does not have an independent shutdown, but powers down as the 5V
regulator shuts down.
Appendix A
+Vpump
D310
MBRS340T3
HS302
Heatsink
forQ312
Q312
4
2
3
MTP30N06VL
C323
100uF
+
Q311
MTP30N06VL
6078
3
+5V
Q312-g
1
R346
100
U306
LF33CV
R348
10K
C324
1000pF
+12V
R341
10K
1
R347
10K
U305-2
4
U305-1
2
1
U305A
MC34072
3
+3.3V
+
C329
100uF
C330
.047uF
3
D
D
D
D
R349
10K
U305-3
5VRef
C326
.01uF
8
D309
BAV70L
2
+
+5V Linear
Low
Dropout
R343-1
1
OUT
2
R343
10K
-
R342
19.6K
IN
C328
.047uF
C324-2
To Q309
R350
10K
3
D311
BAV70L
R344
10K
3
Q310
2MMBT3904L
Q310-b 1
ACON
C325
100uF
+
1
4
2
GND
Batt Charger input
From Batery
Charger Circuit.
Battery
10/14/99
+12V
1
C327
.047uF
3
AC+12V-fuse
2
R345
10K
Patient Isolated Circuits
2
2.1
Isolated Power
Isolated power is provided to the ECG, Temperature, Respiration and SpO2 circuits using an Isolation
Transformer, T401. The power supply is a PWM controlled flyback converter. The PWM controller is an
LM3524. Output voltage f+V is sampled and compared with the reference voltage s+5V. An error voltage
is generated, and this voltage returned via opto U410. Voltage f+V is regulated to 7.4V. Additional taps
on transformer T401 provide f-V (-7.4V). The switcher operates at 76.8KHz, controlled by a sync signal
from the CPU board. The power supply is synchronized with the A/D converter used to digitize ECG,
Temperature and Respiration signals.
Isolation
Barrier
Patient
Isolated
Circuits
+12V
Grounded
Circuits
D401
MBRS130T3
+
f+V
C412
10uF
T401-1
C409
470pf
C405
100uF
C402
.047uF
R419
215
+
+12V
T401
C409-1
TP449
1
D
E
E
S
U402-ref
C414
.047uF
T401-8
TP466
TP453
Q401
MTD3055V
4
1
R407
10
TP454
3
4
2
D405
BAV99L
2
1
U402-e
D403
3
IsoXfmr
T401-4
f-V
S
f+V
+5V
R422
10K
8
TP459
U401-3
3
U401-2
2
U410
4N25
R403
1K
+
1
-
U401A
LM358
U401-1
1
iso401-a
C408
.01uf
R404
196K
R402
10K
S
C408-2
R417
10K
S
opto-fb
2
S
s+5V
R411
5.11K
iso401-b
4
TP462
S
R401
10K
6
5
4
R423
5.11K
TP463
U402-sen
R408
100
Q401-s
S
TP464
R409
5.11K
1
R406
0.2
MBRS130T3
+
C404
.047uF
2
Q402
MMBT3906L 3
12
11
13
14
TP458
C410
.01uF
4
5
VREF
SHTDWN
CA
EA
CB
EB
+SENSE
-SENSE
OSCOUT
RT
CT
V+
VCOMP
LM3524DM
TP451
C420
.047uF
16
10
3
6
7
FE-Pwr-Sync
U402-rt
U402-ct
TP455
TP457
2
1
9
U402-1
C407
100uF
TP456
U402
VIN
8
3
15
2
C433
470pf
GND
R419-2
R405
215
Q402-e
S
5
Q401-g
S
TP450
8
f+V
C411
2200pF
R410
7.5K
Appendix A
10/14/99
From the raw f+V and f-V voltages, the following supplies are generated for the various patient isolated
circuits:
1. iso+5dig: Regulated 5V supply. This voltage is used to power the opto-isolators, digital control logic,
and 5V digital supply for the Nellcor SpO2 board.
2. s+5V: Regulated +5V supply: Analog 5V supply for the Nellcor SpO2 board. This is also the
reference voltage used in the regulation of f+V.
3. f+5V: Regulated +5V supply: Filtered and buffered from s+5V, this voltage is used for the A/D
reference.
4. s-5V: Regulated –5V supply: Analog –5V supply used for the Nellcor SpO2 board.
5. fVcc: LC Filtered voltage, derived from f+V. This voltage is used to power the Op-Amps used in the
ECG, Respiration, Temperature, and A/D circuits.
6. fVee: LC Filtered voltage, derived from f-V. This voltage is used to power the Op-Amps used in the
ECG, Respiration, Temperature, and A/D circuits.
U407
78L05
1
iso+5Vdig
GND
GND
6
3
2
GND
OUT
GND
IN
C430
.047uF
C403
.047uF
+
Isolated Supply Voltages
Regulation and Filtering
C406
100uF
7
8
f+V
S
S
S
S
VIN
FDBK
SHTDN
6
2
4
VOUT
ERR
s+5V
C415
1uF
+
TAP
SENS
GND
f+V
R416
10K
TP460
U401-5
S
S
U403
LP2951C
S
5
6
C418 +
4.7uF
+
U401B
LM358
7
R415
100
TP461
U401-7
f+5V
C416
.047uF
4
S
1
5
8
U403-fb
8
7
3
C401
.047uF
5
C424
.047uF
1
OUT
s-5V
S
U404
79L05
S
C417
680pF
TP465
S
1uF
S
S
L401
S
C421
GND
IN
IN
IN
IN
+
2
3
6
7
f-V
TP452
220uH
fVcc
+
C434
10uF
+
S
C431
10uF
S
L402
TP468
220uH
fVee
+
2.2
+
S
C435
10uF
C432
10uF
S
A/D Circuits
2.2.1 PWM A/D
A pulse width modulator is used as an A/D converter. The PWM runs at a 1.2KHz rate, synchronized by
the A/D sync signal. A/D sync is low for 52.1uSec, high for 781.25uSec. Using the values shown, the
integrator will ramp down 10.01V, and ramp up 25V. The voltage at the integrator output (U601-1) is
limited to about 5V [5V*(73.2/83.2) + Vdiode)]. Then, the integrator starts at 5V and ramps linearly
down to –5V.
The analog input voltage to be digitized and the integrator output are the inputs to a comparator. The
output of the comparator is low at the start of an A/D cycle, and switches high as the integrator ramp
drops below the input voltage being digitized (see the timing diagram below). A/D conversion is
accomplished by measuring the width of the PWM output signal. The A/D timer runs at 25.175MHz, then
the A/D resolution is about 21000 counts (over 14 bits). Hysteresis is added to the comparator to avoid
oscillations during switching. Note that since the output of the comparator is low at the start of the A/D
cycle, a resistor divider is formed at the comparator input. This divider reduces the Analog-In signal by
0.75% [464K/(464K+3.48K)].
10/14/99
U602-5
fVcc
8
C603
680pF
R602
73.2K
3
+
2
-
R603
46.4K
4
f+5V
E
1
U601A
MC34072
U602-3
U601-1
R606
3.48K
5
6
8
U601-3
f+5V
iso+5Vdig
fVcc
2
+
3
-
f+5V
R608
1K
14
7
U602
LM311
9
8
PWM-Out
7
U604D
74HCT04
4
1
R601
10K
R607
464K
U602-7
R605
3.48K
Analog In
U602-2
Appendix A
E
U601-2
14
11
10
fVee
U604-10
R604
10K
7
3
A/D-sync
C601
U604E
74HCT04
D601-2
E
1000pF
2
PWM
A/D
Converter
fVee
E
1
D601
MMBD1503A
52uSec
Integrator
Input
833uSec
(U604-10)
+5V
Comparator
Inputs
Analog In
-5V
PWM-Out
(U604-8)
PWM-timer
2.2.2 A/D Multiplexer
A 16-channel multiplexer (formed by two 8-channel multiplexers) is used to select the analog signal to be
digitized. Control of the multiplexer is through a serial communication channel from the main CPU. The
following signals are digitized:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Ground
f1.24V
ECG
V Buffer
LL Buffer
LA Buffer
RA Buffer
RL Output
Patient Temp
Respiration
Resp Leads Off
Ground Reference for digitized signals, used in calibrating the A/D converter
Reference Voltage, used in calibrating the A/D converter
Amplified ECG signal
Output of the V-lead buffer, used to determine leads off
Output of the LL-lead buffer, used to determine leads off
Output of the LA-lead buffer, used to determine leads off
Output of the RA-lead buffer, used to determine leads off
Output of the RL amplifier
Analog voltage representing patient Temperature
Amplified Respiration signal
DC impedance for respiration, used to determine respiration Leads off.
Appendix A
10/14/99
9
10
11
6
4
2
5
1
12
15
14
13
Resp-LdsOff
An-Resp
Patient-Temp
X7
X6
X5
X4
X3
X2
X1
X0
U609
4051
MuxB
X
E
VSS
VEE
C
B
A
INH
X7
X6
X5
X4
X3
X2
X1
X0
VDD
4
2
5
1
12
15
14
13
vRL
f+1.24V
RA
LA
LL
V+
Analog ECG
2.3
9
10
11
6
7
U603
4051
MuxA
X
3
Analog In
16
Mux A
3
fVee
8
fVcc
E
7
16
E
VEE
C
B
A
INH
VDD
E
Mux-A/D-C
Mux-A/D-B
Mux-A/D-A
Mux B
VSS
8
fVee
fVcc
Serial Communication
Serial data is transmitted to the isolated circuits through Optical Isolators. The following signals are
transmitted from the CPU board to the isolated circuits:
1. FE-Serial-Data:
2. FE-Data-Clk:
3. A/D Clk:
Serial Data transmitted from the CPU board to the Isolated circuits.
Serial Data Clock.
Serial Data latch. Also used as clock for PMW A/D converter.
Serial Data is converted to a parallel format using Shift Register U605 and U606. The following Data is
transmitted from the CPU board to the isolated circuits:
1. Mux-A/D-A
2. Mux-A/D-B
3. Mux-A/D-C
4. Mux-Lds-A
5. Mux-Lds-B
6. Mux-Lds-C
7. Sw-RLD-RA
8. Sw-RLD-LA
9. Sw-RLD-LL
10. Sw-RLD-RL
11. MonBW
12. MuxB
13. Sw-RLD-V
14. Sw-RespReset
15. SpO2Reset
16. Resp-Off
Control bit A for A/D Mux
Control bit B for A/D Mux
Control bit C for A/D Mux
Control bit A for ECG Lead Select Mux
Control bit B for ECG Lead Select Mux
Control bit C for ECG Lead Select Mux
Switch Reference Electrode to RA
Switch Reference Electrode to LA
Switch Reference Electrode to LL
Switch Reference Electrode to RL
Select 0.5Hz ECG high pass pole (used to restore ECG baseline).
0 – Select A/D Mux B; 1 - Select A/D Mux A
Switch Reference Electrode to V
Switch Respiration High Pass Pole, used to restore baseline
Reset Nellcor SpO2 board
Turn respiration off when respiration not used (shuts down drive signal).
Appendix A
10/14/99
iso+5Vdig
U605
Resp-Off
SpO2-Reset
Sw-RespReset
Sw-RL-V
MuxB
MonBW
SW-RLD-RL
SW-RLD-LL
15
1
2
3
4
5
6
7
QA
QB
QC
QD
QE
QF
QG
QH
9
VCC
SER
SRCLK
SRCLR
RCLK
G
QH
GND
16
14
FE-Serial-Data
11
10
FE-Data-Clk
12
13
A/D-Clk
8
74HCT595
D
U605-out
U606
SW-RLD-LA
SW-RLD-RA
Mux-Lds-C
Mux-Lds-B
Mux-Lds-A
Mux-A/D-C
Mux-A/D-B
Mux-A/D-A
15
1
2
3
4
5
6
7
9
QA
QB
QC
QD
QE
QF
QG
QH
VCC
SER
SRCLK
SRCLR
RCLK
G
QH
GND
E
16
14
11
10
12
13
8
74HCT595
D
2.4
E
Signal Isolation
Optocouplers are used to electrically isolate signals. The following signals are transmitted across the
isolation barrier through the optocouplers:
1. SpO2 out:
Opto U411
2. Serial Data:
Opto U613
3. Serial Data Clock:
Opto U612
4. ADC Clock
Opto U611
5. PWM A/D data
Opto U610
6. Respiration Clock
U710
2.5
SpO2 serial data, waveform and status information.
Data from the SpO2 board to the CPU board.
Serial Control data for isolated circuits.
Data from the CPU board to isolated circuits.
Data clock for serial control data.
Clock from the CPU board to isolated circuits.
Clock for PWM A/D converter, also used to latch control shift registers.
Clock from the CPU board to isolated circuits.
A/D Pulse width data.
Pulse width data from isolated circuits to CPU board.
Clock for Respiration drive circuit (same signal as power supply sync)
Clock from the CPU board to isolated circuits.
ECG Circuits
2.5.1 Overview
The front end will meet all applicable AAMI standards. Atlas provides a 5-wire front end, and will be
compatible with both a 3-wire and 5-wire cable. Monitor (0.5Hz to 40Hz) Extended (0.05Hz to 100Hz)
bandwidth will be provided. The ECG amplifier always transmits 0.05Hz to 100Hz data to the CPU board
(unless in baseline restore mode), additional filtering for Monitor Bandwidth is implemented in software
2.5.2 Defib Protect, RFI Filtering
The ECG lead set includes a 1K resistor for current limiting. The neon bulbs act as a voltage clamp,
limiting voltage to about 100V. Neons are chosen for their low capacitance and high DC isolation. Series
resistors and diode clamps are used as a second set of protection for the front-end amplifiers. Resistors
R506, R507 and Diodes D506, D507, are used to reverse bias the lead clamp diodes (D501 to D505). Two
passive RC filters are used to reduce susceptibility to RFI and ESU.
Appendix A
10/14/99
Defib Protect
RFI Filtering
R506
10K
D506
5.1V
fVcc
+clamp
3
-clamp
1
1
R507
10K
fVee
1
3
2
R508
10K
3
R501
51.1K
D501-3
RA
N501
LAMP NEON
To Buffer Amp
C501
220pF
S
E
D507
5.1V
D501
MMBD1503A
C506
220pF
E
E
2.5.3 Front End Buffer - 1st Gain Stage
Gain of the first stage is 9.26 (1+10K/1.21K). Bias current for each input buffer is set to 1.25V/44Meg =
28nA (VldsOff = 1.25V). On a leads-off condition, the two 22Meg resistor drives the input of the buffer to
1.25V (VldsOff), and the amplifier output saturates high (at about 5.5V). The voltage out of each buffer is
monitored to detect a leads-off condition.
Input Buffers
Gain = 9.26
8
fVcc
U501-3
In
3
2
1
Out
4
R509
22Meg
+
U501A
MC34002
R517
10K
0.1%
C510
220pF
R509-1
R557
22Meg
VLdsOff
fVee
U501-2
R518
1.21K
0.1%
E
2.5.4 Wilson Network - Lead Select Mux
A 5 wire front end must be able to render the following vectors:
I
LA - RA
II
LL - RA
III
LL - LA
aVR
RA - 1/2*(LA + LL)
aVL
LA - 1/2*(RA + LL)
aVF
LL - 1/2*(LA + RA)
V
V - 1/3*(RA + LA + LL)
A resistor divider network (Wilson Network) is used to create the terms above. These vectors are then
switched though the two Mux’s, into the differential amplifier.
Appendix A
10/14/99
Lead Select
RA
RA
LA
aVR
aVL
aVF
V-
RA
10K
R530
10K
R531
10K
LA
R532
10K
R533
10K
X0
X1
X2
X3
X4
X5
X6
X7
6
11
10
9
E
U505
4051
3
X
INH
A
B
C
VSS
R529
13
14
15
12
1
5
2
4
VDD
Wilson
Network
16
fVcc
7
VEE
8
LL
LL
RA
LA
LL
V+
V+
10K
R536
10K
R537
10K
16
13
14
15
12
1
5
2
4
X0
X1
X2
X3
X4
X5
X6
X7
6
11
10
9
E
U506
4051
VDD
LA
10K
R535
fVee
E
fVcc
X
INH
A
B
C
VSS
R534
mux-
mux+
7
8
VEE
3
fVee
E
2.5.5 Differential Amplifier and Slew rate limit
A traditional 3-opamp gain stage (U507 and U508) is used to construct the differential amplifier. The
topology is modified slightly with the addition of slew rate limiting (U509). The ECG signal is slew rate
limited to about 100V/sec. This is done to minimize distortion of the ECG trace in the presence or large
pace pulses. The differential outputs of this stage are used as input to the RLD amplifier.
Diff Amp and Slew Rate Limit
DC Gain = 1
fVcc
8
C544
1000pF
mux-
3
+
1
diffR544
10K 0.1%
4
2
U507A
MC34002
R546
10K 0.1%
U508-3
C543
.047uF
fVee
u509-4
fVcc
+
7
diff+
2
+
U507B
MC34002
2
1
-
4
U508A
AD712
4
6
fVcc
R565
121K
3
-
1
+
fVee
fVee
C542
220pF
E
SingEnd Out
U509
LMC7101
5
5
3
4
mux+
R545
10K 0.1%
u501-8
8
8
fVcc
fVee
u508-2
R547
10K
0.1%
C545
1000pF
E
E
2.5.6 Right Leg Drive Amplifier
The right leg amplifier performs two functions. First is to provide bias current to the input buffer
amplifiers. Second, to reduce 60Hz interference (increase CMR). Patient Common mode signals are
amplified and inverted, and this resultant signal used to drive the patient. Gain of the RLD amplifier at
60Hz is maximized, while keeping the system gain stable. The RLD output is mux’d to the appropriate
wire depending on the chosen input vector. For example, when looking at Lead I (LA-RA), the RLD
signal is switched to the LL buffer.
Appendix A
10/14/99
RLD Mux
U504
Sw-RLD-RL
14
16
To LL
Sw-RLD-LL
11
9
To LA
Sw-RLD-LA
6
8
To RA
Sw-RLD-RA
13
4
5
fVcc
fVee
S1
IN1
D1
S2
IN2
D2
S3
IN3
D3
S4
IN4
D4
2
RLD Amp
15
10
U503A
MC34002
R516
10K
RL-mux
7
R525
10K
+
1
-
3
Diff+
2
E
U503-2
TP551
V+
VGND
R527
1K
DG202CSE
E
fVcc
8
To RL
4
3
1
fVee
R526
10K
Diff-
C514
0.1uF
C514-2
R528
51.1K
TP552
2.5.7 High Pass and Gain Stage
The signal from the output of the differential amplifier is AC coupled before a final stage of amplification.
The High Pass Pole is set to less than 0.05Hz (a 3.3 second time constant). Large DC signals are
sometimes present, for example, following a Leads Off condition. In order to quickly restore the baseline,
a transistor switch (Q504,Q505) is used to change the AC pole time constant to 0.33 seconds. Op Amp
U508 provides the final amplification prior to the A/D converter.
High Pass (0.05Hz or 0.5Hz)
2-pole low pass
R550
19.6K
ecg-hp
Diff-out
U508-5
C516
.047uF
R549
110K
5
+
6
4
R548
1Meg
Gain Stage
Gain = 74
8
C515
3.3uF
fVcc
E
Q504-d
U508B
AD712
An-ECG
R551
73.2K
C517
.01uF
fVee
U508-6
3
E
7
R552
1K
Q504
2N7002
1
E
R553
100K
22
Q504-s
1
Q504-g
Sw-MonBw
3
Q505
2N7002
E
2.6
Temperature Amplifier
The temperature option of Atlas is designed to operate with YSI-400 series probes. This probe has a
negative temperature coefficient, R@30C = 1815Ohms, R@40C = 1200Ohms. The temperature amplifier
is configured as a non-inverting gain stage. The positive input to the amplifier is a 1.25V reference. The
output of the temperature amplifier is V = Ref*(1+Rfb/Rthermistor).
The A/D converter will digitize the An-Temp input, along with the reference voltage and ground. The
gain of the A/D can be calibrated from the reference voltage measurement, and any drifts in the reference
voltage or A/D gain are compensated.
Appendix A
fVcc
Temperature
Amplifier
8
R624
51.1K
U608-3
f+1.24V
3
2
R626
1K
+
1
U608-1
Patient-Temp
4
C633
.01uF
10/14/99
U608A
AD712
E
fVee
C634 .01uF
-Clamp
R625
1K
+Clamp
D602
BAV99L
R627
1
1.21K
2
0.1%
3
C635 .01uF
J601
2
1
CON2
Temp-In
C636
2200pF
Temperature
Thermistor
E
2.7
Impedance Respiration
2.7.1 Overview
Impedance respiration is accomplished by measuring a change of resistance across the patient’s chest
during breathing. The RA and LA electrodes (Lead I) are uses to acquire the respiration signal. A current
source is driven through the patient, and the voltage developed across the patient is measured. The change
in resistance caused by respiration is small, in the order of 1 Ohm. This small change must be measured
on top of a large baseline impedance, typically 100 to 1000 Ohms.
2.7.2 Signal Source – Current Drive
An AC current source is used as the input signal, a 34.8KHz square wave. The Power supply sync signal,
at 76.8KHz, is transmitted across opto isolator U710. Flip Flop U701, configured as a divide by 2,
converts this signal to a 34.8KHz. Current through the patient is about 150uA Pk-Pk, set by the output of
U710 (5V) and the circuit series impedance, 69K including cable resistance. The impedance of the patient
is small (<2K) compared to the series impedance and has minimal affect on the magnitude of the drive
current. Diode clamps are used to protect the respiration circuits in the event of a Defibrillation pulse.
f+5V
-Clamp
+Clamp
Respiration
Drive
Circuit
+
C719
4.7uF
D701
MMBD1503A
E
2
3
Right-Arm
D701-3
R703
31.6K
C701-1
4
C701
1000pF
RespDr+
5
Q
VCC
D
PR
1
R701
1.96K
GND
2
C702
1000pF
3
R702
1.96K
Left-Arm
3
U701A
74HC74
Resp-Clk
7
1
D702
MMBD1503A
1
Q
CL
CLK
6
14
2
D702-3
E
R704
31.6K
C702-1
Resp-Off
RespDr-
Appendix A
10/14/99
2.7.3 Differential Amplifier and Peak Detector
The AC current driven though the patient develops a voltage across the RA to LA electrodes. This signal
is measured and amplified with the Differential Amplifier formed by U702A/B. This amplifier converts
the differential voltage across the patient to single ended signal, with a gain of 16.8. Inverting this signal
(U703A), and summing the original signal and inverted signal through the dual Diode D705 then forms a
synchronous peak detector. Then, the voltage on C711 is the DC resistance seen across the RA to LA
buffer. This baseline resistance is digitized, and if the signal is too large (>2.5K), a Respiration Lead Fault
message is displayed. Note that this circuit measurement includes the two 1K resistors in the EKG cable
set. This 2K resistance is subtracted in software before determining a leads off condition.
-Clamp
+Clamp
D703
MMBD1503A
1
fVcc
Right-Arm
D703-3
Resp-DC
C720
.047uF
8
C706
330pF
3
R707
1.96K
R724
196K
Respiration
Diff Amp
2
U702-3
3
+
2
-
U702-1
1
U702A
AD712
4
R709
464K
R711
15.8K
R715
3.16K
R716
3.16K
D705
MMBD354LT1
E
1
3
U702-2
D704-3
U702B
E
AD712
5
+
6
-
7
R710
464K
1
R717
3.16K
E
C711
0.1uF
E
U703A
AD712
8
8
U702-5
D703-1
4
U703-2
3
fVcc
C707
330pF
U702-7
fVcc
R713
1K
4
Left-Arm
2
3
1
R708
1.96K
2
+
R712
1K
D704
MMBD1503A
D605-C
2
fVee
-
fVee
E
fVee
U702-6
E
R714
15.8K
E
2.7.4 Gain and Filtering
The DC content (baseline resistance) of the respiration signal is not needed, so the signal is next AC
coupled, and additional gain applied before digitization. Low pass filtering is performed at this stage to
reduce high frequency noise outside the respiration signal bandwidth. A baseline-reset circuit (transistor
switch Q701) is used to quickly restore the high pass pole if excessive DC voltage is present, for example
following a Leads-Off condition.
Appendix A
fVcc
B.W. = .06Hz to 16 Hz
R720
100K
Resp-AC
U703-5
5
6
R719
51.1K
C713
0.1uF
Q701-d
7
-
U703B
AD712
fVee
U703-6
E
E
2
Q701
MMBF4393L 1
+
An-Resp
4
R718
825K
Gain =1000
B.W. = 10Hz
8
C712
3.3uF
D605-C
10/14/99
R721
316K
R722
316
3
E
Q701-g
C714
.047uF
E
D706
MMBD1503A
2
Resp-Reset
3
1
R723
1Meg
E
2.8
SpO2 Circuits
The SpO2 transducer senses oxygen content of functional arteriolar hemoglobin through the use of light
(red and infrared) passed through the sensor. The reflective characteristics of hemoglobin at the
wavelengths used allow the pulse oximetry circuits to obtain changing saturation levels. This data is then
processed to obtain the oxygen saturation percentage and pulse rate.
Nellcor or Nonin Medical provides the SpO2 board (Nonin only for the model 621). The SpO2 board
includes amplifiers and processing, and transmits serial data to the CPU board (Waveform data, SpO2%,
and pulse rate). The Atlas monitor provides electrical isolation (power and data) for the SpO2 board. Note
that you must use Nonin probes with the Nonin SpO2 board, and Nellcor probes with Nellcor SpO2 board.
3
3.1
Non-Isolated circuits - A/D and Mux
A/D – grounded circuits
The A/D converter is designed by building a pulse width modulator (PWM) and a timer circuit. The PWM
runs at a 1.2KHz rate, synchronized by the A/D sync signal (NIBP-ADC-Clock). A/D sync is low for
52.1uSec, high for 781.25uSec. Component values are selected such that the integrator will ramp down
4.7V, and ramp up 7.83V. The voltage at the integrator output (U601-1) is limited to about 5V
[5V*(73.2/83.2) + Vdiode)]. Then, the integrator starts at 5V and ramps linearly down to 0.3V.
The analog input voltage to be digitized and the integrator output are the inputs to comparator U210. The
output of the comparator is low at the start of an A/D cycle, and switches high as the integrator ramp
drops below the input voltage being digitized (see the timing diagram below). A/D conversion is
accomplished by measuring the width of the PWM output signal. The A/D timer runs at 25.175MHz, then
the A/D resolution is about 21000 counts (over 14 bits). Note that since the output of the comparator is
low at the start of the A/D cycle, a resistor divider is formed at the comparator input. This divider reduces
the Analog-In signal by 0.75% [464K/(464K+3.48K)].
Appendix A
10/14/99
R235
3.48K
NIBP
PWM A/D
Converter
Analog-Input
U209-Out
R237
464K
U210-2
P+5V
C225
.047uF
P+5V
R230
10K
P+12V
U208-3
1
2
C219
.047uF
3
A
+
A
A
R232
10K
U207A
74HCT00
+
2
1
3
6
R234
3.48K
P+5V
A
+
-
7
U210-7
14
4
6
U210
MAX941
5
7
NIBP-PWM-ADC
U210-3
U208A
MC34072
A
A
U208-2
14
1
A
C220
3
R233
3.48K
.01uF
3
2
7
NIBP-ADC-Clock
U208-1
C224
1000pF
U207B
74HCT00
4
C218
4.7uF
A
8
R231
73.2K
5
4
C221
.047uF
D201-C 2
PWM A/D
Converter
1
D201
MMBD1503A
A
U207-3
52uSec
Integrator
Input - f=1.2KHz
781uSec
(U207-3)
+5V
Comparator
Inputs
Analog In
0.31V
PWM-Out
(U207-6)
PWM-timer
3.2
A/D Mux – grounded circuits
Analog signals are switched to the A/D converter through MUX U209. Control of the multiplexer is
through a serial communication channel from the main CPU. The following signals are digitized:
12.
13.
14.
15.
+5V/2
SafetyPres
PrimaryPres
P.75V
16. P4.25V
17. Print-Temp
18. BattVoltage
19. BattCurrent:
4
4.1
Sampled version of the 5V supply. Used to verify A/D operation.
Safety Pressure Transducer
Primary Pressure Transducer
Reference voltage for A/D calibration.
0mmHg pressure for Primary Transducer.
Reference voltage for A/D calibration.
300mmHg pressure for Primary Transducer.
Printhead Temperature, used to compensate printer strobe width.
Battery Voltage, used to warn of low battery condition.
Battery Charger Current, used only in service mode verification.
NIBP Circuits
Overview - Safety:
Two pressure transducers are used, a primary and safety transducer. The primary is used to make all BP
measurements. Hardware circuits monitor the output of the primary transducer, looking for overpressure
faults. In addition, Software monitors the digitized outputs of the primary transducer, and detects
overpressure faults. The following overpressure faults are detected in software (monitored once per
second):
Appendix A
1.
2.
3.
10/14/99
>=10mmHg pressure for 295 seconds
>=15mmHg pressure for 175 seconds
>295mmHg pressure for 0.5 seconds.
Software detected overpressure faults are considered application faults. The user is warned of a fault with
an audible alarm and a ‘Check blood pressure cuff’ message on the CRT display. NIBP is not disabled for
this type of fault. In the event of a fault, the drive signals to the NIBP pump and valve are opened.
Two hardware faults are detected, pressure over 330mmHg (nominal trip point 314mmHg, and pressure
over 15mmHg for three minutes (13.3mmHg nominal trip point). These faults are considered more serious
(since software should have detected and corrected this condition). The user is notified with a ‘BP
SYSTEM FAULT’ message, and NIBP is disabled. A redundant safety transistor is opened to ensure the
NIBP pump is off and the valve is open.
The primary and safety transducer outputs are continuously digitized. The outputs of the transducers are
checked vs. each other, and if they disagree, an ‘NIBP Fault Message’ is declared and the NIBP system is
disabled. The outputs of the transducers are linearly proportional to the supply voltage (supply current for
the safety transducer). The transducers use unique reference voltages to ensure that a fault in one
reference will not cause an equivalent gain error in both transducers.
The A/D also has redundant checks. Two reference voltages (derived from the primary transducer
reference supply) are measured, and the A/D gain and zero is checked. In addition, a unique reference is
digitized, and compared vs. expected results. An error in any of these A/D measurements will again cause
an ‘NIBP Fault Message’, and the NIBP system will be disabled.
4.2
Primary Transducer - Amplifier:
The primary pressure transducer is a fully calibrated and compensated transducer with built in voltage
amplification. The output of the transducer is proportional to the supply voltage. With a 5V supply, the
output of the transducer is:
0mmHg = 0.5V.
300mmHg = 4V.
Op amp U204A is used to level shift the output of the transducer such that the nominal voltage for
0mmHg is set to 0.75V. The CPU monitors the digitized zero pressure voltage, and any offset is corrected.
This correction comes from the summation of an error correction signal through op amp U204B. The CPU
will output a pulse width modulated signal at 76.8KHz. This signal is RC filtered to provide ad DC
voltage at U204-5. This signal can adjust the offset seen at the A/D converter by +/-20mmHg.
Appendix A
10/14/99
P+5V
C226
.047uF
L202
Primary
Transducer
Bead
A
0mmHG = 0.5V
300mmHG = 4.0V
P201-pwr
C232
.047uF
R236
3.83K
3
A
R212
56.2K
2
Gain
and
Comp
P201-Out
P+12V
C206
.047uF
6 P201-6
A
U204-3
1
3
2
A
+
1
U204A
MC34072
+3.3V
R244
21.5K
R216
19.6K
6
R215
100K
+
A
4.3
5
C207C208
1uF 1uF
A
R217
5.62K
C228
.047uF
A
7
-
R218
23.7K
U204B
MC34072
+
A
PrimaryPres
C231
.01uF
+
4
PWM D/A
76.8KHz
U204-5
C207-1
A
U204-2
8
R214
10K
NIBP-Offset-DAC
R213
237K
P+12V
Zero Adjust
+/-20mmHg range
R219
1.96K
U204-1
4
A
A
8
C227
680pF
P201
XFPM-050KPGR-P1
C209
.047uF
A
U204-7
P+.75V
Safety Transducer - Amplifier
The safety transducer is compensated for temperature drift, but gain and zero are not calibrated. The
safety transducer does not include built in voltage amplification. The safety transducer output is a
differential voltage, proportional to the supply current through the device.
The initial accuracy of the safety transducer is very loose, in the order of +/-50%. However, the drift over
time and temperature is very good. Then, it is necessary to calibrate the output of the safety transducer.
This is done my measuring a know pressure, measuring the output of the safety transducer, and storing
calibration constants in NVRAM. A two-point calibration procedure is used. Calibration is done at the
factory, and can be recalibrated in the field if necessary.
4.3.1 Current Source:
Op amp U205A is configured as a current source for the Pressure Transducer, with the current through
the transducer set to 1.5mA. Nominal gain for the transducer is 300mmHg = 75mV.
4.3.2 Differential Amplifier and Offset Centering:
The output of the safety transducer is a differential voltage, with a nominal gain of 0.25mV/mmHg, and a
zero pressure offset voltage of +/-25mV. The A/D converter has an input voltage range of 0.5V to 5V. It is
necessary to both add both signal gain and offset centering to the transducer output before digitization.
Op amp U206A/B is configured as a differential amplifier, with a voltage gain of 22.5. The output of the
differential amplifier is offset by 1.2V (U205B).
Appendix A
10/14/99
P+12V
P+12V
C216
.047uF
Safety
Transducer
C211
A
A
8
3
3
P202-2
1
2
R227
5.11K
+
1
U205A
MC34072
U206A
MC34072
2
P202
FPNS-07PGR
A
C212
680pF
A
1
3
-
SafetyPres
R223
21.5K
C214
.047uF
C217
.047uF
A
U206-2
P+12V
R224
1K
6
8
+
U206-1
-
4
2
+
P202-Out+
4
U205-3
TP226
8
.047uF
P202-Out-
5
6
5
P202-5
7
U206-7
U206B
MC34072
4
R220
806
+
R225
1K
A
5VRef
A
P+12V
R221
3.16K
R226
21.5K
C215
.047uF
8
Zero
Offset
5
6
R222
1K
A
4.4
7
U205-7
U205B
MC34072
4
C213
.01uF
+
A
A
Hardware Overpressure:
The output of the primary transducer is monitored for two overpressure conditions; pressures in excess of
13.3mmHg (nominal) and 314mmHg (nominal) are detected. These error conditions are transmitted to the
gate array on the CPU board, and if the error conditions are present for a long enough time period, a fault
message is displayed, and NIBP is disabled (see above for safety performance operation).
The output of the Primary Transducer drives the two comparators U203A/B. The comparison voltage is
derived through a resistor divider chain from a 5V regulator (U201). This regulator is the supply voltage
for the primary transducer, and sense the primary output is proportional to the supply voltage, tolerance
errors in the regulator are not critical.
R207
464K
L201
220uH
+3.3V
C205
P+12V
+12V
P+12V
PrimaryPres
+
U201
78L05
OUT
1
2
GND
C202
4.7uF
U202-3
A
3
2
R203
3.32K
A
+
1
A
4
U202A
MC34072
C223
.01uF
5
6
A
+
7
U202B
MC34072
4
R205
750
A
A
R210
464K
+3.3V
A
R211
1.96K
R209
1K
8
U202-5
NIBP-Overpressure
U203A
LM393
P+12V
-
P+12V
R204
150
A
1
-
P+4.25V
A
C204
.047uF
+
.047uF
A
A
C222
.01uF
P+12V
8
GND
GND
GND
+
R202
174
7
6
3
2
C201
.047uF
C203
A
8
U203-2
3
4
IN
U203-3
8
8
R201
576
A
R208
1.96K
.047uF
R206
1K
P+.75V
U203-5
5
U203-6
6
+
7
-
U203B
LM393
4
C229
10uF
P+5V
A
NIBP-15mmHg
Over Pressure
Fault Circuit
Appendix A
4.5
10/14/99
Pump and Relay Drive:
+Vpump
5
6
+12V
+5V
7
8
Two independent dual transistor switches, Q202 and Q203 control the pump and valve. Q202 is
controlled by logic circuits on the CPU board, and is normally in the on state. Q202 is only opened in a
fault condition (over pressure, A/D calibration error, or transducer mismatch). Once a fault is detected,
Q202 will remain open until power is cycled. Under normal operation, dual transistor Q203 is used to
switch the pump on and close the valve. The pump-on and valve-close commands are controlled by
software. Note that the valve is normally open. Then, in the case of no power, the valve will be in the open
state.
Q202
MMDF2N02E
4
3
2
1
R242
10K
Q202-G
R240
10K
3
2
R243
100K
J201
D202
BAV99L
Valve+
Valve3
Pump+
Pump-
1
2
3
4
5
CON5
1
D201-A
R241
10K
Q201
MMBT3904L
2
Q201-B 1
NIBP-Safety
7
8
31.6
5
6
R246
Q203
MMDF2N02E
1
4
R247
1K
5
5.1
NIBP-Pump-On
3
2
NIBP-Valve-Close
R248
1K
CRT Deflection Board
Overview:
Atlas uses a 5-inch monochrome CRT display. This CRT will display Waveform Data (ECG and
Respiration or SpO2 orETCO2), plus Text Data (Heart Rate, Alarm Values, Trend Data, setup, and
service menus). The CRT Deflection board performs the following functions:
1. Vertical Deflection.
2. Horizontal Deflection.
3. CRT Grid Voltages.
4. Video Amplifier.
CRT Deflection is magnetic, vertical and horizontal deflection is controlled by regulating current through
the vertical and horizontal coils of the CRT Yoke. The Deflection board is designed to the following
specifications:
Resolution:
VGA (640X480)
Dot Clock:
39.7nSec (1/25.175Mhz)
Display Size:
100mm (Horizontal) X 68mm (Vertical)
Vertical:
Scan Rate:
Reset Time:
60Hz
750uSec
Appendix A
10/14/99
Blanking Time: 1.2mSec
Horizontal:
5.2
Scan Rate:
31.5Khz
Reset Time:
5uSec
Blanking Time: 5.7uSec
Vertical Amplifier:
5.2.1 Ramp Generator:
Vertical Sync
Ramp Generator
R1
1K
U1.3
+5V
+12V
R2
7.50K
C3
.047uF
750uSec
8
16.7mSec
R3
23.7K
U4A
2
R52
1.96K
U4.2
3
+
1
2
-
U1A
TLC272
Ramp
4
1
Vsync
74HCT04
Vertical
Sync
R43
5.0V
C1
.1uF
5.11K
3.95Vpp
U1.2
d6.c
2
1
2
D6
1N4148
1
750uSec
D1
1N4148
16.7mSec
A ramp generator is built from the integrator (U1A, C1, and R3). The slope of the integrator is: V =
(I*T)/C. The integrator is designed so that it ramps up 6.97V in 750uS and ramps down 3.95V in 15.9mS.
Diode D1 clips the output voltage at about 5.0V (U1-pin3 + Vdiode). Then the ramp resets at 5.0V each
cycle, and integrates down 3.95V.
Vertical Amplifier
+12V
+12V
C4
.047uF
+
R12
562
q1.b 2
8
Ramp
3
+
2
4
+12V
C5
22uF
3
R19
562
3
Q1
1 MPSW01A
Q3
MPSW01A 1
R13
169
R15
2
38.3
8
R20
169
q1.e
1
U2A
MC34072
R14
562
7
1
R21
562
1
q2.b 2
vadj
R16
u2.2
10
R17
10
u2.7
R6
41.2K
u1.6
L
Vertical Yoke
4
7
U1B
TLC272
6
+
5
R7
41.2K
u1.5
8
R8
41.2K
Zero Adjust
+12V
vcadj
R9
R11
vcadj+
+5V
1.47K
vcadjR10
1K
6
R22
10K
4
u2.6
R23
10K
-
5
-
Q4
MPSW51A
Size Adjust
R5
42.2K
+
3
Q2
MPSW51A
R4
10K
u1.7
U2B
MC34072
2 q4.b
3
C2
100pf
+5V
q3.b
R18
562
1.96K
Appendix A
10/14/99
5.2.2 Vertical Amplifier:
The Vertical amplifier will generate a linear current ramp of +/-200mA. The vertical amplifier is an HBridge type driver. Positive current flow (deflecting the beam above the centerline) is defined as current
from +12V to Q1 to Rsense through the coil to Q4 to Ground. The negative current path is from +12V to
Q3 through the Coil to Rsense to Q2 to Ground.
The input to the vertical amplifier is the ramp voltage generated above. The objective of the vertical amp
is to match the current through the vertical coil with the input ramp control voltage. Current through the
vertical coil is monitored through the sense resistor, formed from R15, R16, and R17. Voltage across the
sense resistor is measured with the differential amplifier U1B. This voltage is then used as the feedback
voltage to the control opamp, U2A.
5.2.3 Zero Adjust:
The output voltage from the ramp generator is a ramp from 5.0V to 1.05V (nominal). The center of this
ramp is 3.0V. Then, the output of the current sense diff amp must be offset by 3.0V. This is accomplished
with the Zero Adjust Network, Resistors R9, R10, and R11. Vertical centering is then accomplished by
writing a pattern to the CRT, and adjusting R10 to center the display.
Size Adjust:
Adjusting the current through the Vertical Coil changes vertical deflection. The voltage across the sense
resistor is:
Vsense = (Vramp-Voffset) / 1.02 (1.02 is the gain of the current sense diff amp)
Current through the coil is equal to current through the sense resistor network.
Icoil = Isense = Vsense / Rsense
Then, adjusting the value of the sense resistor will change the current through the vertical coil. Vertical
gain is then accomplished by writing a pattern to the CRT, and adjusting R16 to set vertical deflection.
5.3
Horizontal Amplifier:
Current through the transformer increases linearly as Transistor Q6 is On (I = VdT/L). When the
transistor opens, the drain voltage kicks up, and the current through the Transformer coil flows through
C9, L2, L3, and the Horizontal Coil to Ground The transformer quickly loses flux (reset time < 5uSec).
Current continues to flow in load inductance, from Ground through Q6-diode, C9, L2, L3, and the
Horizontal Coil to Ground. This current flow charges capacitor C9. The current decreases linearly to 0,
then changes directions. This is due to the AC coupling capacitor C9 being charged to a negative voltage.
Current flow is then from Ground through the Horizontal Coil, L2, L3, C9, and Q6 to Ground.
The drive to MOSFET Q6 is AC coupled. This will prevent Q6 to be driven high in the event of a faulty
driver on the CPU board.
In order to get adequate deflection current (about +/-2.3Amps), 18.5V across the transformer coil is
necessary. A “boost” winding is added to the transformer, then when the voltage on the transistor drain
flys up, current flows into capacitor C11. C11 charges to a voltage determined by the turns ratio in the
transformer.
Appendix A
10/14/99
5.3.1 Horizontal Gain:
Horizontal deflection is adjusted by changing the current through the Horizontal coil. Changing the series
inductance in the Horizontal Deflection Path modifies the current. Increasing Horizontal gain is then
accomplished by writing a pattern to the CRT, and adjusting the “width coil”, L3.
Horizontal Centering:
Horizontal centering is accomplished by rotating magnets mounted on the CRT Yoke assembly.
5.3.2 Grid Voltages:
The following voltages are developed to bias the grids on the CRT:
Grid 1: -10V to -50V DC (Brightness Adjust)
Grid 2: 350VDC
Grid 4: 0V to 350VDC (Focus Adjust)
Anode: 7.5KV
These voltages are derived from additional windings on the FBT. In addition, the supply voltage for the
video amplifier (+36VDC) is generated from a tap on the FBT.
T1
CRT-FBT
To CRT
Anode
Horizontal Amplifier
Grid Voltages
Boost
C11
1000uF
+
9
+12V
8
D3
1N4935
D2
+12filt
1
+B
2
10
2
Vd
1
Grid1
+Vvid
L1
47uH
MUR120
C10
1000uF
+
+
Hor
7
5
C15
.01uF
C12
22uF
R29
d4.a
Brightness
Adjust
D4
1N4935
3
Vg1
1
Vg2
Intensity
2
2
1
100K
R28
19.6K
C13
+
Horizontal Sync
22uF
R30
100K
Grid 2
D5
1N4937
1
2
5.5uSec
C16
.01uF
d5.c
C14
.01uF
31.7uSec
+12V
+12V
R27
10
q5.c
3
Hsync
R50
1.96K
4
74HCT04
R25
215
C22-2
q5.b2
3
Q5
12N3904
Q6
IRF640
q6.d
C8
.022uF
hwide
L2
15uH
L3
15- 35uH
1
3
R24
10K
C22
.022uF
R32
2.5Meg
Focus
C17
.01uF
hlin
4
2
R26
1K
U4B
Focus
Adjust
C9
6.8uF
L
Horizontal Yoke
Appendix A
5.4
10/14/99
Video Amplifier:
The CRT tube turns a dot on when video out is low (near 0V), and off when video out is high (+Vvid =
28V). The input to the video amplifier is a digital signal (3.3V logic level) from the uProcessor. An input
of 0V turns the dot off, an input of 3.3V turns the dot on. Transistor Q7 amplifies and inverts this signal.
Video out is driven low through D7, and driven high through emitter follower Q8. .
+Vvid
Video Amplifier
R36
1.96K
C19
.01uF
R37
1.96K
3
+5V
q8-b
2
1
R51
19.6K
R48
100
U4E
VideoIn
10
u4-6
q7-g
2
74HCT04
6
6.1
Q8
1 2N3904
1
R41
681
q8-e
VideoOut
Q7
BS170
3
11
D7
1N4148
2
Recorder Electronics
Overview:
Atlas includes a thermal strip chart printer (optional on Model 200 and 210, standard on model 220). The
user can print either annotated waveform data or Patient trend information.
The printer specifications are:
Paper Size:
56 or 58mm
Printhead Width: 54mm
(2 1/4 inches)
(2 1/8 inches)
Resolution:
Vertical: 8 dots/mm,
(200 dots/inch)
Horizontal: 12 dots/mm (300 dots/inch)
Chart Speed:
25mm/sec
(1 inch/second)
The main CPU controls the printer. Data timing, clock signals, and strobe widths are all generated by the
FPGA on the CPU board. These signals are buffered on the recorder board (inverter U5), before
transmission to the printhead.
Appendix A
6.2
10/14/99
Power Supply – 24 Switcher
It is necessary to generate 24VDC for the print head and motor. The input to the 24V switcher is either
12V from the AC/DC converter, or Battery voltage on the model 210/220 when AC is not present. The
circuit is configured as a boost PWM using current mode feedback. The PWM controller is a UC3843A.
The controller includes an internal 2.5V, 1% reference, and an external 5V, 1% reference. Nominal
output voltage for the boost converter is Vout = [2.5V*(1 + 84.5K/10K)] = 23.6V.
The converter will run at duty cycles over 50%, which requires slope compensation for a current mode
controller. Slope compensation is added by summing in part of the oscillator signal with the current sense
line.
The PWM current limits on a cycle to cycle basis. The supply will be in current limit when the Isense line
reaches 1V. Current limit is set to about 3.5 Amps from 12VDC or 5Amps from battery.
Two control signals exist for the 24V switcher, n24Von and Rec-Supply-On. The 24V switcher is disabled
when n24Von is high. This signal is controlled by the on board PIC processor. The switcher is held off at
power up, and allowed to start after 50mSec. This is done to reduce inrush current at power up. The signal
Rec-Supply-On enables power to the print head, and is controlled by the main CPU. Power is only applied
to the print head when the recorder is running.
RecVdc
+24V
Recorder
Power
Supply
To
Motor
R7
84.5K
+12V
TP10
+
C4
1000uF
L1
22uH
U2-fb
C6
1uF
U2-RT
7
A
TP21
RT/CT
C14
2200pF
A
2
Q6
MMBT3904L
R13
10
10
ISENSE
A
2
4
C13
5600pF
+24V-switch
R16
19.6K
R3
10K
To
Printhead
A
Printhead
Power
Switch
Q4-s
R17
0.1
R18
no-load
R9
10K
A
TP9
3
Rec-Supply-On
A
Q6-e
TP23
5
C8
1800uF
Q4
MTP30N06VL
1
R15
147
TP19
A
3
2
4
U2-out
12
11
Vc
Vcc
OUT
1
A
VREF
8
Q3
2N7002
Switcher
Disable
COMP
Q4-G
14
+
3
R14
10K
1
U2-Ref
U2-Isense
3
C11
.047uF
1
2
n24VOn
TP17
GND
U2-comp
R6
10K
VFB
PWR-GND
3
A
3
U2
UC3843A
9
TP8
Q1
MTP30P06V
Q4-D
TP14
A
+5V
D2
MBRS340T3
A
C7
.01uF
1
+
R12
10K
Q2-b
1
2
R19
3.16K
R10
10K
Q2
MMBT3904L
A
A
R22
4.22K
A
RecVdc
R11
5.11K
6.3
Motor Driver:
Atlas uses a stepper motor to drive the paper. The microcontroller (U3) is programmed to apply the
appropriate phased signal to the motor. A quad darlington switch (U6) amplifies the signal from the
controller to signal levels needed to drive the motor. Motor speed timing is derived from the main CPU,
and transmitted to U3 on signal line U3-clk (U2-pin2).
Appendix A
10/14/99
+24V
1
+24V
TP26
C18
.047uF
R33
1.47K
D6
27V
+
U3-10
3
+5V
C19
.047uF
TP1
C20
47uF
3
4
5
6
7
U3
ClkIn/Osc1/RB5
RB0
Clkout/Osc2/RB4
RB1
Vpp/MCLR/RB3
RB2
RC5/TOCK1
RC0
RC4
RC1
RC3
RC2
A
D1
27V
13
TP27
R34
1.47K
u6-3
u6-6
u6-11
u6-14
U3-9
12
11
U6
ULN2065
n24Von
TP67
3
6
11
14
1B
2B
3B
4B
10
3
2
U3-clk
D
Vss
Vdd
1
14
1
d6-c
1C
2C
3C
4C
CLMP1
CLMP2
9
J3
2
7
9
16
1
8
J3-1
1
2
3
4
5
6
J3-3
J3-4
J3-6
u6-clmp
CON6
8
R35
1.47K
Connector Pin #
1 3 4 6
U3-8
PIC16C505
A
TP28
TP29
phase 1
2
3
4
R36
1.47K
U3-7
6.4
A
+
+
+
+
+
+
+
+
Temperature Amplifier:
The printer will print darker as temperature is increased. Print darkness can adjusted by controlling the
time a dot is turned on. A thermistor is included on the printhead. This thermistor is nominally 30K, and
decreases as temperature increases. The output of the temperature amplifier is a function of the thermistor
voltage, Temp = .755*(1+R8/Rtherm). This voltage is digitized (on the main board), and the CPU can
compensate dot width in order to maintain consistent printing over temperature.
+5V
Printhead
Temperature
Amplifier
+5V
C1
.047uF
R1
51.1K
C2
.01uF
R4
9.09K
8
A
U1-3
3
U1-2
2
TP54
A
R2
1K
+
-
1
A
A
R5
1K
Temp
U1A
MC34072
4
TP3
TP6
U1-1
C3
.01uF
R8 23.7K
C5 .01uF
2
+5V
Thermistor2
Thermistor1
D3
3
BAV99L
1
Thermistor
Input
A
Appendix B
Part Number
6200-43E
620001-501
620004-501
620007-501
620013-501
620016-501
620032
620034
620035
620038
620105-1
620117
620119
620125-501
620126-6
620127
620131-1
620132-2
620133
620134-501
620138-501
620139-501
620140-501
620141
620142-1
620143
620144
620148
620149
620150-1
620159
620165
620167
620168-1
620169-2
620170
620171
620172-2
620173
620175
620176
620177
620178
620182
620187-501
620189
620192
620193
620194
620197
620198
620200-501
Atlas Repair Parts
Description
SERVICE MANUAL
MAIN PCB ASSY - LOW END
ATLAS CPU PCB ASSY
FRONT PANEL DISPLAY PCB ASSY
PRINTER PCB
MAIN PCB ASSY - MID/HIGH END
ETCO2 PCB ASSY
ETCO2 CONNECTOR & CABLE
NELLCOR SPO2 BD
NELLCOR LABEL (CARTON)
BATTERY DOOR
PRINTER DOOR BUTTON
LATCH SPO2
MAIN CASE/HANDLE SET
BEZEL SET/HIGH HEAT TRANSFER
METAL BRACKET FOR PRINT
MAIN FOAM
TOP FOAM
BP FOAM
GEAR ASSY
PRINTER DOOR ASSY
PRINTER FRAME ASSE
MAIN PRINTER ASSY
METAL HOUSING - TOP
METAL HOUSING-BOTTOM (LG)
NUT TEMPERATURE
BRACKET SPO2
GASKET CO2 EXHAUST
FITTING,1/16 X 1/8-27 NPT
AC/DC POWER SUPPLY
PRINT HEAD
CABLE-CONN TO MAIN BD,ECG
CABLE-MAIN BD TO DISPLAY BD
CABLE ASSY POWER SUPPLY
CABLE ASSY NELLCOR SENSOR
CABLE ASSY NELLCOR
CABLE ASSY SPEAKER
CABLE ASSY AC
CABLE-TEMP SENSOR TO MAIN
CABLE ASSY - FAN
CABLE ASSY - PRINTER
CABLE ASSY - PRINT HEAD
CABLE ASSY SP02
LABEL - RS232
PNEUMATIC SUB ASSY
4-20 X 5/16 SLT/TORX PN PL ZIN
PNEUMATIC CONNECTOR (MACH)
NUT, HEX 5/16-32 X.095 PNEUM
WASHER,FLT.33 X.62 X.049
BUSHING, SPLIT NYLON
FOOT
CRT SUB ASY
Page 1
Appendix B
Part Number
620201-501
620201-502
620202-504
620205
620207
620373-501
620377-1
620377-2
620378-1
620378-2
620378-3
620378-4
620378-5
620378-6
620379-501
620385
620386
620387
620388-1
620388-2
620393
620394-1
620395-501
620402
620403
620524
761077-1
Atlas Repair Parts
Description
POWER SUPPLY ASSY (LOW END)
POWER SUPPLY ASSY W/FAN
MAIN HSG ASSY W/BATT & PRNTR
4-40 X .31 TX PN MC ST ZN
NUT, M3-.5 HEX KEPS ST ZN
NONIN SUB ASSEMBLY
"NELLCOR WORKS HERE" LABEL
NELLCOR PATENT LABEL
ATLAS KEYPAD
ATLAS KEYPAD
ATLAS KEYPAD
ATLAS KEYPAD
ATLAS KEYPAD
ATLAS KEYPAD
MONITOR BOX W/INSERTS
SUB-LABEL DISPLAY
FASTON TAB
SHUNT
LABEL, NONIN SENSOR
LABEL, NELLCOR SENSOR
PWR SUPPLY INSULATOR LABEL
WASHER, SHOULDER PLATED
REPLACEMENT LAMP SUB-ASSY.
SPACER, DOOR
FLAT TIE HOLDER
CABLE-CO2 TO MAIN BD
TIE WRAP
Page 2
O
8
7
6
5
CATHODE (DET SHIELD)
N/C
SPO2 NELLCOR CONNECTOR
NONIN SENSOR
CABLE ASSY
J9
4
CABLE ASSY
RIGHT-LEG
5
6
BRN
GRN
GROUND
2
J601
TEMP-IN
1
6
5
4
3
2
1
P6
GND
WITH SCREW
3
GROUND
GROUND
SDC
SPI-DATA-IN
SCL
HRESET
REC-STROBE
REC-DATA
REC-DATA-LATCH
11
12
13
14
GROUND
GROUND
GROUND
LED-LATCH-N
25
26
27
28
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
2
3
BATTEY-ID
GROUND
RED
BLK
BLK
8 N/C
7 N/C
6 TX
5 RX
4 GROUND
3 +5V
2 N/C
1 N/C
J10-Model 'LOW'
1
BATTERY
REC-GND
REC-GND
REC-GND
REC-GND
REC-GND
REC-GND
PRINT-TEMP
24
23
22
21
20
19
18
17
16
15
14
AC+12V
1
AC+12V
MAIN BOARD
J1
2
RED
AC+12V
3
RED
GROUND
4
BLK
GROUND
5
BLK
GROUND
6
GROUND
7
J5
J11
J201
P5
+12V
1
Ground
2
SP
P11
1
N/C
SM
2
3
VALVE +
1
WHT
VALVE 2
ORN
NC
3
PUMP +
4
RED
PUMP 5
BLK
CABLE ASSY
ECG
ECG
SPO2 NONIN CONNECTOR
2
AC+12V
AC+12V
GROUND
GROUND
GROUND
2
3
4
5
6
BATTERY
J2
BLK
BLK
BLK
BLK
AC+12V
1
CABLE ASSY
RED
CPU BOARD
RED
RED
J3
REC-CLOCK
10
LED-ON
24
REC+DCV
REC+DCV
13
P3
NURSE-CALL
RS232-CTS
GROUND
KEY-LATCH-N
VIDEO-DATA
GROUND
GROUND
N/C
NIBP2-PW-ADC (unused)
AC-ON
N/C
NIBP-OFFSET-DAC
SPEAKER-AUDIO
VIDEO-VSYNC
9
ACON-LED
23
MODEL MED/HIGH
P2
P2
8
LED DATA
22
REC+DCV
12
3
BLK
GROUND
VIDEO-DATA
GROUND
VIDEO-HSYNC
PIC-CLK
NIBP-VALVE-CLOSE
GROUND
VBACKUP
7
GROUND
21
REC+DCV
+
RED
J6
VIDEO-VSYNC
+12V
REC-MOTOR-STEP
POWER-SYNC
FE-DATA
SPARE-3 NC
BATT-ID
VIDEO-HSYNC
SPI-CLOCK
LED-LATCH
SPI-DATA-OUT
NIBP-15mmHg
6
KEY-DATA
20
11
4
ORN
LEFT-LEG
BRN
FE-CLOCK
NIBP-DATA
ADC-CLOCK
5
+5V
19
10
9
RED
P601
V-LEAD
4
BLU
ETCO2-Tx(TO J4-15)
RED
ORN
YEL
REC+DCV
4
KEY-LATCH-N
18
GROUND
8
BLK
YEL
GROUND
3
RED
LEFT-ARM
2
BLK
RIGHT-ARM
4
ETCO2-Rx(TO J4-17)
GROUND
NELCOR
3
2
CABLE ASSY
1
NONIN
SPARE-2 NC
3
ON/OFF-KEY
17
REC-DATA
REC-CLOCK
PHASE 4
Ground
+24V
FUSE
WHT
J501
SPO2 NELCOR BOARD
+12V
RIBBON CABLE
1
J3
GROUND
2
KEY-CLOCK
16
7
1
+5V
FERRITE
15
GRN
PHASE 3
6
+24V-SWITCH
PHASE 2
+24V-SWITCH
16
5
DATA
15
+24V
CLOCK
14
4
LATCH
13
PHASE 1
STROBE
12
3
+5V
11
2
GROUND
10
1
GROUND
9
BATTERY
P501
DISPLAY BOARD
P3
C
SPO2-RX
ETCO2-RX
SPO2-TX
ETCO2-TX
FERRITE
14
13
CO2
SGND
ISO+5Vdig
REC-STROBE
VERTICAL -
14
5
PHOTO DIODE BIAS
6
REC-DATA-LATCH
5
4
+12V
+5V
3
2
REC-MOTOR-STEP
Rec-GND
24
GRN
YEL
P8
2
J8
P3
13
12
11
10
1
N/C
Rec-GND
23
VERTICAL +
RS232-RX
GROUND
PIC-DATA
NIBP-OVERPRESSURE
RS232-TX
9
Rec-GND
22
4
12
11
10
9
8
GROUND
Rec-GND
21
ORN
SGND
SGND
S+5V
N/C
SSpO2-TX
7
P7
Rec-GND
20
TUBE GROUND
9
SGND
4
S-5V
REC-SUPPLY-ON
J7
8
PIC-VPROG
CONTACT2-RELAY
7
Rec-GND
19
16
15
14
13
GROUND
8
5
PHOTO DIODE BIAS
sSpO2Tx
3
8
7
RGND
6
Print-Temp
18
HORIZONTAL +
3
J8
J7
BLK
RED
GROUND
+3.3V
TX
5
Rec+DCV
17
HORIZONTAL -
2
SIGNAL SHIELD
CABLE SHIELD
J6
J5
4
3
6
5
RX
4
Rec+DCV
16
1
BLK
ORN
SHLD
SENSOR TYPE LINE
PHOTO DIODE SIGNAL
J17
J15
N/C
SGND
RGND
3
Rec+DCV
15
RED
YEL
8
7
GRN
COAX
N/C
J3
SGND
N/C
2
Rec+DCV
14
+24V-SWITCH
+24V-SWITCH
12
11
10
9
8
6 POSITION JUMPER
SIGNAL SHIELD
CABLE SHIELD
6
5
SPO2 ESD GROUND
4
FERRITE
LED DRIVE LINE
f+V
2
6
1
1
NIBP-PWM-ADC
5
P2
YEL
GRN
4
BOARD
SPO2-RESET
+3.3V
2
3
1
LITHIUM BATTERY (-)
SGND
LITHIUM BATTERY (-)
J401
4
J3
MODEL 'LOW'
P401
GROUNF
LITHIUM BATTERY (+)
2
LITHIUM BATTERY (+)
SGND
3
2
N/C
1
Rec+DCV
13
STEPPER MOTOR
SENSOR TYPE LINE
ATTACHED TO SPO2 BRACKET
SGND
NIBP-SAFETY
EKG-PWM-ADC
1
J2
MODEL 'LOW'
BLK
CABLE ASSY
1
5 POSITION JUMPER
1
P402
SILENCE
SGND
J402
GROUNF
P801
Model 'MED/HIGH'
CONTACT1-RELAY
J801
Ground
12
DATA
CLOCK
LATCH
FOCUS
P2
PHOTO DIODE SIGNAL
CO2
GRID 2
6
3
SGND
14
GROUND
CABLE ASSY
GROUND
5
2
1
ISO+5VDIG
13
WATER TRAP SWITCH
RIBBON CABLE
VIDEO
4
J4
J1
SGND
12
2
1
CABLE ASSY
3
LED DRIVE LINE
J2
SGND
RIBBON CABLE
+12V
LED DRIVE LINE
S+5V
MOTOR ESD GROUND
2
N/C
N/C
11
SUPPLY CAN
J403
SSpO2-Tx
10
CABLE ASSY
P403
S-5V
9
Ground
11
RECORDER BOARD
INTENSITY
RED
GROUND
+LED
N/C
8
Rec-Data
10
ANODE
1
2
10
9
N/C
-LED
RCAL
SGND
7
Rec-Clock
9
STROBE
P3
1
SHLD
RED
8
7
6
GROUND (RCAL return)
6
Rec-Strobe
8
+5V
7
GROUND
7
-
LED DRIVE LINE
ORN
SHLD
WHT
BLK
5
5
Rec-Data-Latch
7
GROUND
6
5
STROBE
6
MOTOR
GRN
9
8
7
GRN
GRN
SPO2-RESET
4
YEL
ORN
P4
RED
+12V
6
GROUND
GROUND
4
THERMISTOR-2
5
PRINT HEAD
N/C
RECEIVER
6
COAX
CATHODE (DET.SHIELD)
N/C
N/C
CO2 BOARD
GROUND
NELLCOR SENSOR
GROUND (RCAL RETURN)
CABLE ASSY
5
WITH SWITCH
ANODE (DETECTOR)
ETCO2 CONNECTOR
4
5
3
4
GROUND
2
GROUND
SGND
3
3
2
SILENCE-SWITCH
SGND
P3
ORN
J3
2
1
SILENCE-LED
BLK
J2
+5V
4
DISPLAY
+12V
CABLE ASSY
BRN
+5V
5
CABLE ASSY
3
Rec-Motor-Step
4
GROUND
STROBE
THERMISTOR-2
ORN
2
Not Connected
3
THERMISTOR-1
4
6
N/C
A
RED
PHASE 4
RED
5
+24V
6
4
4
GROUND
5
3
3
ACON-LED
YEL
2
PRINT
BRN
PHASE 3
M/C
2
ANODE (DETECTOR)
1
LEAD-SELECT
PHASE 2
4
-LED
1
TREND
3
COAX
P2
+24V
WHT
5 POSITION JUMPER
2
RED
1
B
BLK
1
PRINTER
PHASE 1
SGND
14
Rec-Supply-On
3
1
+LED
RCAL
DISPLAY BOARD 2
J3
1
13
LED-LATCH-N
12
11
10
9
8
7
6
GROUND
GROUND
GROUND
LED-ON
ACON-LED
LED DATA
GROUND
KEY-DATA
PIC-Vprog
2
SUPPLY CAN
1
THERMISTOR-1
2
1
ALL YELLOW
GROUND
4
KEY-LATCH-N
TO POWER
5
3
ON/OFF-KEY
PRINTHEAD ESD GROUND
+5V
2
+24V-SWITCH
+24V-SWITCH
+24V-SWITCH
3
+24V-SWITCH
2
1
Ground
7
ETCO2-RX(TO J4-17)
ETCO2-TX(TO J4-15)
D
1
E
P2
CABLE ASSEMBLY
KEY-CLOCK
+5V
PRINT HEAD
J2
F
GRN
8
2
REV
DESCRIPTION
1
X3
RELEASE TO PRODUCTION
FAN
POWER SUPPLY
FAN
L
1
N
3
GND
DRAWN
APPROVED
JB ENGEL
REL TO PROD
TRANSLATED FROM:
CAD SOFTWARE:
TOLERANCES
.XX =
` .02
.XXX =
` .005
ANGLES
` 2
ECN/ECO
-
-
-
-
YOKE
GRN
YEL
BLK
BLK
L
WHT
WHT
N
GRN
YEL
G
GND
ATTACHED TO PS CAN
WHT
THESE DRAWINGS AND SPECIFICATIONS AR
DATE
DATE
PRO-E
ME-10
-
UNLESS OTHERWISE SPECIFIED
DIMENSIONS
ARE IN
INCHES
B
SCALE
NONE
1
INIT
-
CABLE ASSY
AND SHALL NOT BE REPRODUCED, OR COPI
ED, OR USED AS A BASIS FOR MANUFACTU
OR SALE OF EQUIPMENT OR DEVICES WITH
OUT WRITTEN PERMISSION.
-
-
DATE
CKD
-
CABLE ASSY
-
RED
FERRITE
IN-LINE FUSE
YOKE AND CABLE ASSY
F
A/C
GND ATTACHED
RECEPTICLE
TO PCA WITH
FASTON
CABLE ASSY
WITH SCREW
AC RECEPTACLE
DEFLECTION BOARD
E
TO POWER
FERRITE
D
J4
SPEAKER
P1
RED
BLK
BLK
CABLE ASSY
C
RED
POWER SUPPLY
P201
BLU
CABLE ASSY
PUMP/PNEUTRONICS VALVE
SPEAKER
RED
BLK
PUMP
B
SPO2 NONIN BOARD
ORN
VALVE
CABLE ASSY
TEMPERATURE CONNECTOR
TEMP
E THE PROPERTY OF WELCH ALLYN, INC.
DATE
TM
RE
07/21/99
MATERIAL:
FINISH:
-
TITLE
-
A
INTERCONNECT
DIAGRAM
DRAWING NO.
620396
REV
SHEET 1of
X3
1
Atlas Drawings and Schematics
Drawing Number
620002
620002
620002
620002
620002
620002
620005
620005
620005
620005
620005
620005
620008
620008
620008
620008
620008
620011
620014
620017
620017
620017
620017
620017
620017
620017
620017
620020
620027
620201
620032
620150
620154/1255210
620152
620156
620165
620166
620169
620187
620524
Rev.
C
C
C
C
C
C
C
C
C
C
C
C
B
B
B
B
B
C
B
D
D
D
D
D
D
D
D
A
B
A
B
B
B
A
B
A
C
C
B
A
Sheet No.
1of 6
2 of 6
3 of 6
4 of 6
5 of 6
6 of 6
1 of 6
2 of 6
3 of 6
4 of 6
5 of 6
6 of 6
1 of 5
2 of 5
3 of 5
4 of 5
5 of 5
1 of 1
1 of 1
1 of 8
2 of 8
3 of 8
4 of 8
5 of 8
5 of 8
7 of 8
8 of 8
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
1 of 1
Size
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
B
B
B
B
B
B
B
B
B
B
Name
Main Board - Model 200
NIBP Electronics
Power Supply DC/DC
Power Isolation and Sp02 Interface
ECG AMP
ECG A/D Interface
Atlas CPU Sub System
FPGA
I/O Filters
Flash, SDRAM 8 HRESET Config Word
Power PC MP C823 CPU
Power Distribution
Front Panel Display Board
Keyboard Scanner
Temp/Pulse LED Drivers
NIBP LED Drivers
Sp02 LED Drivers
CRT Deflection Board
Printer Electronics
Main Board - Model 220
NIBP Electronics
DC/DC Power Supply
Power Isolation and Sp02 Interface
ECG AMP
ECG A/D Interface
Respiration
Serial Communication
Transformer Isolator
ECG Patient Cable
Power Supply Sub Assembly
ETC02 PCB Assembly
Power Supply 50W
Assy, Nonin Sp02 Board with Shield
Motor Stepper
Pump, Pneumatic
Cable Assembly ECG
Cable Assembly CO2
Cable Assembly Nellcor Sensor
Pneumatic Sub Assembly
Cable Assembly CO2
Page 1
Description
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Connector/Header Detail Test Points
U7 Detail
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Schematic
Component Schematic
Component Schematic
Exploded View of Sub Assembly
Isometric View of ETCO2 PCB
Performance Specification
Code for Rev Level of Firmware/Software
Motor Schematics and Values
Valves
Cable Pinout
Cable Pinout
Cable Pinout
Exploded View of Pneumatic Sub
Cable Pinout
B
C
D
AC/DC Power
Connector
+5V
EKG-PWM-ADC
AC+12V
6
J1
+12V
Rec-GND
C22
.047uF
Q4
TP5
R22
10K
1
2
16
BackupBattery
TP6
2N7002
q4-d
3
2
11
10
LithMeas
Page2
CON2
1
3V Lithium
12
13
R23
10K
+12V
1
2
RCLK
G
D
15
1
2
3
4
5
6
7
QB
QC
QD
QE
QF
QG
QH
D
7
Mods to U2 clock line,
NVRAM pullup
3
SPO2-Rx
CRT Board
Connector
4
2
C23
.047uF
SpO2Out
D
CON6
RS232-RX
12
9
11
10
ac-on
D
Key-Latch-n
Rec-Clock
Rec-Data
HRESET
SPI-data-in
HRESET
TP16
A0
A1
A2
WC
1
2
3
TP12
C32
0.1uF
C33
0.1uF
TP18
+5V
U7-wc
7
C34
0.1uF
C5
D
+5V
Front Panel
Display
Connector +5V
.047uF
D
D
1
Key-Clock
R5
D
1.21K
R16
3.48K
D
+3.3V
NIBP2-PW-ADC
R6
1.21K
Video-Data
D
Nurse-Call
Rec-Data-Latch
Rec-Strobe
Key-Clock-b
Key-Latch-n-b
Key-Data
LED-Data-b
LED-On
2
7
PIC-Clk
Speaker-Audio
3
D
U8
SP232ACN
3
PIC-Clk
Speaker-Audio
Model 200 Serial I/O
(manufacturing test
only)
RJ-45
TP14
C31
0.1uF
D
1
2
3
4
5
6
7
8
Rx
Tx
15
R15
1.96K
13
8
14
7
R1IN
R2IN
T1OUT
T2OUT
14
SDA
SCL
C+
C1C2+
C2V+
V-
J10
D
U3A
74HCT08
D
+5V
2
4
6
8
10
12
14
LED-Latch-b
J8
CON14AP
1
+ +
3
+ +
5
+ +
7
+ +
9
+ +
11
+ +
13
+ +
On/Off-Key
+
Page3
C4
330uF
4
6
Key-Latch-n
5
D
U3B
74HCT08
SCD
D
Socket 30x2
filt+12V
+5V
14
C1
.047uF
5
6
TP15
1
3
4
5
2
6
14
Vbackup
SCD
SCL
C29
.047uF
R1OUT
R2OUT
T1IN
T2IN
7
D
U7
AT24C02N-10SC-2.7
8
ETCO2-Tx
ETCO2-Rx
Spare-2
NIBP-Data
NIBP-15mmHg
LED-Latch
Video-HSync
Spare-3
Power-Sync
Vbackup
NIBP-Valve-Close
Video-VSync
NIBP-Offset-DAC
+3.3V
PIC-Data
VCC
NIBP-OP
GND
R20
215
U8-1
U8-3
U8-4
U8-5
U8-2
U8-6
TP13
RS232-Tx
PIC-Data
RS232-Rx
SPO2-Tx
SPO2-Rx
ADC-Clock
FE-Clock
SPI-Data-Out
SPI-Clock
Batt-ID
FE-Data
Rec-Motor-Step
4
C2
.047uF
TP11
TP17
NIBP-PWM-ADC
+5V
C30
10uF
+
+5V
16
Serial I/O
connector
1
2
3
4
5
6
J4
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
7/9/99
U1A
74HCT04
3
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
LPP
D
1
VCC
Main PCA
Connector
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
5-39934
FE-Pwr-Sync
GND
Video-Data
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
LPP
D
7
Video-VSync
Video-HSync
NIBP-Safety
+3.3V
6/23/99
4
J6
D
LPP
TP10
+12V
C3
220pF
5-39822
+5V
+5V
+3.3V
LPP
U1B
74HCT04
NIBP-A/D-SelC
NIBP-A/D-SelB
NIBP-A/D-SelA
NIBP-Pump-On
NIBP-ADC-Clock
NIBP-Safety
NIBP-15mmHg
NIBP-Overpressure
NIBP-Valve-Close
NIBP-PWM-ADC
NIBP-Offset-DAC
9
D
4/27/99
TP9
D
Power-Sync
U2
74HCT595
Improvements for ESD
and Fast Transients
LPP
D
NIBP - Page 2
Audio-Shutdown
EROM-wr
C
LPP
FE-Data-In
U1F
74HCT04
LED-On
5-39456
JAC
Ckd
FE-ADC-Clock
U1E
74HCT04
12
TP1 TP2 TP3 TP4
QH
8
D
CON2
SRCLK
SRCLR
GND
BT1
BR-2/3A
J3
14
Serial
Data
Out QA
SER
See ECN worksheet
Date
3/15/99
ACON-LED
U2-Reset
10
+5V
13
7
Rec-GND
Backup
Battery
FE-Data
CON2
B
TP8
11
1
2
D
D
14
Tab-.187
5-39118
TP7
+5V
7
D
VCC
A
4
C39
.047uF
Release to Production
Init
D
J5
Recorder
ESD Ground
A
FE-Data-Clock
14
1
2
EKG-ADC-Clock
ECN/ECO
Description
FE-PWM-ADC
8
7
CON7
9
U1D
74HCT04
Fan
Connector
+5V
J9
EKG-Data-Clock
14
load
7
Rec+12V
5
U1C
74HCT04
+5V
14
R7 AC
150 minimum
14
1
2
3
4
5
6
7
J2
E
REV
14
A
Q1
MMBT3906L
2
3
9
D
8
R1
10K
+5V
14
2
U3C
74HCT08
D
1
D
10
7
D
LED-Data
Q1-e
+3.3V
12
Jumper wire
from J4-20 to
J4-55
R2
1.96K
11
LED-Latch
2
TP19
13
D
TP21
Q2-b 1
ACON
R4
10K
TP20
ac-on
Page1
C35
4.7uF
+5V
R21
10K
Q2
MMBT3904L
3
Speaker Drive
3
R3
10K
2
7
Q2-c
U3D
74HCT08
TP22
+
Q3
2N7002
1
PIC-Vprog
Rec-clock
TP24 TP25
TP23
Rec+12V
C36
4.7uF
J7
Rec-Motor-Step
+5V
+12V
Rec-Data-Latch
Rec-Strobe
Rec-Clock
Rec-Data
1
C14
.047uF
D
C20
.047uF
D
D
R17-1
3
U9-4
4
+
C7
330uF
C8
.047uF
Print-Temp
+
5
SP
-
8
SM
2
7
13
14
15
16
17
18
19
20
21
22
23
24
R18
619
4Vpp max.
J11
R17
19.6K
+
1
2
3
4
5
6
7
8
9
10
11
12
Rec-Supply-On
1
6
Rec-Data
2
Audio-Shutdown
U9
TPA301
U9-3
C37
0.1uF
1
CON24B
C38
220pF
Rec-GND
Initial
Drawn
Designed
Checked
Approved
Release For Production
B
CON3
R19
19.6K
Recorder
Board
Connector
A
1
2
3
C
D
Welch Allyn Inc.
Date
Schematic: 620002.dsn
Rick Myers Mar 5, 1999
Rick Myers Mar 5, 1999 Title
L.Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/17/99
Date:
Main Board - Model 200
Rev
D
Document Number
620002
Friday, July 09, 1999
Sheet
E
1
of
6
A
B
C
D
E
REV
PIC-Vprog
Rec-Data
ECN/ECO
Description
A
Release to Production
5-39118
B
See ECN worksheet
5-39456
C
Improvements for ESD
and Fast Transients
D
Mods to U2 clock line,
NVRAM pullup
Init
Date
JAC
Ckd
3/15/99
LPP
LPP
4/27/99
LPP
5-39822
LPP
6/23/99
LPP
5-39934
LPP
7/9/99
Rec-Clock
filt+12V
TP315
U304
VIN
FDBK
SHTDN
Vb
4
C324
4.7uF
+
TAP
SENS
TP26
C325
.047uF
TP27
LP2951CD-3.3
4
D
1
5
GND
6
2
VOUT
ERR
R318
10K
D
D
14
C323
4.7uF
+
8
7
3
1
u304-fb
4
2
PIC-Data
3
On/Off-Key
4
TP313
5
On-Off
6
7
U305
Vss
Vdd
D
ClkIn/Osc1/RB5
RB0
Clkout/Osc2/RB4
RB1
Vpp/MCLR/RB3
RB2
TC5/TOCK1
RC0
RC4
RC1
RC3
RC2
13
12
Page 1
11
PIC-Clk
10
9
PIC-audio
R320
Speaker-Audio
TP320
D620361-MX10000
R319
up-reset
On/Off Switch
1.62K
8
TP316
19.6K
HRESET
TP317
Q301
U2-Reset
MTP23P06V
L301
47uH
3
AC+12V
2
4
TP318
R303
10K
3
+
C301
1000uF
C302
1uF
C303
.01uF
+
C304
330uF
C305
.01uF
R314
100
D304
MMBD354LT1
3
d304-1 1
1
+
3
Q301-G
TP319
2
VBackup
R316
100
d304-2
BackupBattery
C322
.047uF
1
D
D305
NO LOAD
+12V
R301
51.1K
3
C306
330uF
C307
.047uF
2
3
+
C328-1
Q302-B 1
C328
1uF
+
R302
100K
Q302
MMBT3904L
TP321
2
TP301
Q305
MTP23P06V
3
+6V Buck
(5.68V nominal)
L302
47uH
Q305-s
2
4
C326
.047uF
D303
1
2
+6V
MBRS340
Q305-g
+
C314
330uF
C321
.047uF
2
C327
.047uF
R304
127K
R313
10
C313
.047uF
C311-1
TP305
8
U301-osc
C310
2200pF
TP308
C316
10uF
+
C317
.047uF
D
D
D
2
D
Q303
MMBT3904L
1
U303
LF33CV
2
R311
10K
5
IN
OUT
3
+3.3V
+
C319
100uF
C320
.047uF
D
D
D
R308
27.4K
U301-5
1
+5V
GND
ISENSE
3
2
RT/CT
2
7
10
R310
1.96K
1
GND
R307
7.5K
OUT
C315
1uF
9
C309
.047uF
VREF
PWR-GND
14
OUT
3
COMP
Q303-b
Q303-c
U301-out
11
1
IN
TP307
Vc
U301-comp
VFB
U301
UC3843A
3
3
Vcc
12
+
C311
2200pF
Q306
2N7002
1
1
2
R312
1.96K
TP304
TP306
TP303
D301
BAV99L
3
1
R306
10K
U302
LM2940CT-5.0
Q304-e
1
R305
100K
Q304
MMBT3904L
3
2
GND
TP302
U301-fb
TP310
1
TP309
R309
10K
Initial
TP312
Drawn
5Vref
ACON
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620002.dsn
Rick Myers Mar 5, 1999
Rick Myers Mar 5, 1999 Title
L.Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/17/99
Date:
Power Supply - DC/DC
Rev
D
Document Number
620002
Friday, July 09, 1999
Sheet
E
3
of
6
A
B
L201
220uH
C
D
E
REV
TP201
+12V
C229
10uF
R207
464K
TP202
P+12V
+5V
+
P+12V
P+5V
+
U203-2
2
-
Improvements for ESD
and Fast Transients
D
Mods to U2 clock line,
NVRAM pullup
LPP
LPP
4/27/99
LPP
5-39822
LPP
6/23/99
LPP
5-39934
LPP
7/9/99
R210
464K
A
P+12V
U203-5 5
+
U203-6 6
-
A
R242
10K
Q202
MMFT2N02EL
C206
.022uF
P+12V
R241
10K
8
+
2
4
NIBP-A/D-SelB
U204B
MC34072
+
A
NIBP-A/D-SelC
R218
23.7K
NIBP-A/D-SelA
Q203
MMDF2N02E
A/D Mux
A
U204-7
A
2
NIBP-Valve-Close
P+12V
Print-Temp
TP224
P4.25V
P.75V
PrimaryPres
SafetyPres
+5V/2
A
TP226
8
.047uF
A
P202-Out+
P202-2
2
+
1
VEE
R235
3.48K
4
U206A
MC34072
R223
21.5K
C214
.047uF
C217
C210
.047uF
.047uF
U209-Out
3
X
C230
.047uF
R237
464K
P+5V
R229
1.96K
TP229
A
C212
680pF
A
U206-2
A
7
R231
73.2K
U206-7
C219
.047uF
U206B
MC34072
4
R220
806
+
R225
1K
C218
4.7uF
TP233
A
5VRef
A
+
2
-
+
U206-6
A
A
3
A
R232
10K
U207A
74HCT00
3
C215
.047uF
NIBP-ADC-Clock
R222
1K
7
U210-3
U208A
MC34072
TP235
A
NIBP-PWM-ADC
U207B
74HCT00
A
A
.01uF
2
1
U207-3
Initial
Drawn
TP234
U205B
MC34072
Designed
Approved
A
Release For Production
A
6
5
1
Checked
A
4
U210
MAX941
C220
D201
MMBD1503A
A
U205-7
4
C213
.01uF
U208-1
U210-7
7
-
7
8
D201-C
TP238
6
3
R234
3.48K
TP236
R233
3.48K
2
3
R226
21.5K
+
2 +
1
TP237
5
1
A
P+12V
R221
3.16K
A
C224
1000pF
U208-2
1
Zero
Offset
P+5V
A
7
6
C221
.047uF
U208-3
TP232
8
5
P+12V
4
P202-5
5
P202-Out-
TP230
1
R224
1K
6
C225
.047uF
TP231
R230
10K
14
-
P+12V
8
+
TP228
P+5V
A
P+5V
1
3
NIBP PWM
A/D Converter
U210-2
A
P202
FPNS-07PGR
2
TP227
+5V
U206-1
2
TP225
1.96K
U205A
MC34072
R228
R249
1K
5
4
1
3
R227
5.11K
R248
1K
6
C211
X7
X6
X5
X4
X3
X2
X1
X0
NIBP-Pump-On
U209
4051
16
C216
.047uF
Safety
Transducer
4
2
5
1
12
15
14
13
LithMeas
C
B
A
INH
VDD
2
VSS
A
9
10
11
6
4
1
7
8
P+.75V
P+12V
5
6
C208
1uF
CON5
14
A
C207
1uF
Pump+
Pump-
R246
31.6
C231
.01uF
7
4
+
+
D202
BAV99L
1
2
3
4
5
A
U204-2
8
5
6
R215
100K
R217
5.62K
Valve+
Valve-
2
3
PWM D/A
76.8KHz
1
C228
.047uF
TP221 TP222
U204-5
3
J201
TP220
C207-1
TP218
7
8
TP219
3
TP217
U204A
MC34072
A
R216
19.6K
NIBP-Offset-DAC
R213
237K
Q202-D
R219
1.96K
U204-1
1
R243
100K
3
3
Q201
MMBT3904L
D201-A
1
U204-3
1
3
Q201-B 1
NIBP-Safety
TP216
C209
.047uF
A
P+5V
R214
10K
TP213
Q202-G
R240
10K
P+12V
U207D
74HCT00
+6V
TP215
Zero Adjust
+/-20mmHg range
A
A
A
A
R244
38.3K
11
13
+12V
U202B
MC34072
A
A
12
TP214
6 P201-6
U207C
74HCT00
P+5V
U208-7
R239
1K
C227
680pF
P201
XFPM-050KPGR-P1
A
A
2
3
U208B
MC34072
A
P201-Out
2
Gain
and
Comp
8
7
4
3
0mmHG = 0.5V
300mmHG = 4.0V
9
10
Over Pressure
Fault Circuit
R212
56.2K
A
u207-9
7
NIBP-15mmHg
U203B
LM393
A
A
R236
3.83K
-
-
R205
750
P201-pwr
C232
.047uF
+
6
P+5V
TP204
7
7
4
TP212
8
+
TP203
4
R209
1K
P+.75V
6
5
R211
1.96K
C223
.01uF
5
4
14
U202A
MC34072
4
R204
150
+5V
A
P+12V
-
P+12V
U202-5
C204
.047uF
NIBP-Overpressure
U203A
LM393
14
TP209
A
L202
Bead
A
1
1
TP210
C226
.047uF
8
C
3/15/99
7
+
R203
3.32K
TP211
4
5-39456
8
TP208
A
TP240
A
See ECN worksheet
JAC
Ckd
P+5V
8
3
2
P+5V
3
.047uF
U202-3
A
U203-3
C222
.01uF
P+12V
TP207
A
2
B
Date
2
4
R202
174
C202
4.7uF
+
A
+
5-39118
4
C203
GND
GND
1
7
GND
6
2
3
GND
OUT
A
8
R206
1K
R201
576
IN
C201
.047uF
4
3
Release to Production
8
8
R208
1.96K
.047uF
TP206
U201
78L05
U205-3
A
Init
C205
A
Primary
Transducer
ECN/ECO
Description
B
C
D
Welch Allyn Inc.
Date
Schematic: 620002.dsn
Rick Myers Mar 5, 1999
Rick Myers Mar 5, 1999 Title
L.Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/17/99
Date:
NIBP Electronics
Rev
D
Document Number
620002
Friday, July 09, 1999
Sheet
E
2
of
6
B
C
D
E
REV
U403
LP2951C
+
TAP
SENS
S
S
TP401
6
2
C401
.047uF
filt+12V
Isolated SpO2
Circuits
S
+
R419
215
S
5
C421-1
5-39934
LPP
7/9/99
T401-8
U402
TP408
3
D405
BAV99L
Q401-g
iso+5Vdig
D403
C407
100uF
MBRS130T3
IsoXfmr
S
2
Q402
MMBT3906L
R406
0.2
S
E
E
U402-e
1
R409
5.11K
1
U402-sen
TP414 TP415
R408
100
TP417
D
12
11
13
14
3
C404
.047uF
1
3
S
S
4
R407
10
2
T401-4
fVee
Q401
MTD3055V
TP409
TP416
4
5
VREF
SHTDWN
CA
EA
CB
EB
OSCOUT
RT
CT
+SENSE
-SENSE
C410
.01uF
V+
VCOMP
C420
.047uF
16
10
3
6
7
2
1
9
LM3524DM
FE-Pwr-Sync
U402-rt
U402-ct
TP412
U402-1
TP411
C417
680pf
LPP
TP404
4
2
8
S
6/23/99
U402-ref
C414
.047uF
TP406
8
4.7uF
LPP
+12V
2
+ C418
4
C416
.047uF
6
5-39822
TP402
R416
10K
-
LPP
R405
215
+
U401B
MC34072
1
TP403
TP405
f+5V
Mods to U2 clock line,
NVRAM pullup
4/27/99
C409-1
C421
470pf
U401-5
D
LPP
C412
10uF
T401
MBRS130T3
+
S
5
Improvements for ESD
and Fast Transients
15
fVcc
+
C
LPP
4
C409
470pf
C405
100uF
C402
.047uF
7
5-39456
3/15/99
T401-1
fVcc
U401-7
See ECN worksheet
JAC
Ckd
Grounded SpO2
Circuits
D401
R415
100
B
Date
Isolation
Barrier
S
4
TP407
5-39118
VIN
S
C415
1uF
Release to Production
Init
TP413
8
+
U403-7
A
3
C406
100uF
VIN
FDBK
SHTDN
4
C403
.047uF
VOUT
ERR
Q402-e
iso+5Vdig
8
7
3
GND
1
5
ECN/ECO
Description
GND
A
Q401-s
S
C411
2200pF
3
R410
10K
3
fVcc
+5V
R417
10K
TP419
SpO2 ESD
Ground
U401-3
1
2
U401-2
R418
5.11K
S
+
U401-1
1
iso401-a
1
-
opto-fb
5
U401A
MC34072
R411
5.11K
6 iso401-b
4
2
J401
1
2
3
4
2
R403
1K
4
Tab-.187
3
U410
4N25
TP420
8
J403
S
fVcc
R401
10K
sSpO2tx
+
C419
10uF
S
TP421
R404
S
316K
TP422
C408
.01uf
R402
10K
C408-2
iso+5Vdig
CON4
iso+5Vdig
R420
9.09K
C413
.047uF
S
S
3
D
1
2
TP423
+5V
Q403
MMBT3904L
U411
HCNW4503
R412
511
2
sSpO2tx
E
Q403-e
iso402-a 2
8
2
R414
6.19K
TP424
R421
10K
6
u411-6
SpO2Out
3
5
D
E
C422
.047uF
C423
1000pF
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620002.dsn
Rick Myers Mar 5, 1999
Rick Myers Mar 5, 1999 Title
L.Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/17/99
Date:
Power Iso and SpO2 interface
Rev
D
Document Number
620002
Friday, July 09, 1999
Sheet
E
4
of
6
A
B
C
D
E
REV
U501
U502
U503
U504
U505
U506
U507
U508
ECN/ECO
Description
A
Release to Production
5-39118
B
See ECN worksheet
5-39456
C
Improvements for ESD
and Fast Transients
D
Mods to U2 clock line,
NVRAM pullup
Init
Date
JAC
Ckd
3/15/99
LPP
LPP
4/27/99
LPP
5-39822
LPP
6/23/99
LPP
5-39934
LPP
7/9/99
fVcc
C534
4.7uF
+
E
Defib Protect
RFI Filtering
R506
10K
+clamp
1
2
C535
4.7uF
E
E
E
C519
.047uF
C521
.047uF
E
E
C523
.047uF
C525
.047uF
E
1
E
E
fVcc
4
C533
.047uF
E
E
Lead Select
fVee
U501-2
R530
R518
1.21K
0.1%
fVcc
1
VLdsOff
TP512
2
TP511
D502-3
U501-5
+
6
-
R511
22Meg
C507
220pF
R532
10K
TP519
TP515
7
R533
U501B
MC34002
TP520
R519
10K
0.1%
C511
220pF
R534
fVcc
LA
LL
LL
RA
LA
LL
V+
10K
TP521
U501-6
R558
22Meg
D503
MMBD1503A
R520
1.21K
0.1%
fVcc
1
VLdsOff
TP524
2
TP523
U502-3
R536
10K
3
6
11
10
9
10K
E
+
E
X0
X1
X2
X3
X4
X5
X6
X7
4
8
mux+ 5
3
X
6
TP557
R521
10K
0.1%
3
fVcc
+
7
diff+
R545
3
10K
0.1%
U508-2 2
+
-
U507B
MC34002
TP522
R565
121K
1
U508A
AD712
C542
220pF
4
-
3
+
diff-out
1
U509
LMC7101
E
fVee
fVee
INH
A
B
C
R547
10K
0.1%
C545
1000pF
High Pass (0.05Hz or 0.5Hz)
Low Pass (150Hz)
1
U502A
MC34002
TP533
C543
.047uF
TP558
u509-4
fVee
-
TP531
fVcc
TP516
U506
4051
8
2
R513
22Meg
C508
220pF
10K
13
14
15
12
1
5
2
4
TP525
8
3
D503-3
C503
220pF
R535
R537
R512
10K
R546
10K
0.1%
fVcc
fVee
E
10K
fVee
E
R544
10K
0.1%
U508-3
fVee
INH
A
B
C
C544
1000pF
Diff Amp
Gain = 1
U507A
MC34002
TP514
R511-1
E
6
11
10
9
E
5
4
C502
220pF
10K
E
TP513
8
3
R510
10K
TP510
R531
diff-
8
D502
MMBD1503A
10K
1
4
Shield
-
8
R557
22Meg
+
2
4
E
8
E
E
mux- 3
fVee
E
TP528
E
TP529
fVcc
TP517
E
C515
3.3uF
C512
220pF
R550
19.6K
U508-5
ecg-hp
5
+
6
-
R513-1
E
fVee
E
R559
22Meg
R548
1Meg
TP535 TP536 TP537
D504
MMBD1503A
fVcc
2
D504-3
3
U502-5
5
R515
22Meg
C509
220pF
TP542
TP526
An-ECG
U508B
AD712
R551
73.2K
C517
.01uF
fVee
U508-6
TP527
R552
1K
2
TP530
U502B
MC34002
R523
10K
0.1%
C513
220pF
TP532
TP543
Q504
2N7002
E
1
fVee
E
U502-6
R560
22Meg
Q504-s
R553
100K
22
E
7
Mux-LdS-C
7
R515-1
S
Mux-LdS-B
4
C504
220pF
E
TP540
+
E
Q504-d
Mux-LdS-A
E
6
N504
LAMP NEON
R549
110K
TP518
3
2
R514
10K
8
R504
51.1K
V-Lead
R522
1.21K
0.1%
VLdsOff
TP539
TP538
1
C516
.047uF
U502-2
4
S
Gain Stage
Gain = 74
8
10K
3
X
2
R529
X0
X1
X2
X3
X4
X5
X6
X7
5
TP508
13
14
15
12
1
5
2
4
U508-1
C510
220pF
RA
RA
LA
aVR
aVL
aVF
V-
4
R517
10K
0.1%
7
4
U501A
MC34002
TP509
VEE
-
R509
22Meg
TP507
TP506
U505
4051
7
C506
220pF
fVcc
Wilson
Network
1
VEE
+
16
3
fVcc
VDD
U501-3
R509-1
N503
LAMP NEON
E
TP505
8
3
R508
10K
C501
220pF
Left-Leg
C531
.047uF
V+
TP504
2
R503
51.1K
E
LL
D501-3
S
E
C529
.047uF
E
A/D Inputs
Leads Off
LA
D507
BAV99L
TP503
N502
LAMP NEON
C532
.047uF
RA
2
Left-Arm
C527
.047uF
VSS
1
3
C530
.047uF
E
16
2
D501
MMBD1503A
R502
51.1K
C528
.047uF
E
VDD
fVee
S
C526
.047uF
Input Buffers
Gain = 9.26
3
-clamp
N501
LAMP NEON
E
C524
.047uF
VSS
TP502
R507
10K
Right-Arm
E
C522
.047uF
3
fVcc
1
2
3
4
5
6
+
D506
BAV99L
TP501
R501
51.1K
C520
.047uF
fVee
4
J501
CON6
C518
.047uF
1
R524
1.21K
0.1%
VLdsOff
Q504-g
Sw-MonBw
Q506
2N7002
3
fVcc
2
D505
BAV99L
f+1.24V
5
-
6
U503-5
C536
.01uF
1
R556
10K
1
fVee
E
Sw-RLD-LL
14
16
Sw-RLD-LA
11
9
6
8
E
Sw-RLD-RA
13
4
5
fVcc
fVee
S1
IN1
D1
S2
IN2
D2
S3
IN3
D3
TP549
15
10
vRL
R516
D4
S4
IN4
fVcc
U503A
MC34002
RL-mux
7
TP559
V+
VGND
E
2
1
R525
10K
8
Sw-RLD-RL
3
1
+
3
-
2
E
1
R526
10K
U503-2
10K
RLD Amp
4
C505
220pF
f+5V
2
D505-3
S
3
+
U504
Right-Leg
N505
LAMP NEON
7
E
R555
30.1K
3
TP550
U503B
MC34002
VLdsOff
TP560
Sw-RLD-V
R505
51.1K
2
1
1
TP548
4
3
TP547
E
Q502
2N7002
Q501-S
Q501
2N7002
8
TP562
Initial
DG202CSE
E
R527
1K
fVee
C514
0.1uF
Drawn
C514-2
TP551
R528
51.1K
Designed
TP552
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620002.dsn
Rick Myers Mar 5, 1999
Rick Myers Mar 5, 1999 Title
L.Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/17/99
Date:
ECG Amp
Rev
D
Document Number
620002
Friday, July 09, 1999
Sheet
E
5
of
6
A
B
C
D
E
REV
U601
fVcc
C609
4.7uF
+
E
C623
.047uF
E
C624
.047uF
E
E
fVcc
C627
.047uF
7
U607B
LM393
-
6
f+1.24V
Serial/Parallel
Control Data
fVee
TP627
D
fVcc
Sw-DiagBw
Sw-RLD-RL
Sw-RLD-LL
f+1.24V
LPP
5-39822
LPP
6/23/99
LPP
5-39934
LPP
7/9/99
4
fVee
3
15
1
2
3
4
5
6
7
QA
QB
QC
QD
QE
QF
QG
QH
16
SER
SRCLK
SRCLR
14
U604-4
11
10
U605-12
-
R603
46.4K
TP617
E
U601A
MC34072
U612-6
C601
11
10
U604-10
E
D
7
U604E
74HCT04
3
R604
10K
D601-2
1000pF
2
D
iso+5Vdig
E
R628
10K
TP629
D
U604C
74HCT04
6
5
U611
HCNW4503
8
R627
5.11K
D
FE-Data-Clock
+5V
2
E
U611-6
R621
215
6
FE-ADC-Clock
5
C636
100pF
R607
464K
E
D
D
E
E
iso+5Vdig
U601-1
U602-3
R606
3.48K
fVcc
5
6
8
U602-7
TP613
fVcc
U602-5
iso+5Vdig
2
+
3
-
7
f+5V
R608
1K
9
8
U602
LM311
C632
.047uF
TP615
+5V
Q601
MMBT3904L
1
U604D
74HCT04
E
2
R611
6.19K
E
R610
511
2
8
TP618
PWM
A/D
Converter
fVee
C621
0.1uF
U610
HCNW4503
iso601-a
TP626
R624
E
6
U610-6
FE-PWM-ADC
3
5
5.11K
C633
100pF
1
D
E
iso603-a
E
C628
0.1uF
R617
2.15K
f+5V
E
7
R605
3.48K
fVee
TP619
fVcc
R620
619
6
C635
220pF
U601-2
14
TP630
4
f+5V
E
TP612
U602-2
U603out
3
TP611
C603
680pF
1
E
7
2
+
D
8
7
VEE
X
8
3
R626
10K
2
3 iso602-a
TP610
fVcc
R602
73.2K
3
TP606
U604-6
TP616
2
3
8
C637
1000pF
U603
4051
U601-3
f+5V
+5V
U612
HCNW4503
C642
0.1uF
3
A/D Mux
4
1
R601
10K
VSS
8
E
TP614
X7
X6
X5
X4
X3
X2
X1
X0
R615
6.19K
5
RCLK
G
QH
4
12
13
D
16
4
2
5
1
12
15
14
13
vRL
f+1.24V
RA
LA
LL
V+
An-ECG
VDD
TP609
E
E
f+5V
U604B
74HCT04
GND
9
TP608
D
D
E
fVee
C
B
A
INH
E
TP603
8
D
U606
74HCT595
9
10
11
6
FE-Data-In
5
TP628
3
Mux-A/D-C
Mux-A/D-B
Mux-A/D-A
iso604-a
C634
220pF
TP624
Sw-RLD-LA
Sw-RLD-RA
Mux-LdS-C
Mux-LdS-B
Mux-LdS-A
R619
619
6
iso+5Vdig
U605-out
TP623
2
E
U613-6
TP622
TP605
TP607
1
11
10
12
13
RCLK
G
QH
4
TP621
8
Mods to U2 clock line,
NVRAM pullup
3
-
2
9
TP604
6
D
2
3
2
D
Q601-e
U607A
LM393
+
SRCLK
SRCLR
U604-2
14
8
7
1
Sw-MonBw
TP620
Improvements for ESD
and Fast Transients
4/27/99
+5V
U613
HCNW4503
C641
0.1uF
R625
10K
7
8
TP601
SER
QA
QB
QC
QD
QE
QF
QG
QH
VCC
15
1
2
3
4
5
6
7
VCC
R622
46.4K
+
C
LPP
GND
fVcc
E
R613
6.19K
f+5V
U604A
74HCT04
TP602
16
U605
74HCT595
E
u604-3
C631
4.7uF
C629
.047uF
U604-1
U604
5
5-39456
LPP
iso+5Vdig
iso+5Vdig
f+5V
+
See ECN worksheet
3/15/99
iso+5Vdig
U604-5
E
14
E
4
E
+
SW-RL-V
14
+
Sw-RLD-V
E
B
JAC
TP625
5
14
C626
.047uF
8
R623
46.4K
C614
4.7uF
U604-8
fVee
C625
.047uF
5-39118
Ckd
U603
14
U602
Release to Production
Date
Isolation
Barrier
fVcc
4
U601
A
Init
U603
U602
C622
.047uF
ECN/ECO
Description
E
D601
MMBD1503A
7
-
E
4
U601B
MC34072
fVee
U601-7
52uSec
Integrator
Input
f+5V
781uSec
14
(U604-10)
13
Comparator
Inputs
12
+5V
Analog In
7
U604F
74HCT04
1
E
-5V
1
E
PWM-Out
(U604-8)
Initial
Welch Allyn Inc.
Date
PWM-timer
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Schematic: 620002.dsn
Rick Myers Mar 5, 1999
Rick Myers Mar 5, 1999 Title
L.Phillips
ECG A/D and Interface
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/17/99
Date:
Rev
D
Document Number
620002
Friday, July 09, 1999
Sheet
E
6
of
6
A
B
C
D
E
REV
A
Release to Production
B
Component change for
frequency modulation
Change Reset IC U3,
No Load C40
C
ECN/ECO
Description
5-39173
Init
Date
JAC
Ckd
3/18/99
LPP
ZIP
5-39353
JJC
4/15/99
5-39830
LPP
6/24/99
4
4
HRESET_n
D[0:31]
A[6:31]
VDDH
A9
VDDH
1
18
17
15
16
CLKOUT
35
34
BS_AB[0:3]
CLK
CKE
NC1
NC2
VDDH
2
R57
10
2G
1G
D1
D4
D7
D8
D9
D10
14
36
33
37
3
5
7
9
12
14
16
18
2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1
U4
74AHC244
2A4
2A3
2A2
2A1
1A4
1A3
1A2
1A1
Boot Configuration Pull-Up:
(see page 4-10)
0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0
100K
19
1
17
15
13
11
8
6
4
2
1
Vcc1
Vcc2
DQML
DQMH
4
10
41
47
T1
CS#
RAS#
WE#
CAS#
VssQ1
VssQ2
VssQ3
VssQ4
CS_n1
GPL1
GPL3
GPL2
BA
VDDH
GND
19
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
2
3
5
6
8
9
11
12
39
40
42
43
45
46
48
49
VCC
A11
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
dx1
dx4
dx7
dx8
dx9
dx10
dx11
dx12
0:
1:
0:
0:
1,0:
0:
1,1:
1,1:
0,0:
0,0:
internal arbitration
MSR(ip) = 0, interrupt prefix is 0x0000
reserved
memory controller is active after reset
16-bit boot device
reserved
IMMR base is 0xfff0-0000
DBGC mode
DBPC mode
External bus division factor
3
20
GPL0
3
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
Vss1
Vss2
GPL[0:7]
21
22
23
24
27
28
29
30
31
32
20
Boot Configuration Latch
Active during power-on
26
50
A30
A29
A28
A27
A26
A25
A24
A23
A22
A21
U5
SDRAM-1Mx16
1
25
7
13
38
44
TP53 TP54
CS_n[0:7]
VccQ1
VccQ2
VccQ3
VccQ4
1
A10
VDDH
BS_AB0
BS_AB1
VDDH
26
28
11
12
37
Vcc
NC3
Byte#
NC4
27
SRESET_n
CE#
OE#
WE#
RESET#
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
NC1
NC2
RY/BY#
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
29
31
33
35
38
40
42
44
30
32
34
36
39
41
43
45
47
14
2
AMD
N/C: 9, 10, 13, 14
AMD RY/BY#: 15
---------------MICRON N/C: 9, 10, 15
MICRON Vpp: 13
VDDH
9
10
15
1
CS_n0
GPL1
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
Gnd-a
T2
25
24
23
22
21
20
19
18
8
7
6
5
4
3
2
1
48
17
16
Gnd-b
A30
A29
A28
A27
A26
A25
A24
A23
A22
A21
A20
A19
A18
A17
A16
A15
A14
A13
A12
2
46
U6
13
FLASH-512Kx16
TP55
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620005.dsn
Jim Belesiu Mar 5, 1999
Jim Belesiu Mar 5, 1999 Title
L. Phillips
3/19/99
Z. Psenicnik
3/19/99
Size
C
J. Bello
3/19/99
Date:
Flash, SDRAM and HRESET Config Word
Rev
C
Document Number
620005
Thursday, June 24, 1999
Sheet
E
4
of
6
A
B
C
D
E
REV
ECN/ECO
Description
A
Release to Production
B
Component change for
frequency modulation
Change Reset IC U3,
No Load C40
C
5-39173
Init
Date
JAC
Ckd
3/18/99
LPP
ZIP
5-39353
JJC
4/15/99
5-39830
LPP
6/24/99
4
4
IRQ_n[0:7]
A[6:31] GPL[0:7]
A25
A26
A27
A28
A29
GPL1
D[0:31]
CS_n2
D0
D1
D2
D3
D4
D5
D6
D7
RD/WR_n
VIDEO[0:7]
VIDEO0
VIDEO1
VIDEO2
VIDEO3
VIDEO4
VIDEO5
VIDEO6
VIDEO7
3
VSYNC
HSYNC
Blank
Video-Clock-3
SPIMISO
CLKOUT
Video-Clock-25
SPIMOSI
SPISEL_n
Video-Data-x
HSYNC-x
VSYNC-x
SPI-data-in-x
SPI-clock-x
SPI-data-out-x
LED-Latch-x
GND-5
GND-20
GND-37
GND-53
GND-70
GND-87
EPF6016A
4
22
39
36
72
86
89
PA14
Key-Latch-x
PA15
U7
100
99
98
97
96
95
94
93
92
91
90
85
84
83
82
81
80
79
78
77
76
75
74
73
69
67
66
65
64
63
62
61
60
59
58
68
57
56
55
52
5
20
37
53
70
87
S7
S6
S5
S4
S3
S2
S1
S0
P100
P99
P98
P97
P96
P95
P94
P93
P92
DEV_CLRn-91
P90
DEV_OE-85
P84
nRS-83
P82
nWS-81
P80
P79
Cs-78
nCS-77
P76
P75
P74
P73
CLKUSR-69
RDYnBSY-67
P66
P65
INIT_DONE-64
GCLK-63
GCLK-62
P61
P60
P59
P58
P68
P57
P56
P55
P52
VCC-6
VCC-21
VCC-38
VCC-54
VCC-71
VCC-88
3
P1
P2
P3
P7
P8
P9
TDI-10
P11
GCLK-12
GCLK-13
P14
P15
P16
P17
TMS-18
P19
TCK-23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P40
P41
P42
P43
P44
P45
P46
P47
P48
nCEO-49
P50
TDO-51
6
21
38
54
71
88
TIN1
TIN2
TIN3
NIBP-Fault-x
PA6
PA7
Field
SPICLK
ADC-Clock-x
76.8KHz
FE-Clock-x
FE-Data-x
PB16
NIBP-Data-x
PC10
PA5
DREQ2_n
DREQ1_n
SDACK2_n
SDACK1_n
Recorder-Data-x
Recorder-Data-Latch-x
Recorder-Clock-x
Recorder-Strobe-x
Recorder-Motor-Step-x
NIBP-Offset-DAC-x
NIBP-Overpressure-x
NIBP-15mmHg-x
1
2
3
7
8
9
10
11
12
13
14
15
16
17
18
19
23
24
25
26
27
28
29
30
31
32
33
34
35
40
41
42
43
44
45
46
47
48
49
50
51
nCE
MSEL
nSTATUS
nCONFIG
CONFIG_DONE
DATA
DCLK
IRQ_n2
IRQ_n1
CS_n[0:7]
Audio DAC Resistors
R66 100K
S1
R67 49.9K
S2
R68 24.9K
SPICLK
S3
R69 12.4K
SPIMOSI
S4
R70 6.19K
S5
R71 3.09K
S6
R72 1.58K
S7
R73
NSTATUS
PC12
C121
1
VDDH
PC6
2
Speaker-Audio
2
S0
R125
1.58K
330pF
2
CONFIG_DONE
33
1
PC11
R126
TP80
787
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic:
Jim Belesiu Mar 5, 1999
620005.dsn
Jim Belesiu Mar 5, 1999 Title
FPGA
L. Phillips
3/19/99
Z. Psenicnik
3/19/99
Size
C
J. Bello
3/19/99
Date:
Rev
C
Document Number
620005
Thursday, June 24, 1999
Sheet
E
2
of
6
A
B
C
D
E
REV
ECN/ECO
Description
Init
Date
Ckd
A
Release to Production
5-39173
JAC
3/18/99
LPP
B
Component change for
frequency modulation
5-39353
JJC
4/15/99
ZIP
C
Change Reset IC U3,
No Load C40
5-39830
LPP
6/24/99
4
4
CPU PCA SW Debug Port
(aka BDM Connector)
JP5
Main PCA Connectors
VDDH
VFLS0
JP8
GND
NIBP-Fault
+3.3V_unfiltered
+3.3V_unfiltered
NIBP-Overpressure
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
GND
GND
ETCO2-Tx
ETCO2-Rx
Spare-2
NIBP-Data
NIBP-15mmHg
LED-Latch
Video-Horizontal-Sync
Spare-3
Main-Power-Sync
Vbackup
NIBP-Valve
Video-Vertical-Sync
NIBP-Offset-DAC
AC-On
Rec-Paper-Out
3
Key-Latch
RS423-CTS
Recorder-Clock
Recorder-Data
HRESET
SPI-data-in
GND
GND
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
1
3
5
7
9
GND
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
GND
GND
GND
GND
GND
GND
EKG-PWM-ADC
HRESET_n
NIBP-PWM-ADC
SRESET_n
2
4
6
8
10
DSCK
VFLS1
DSDI
DSDO
HEADER 5X2
RS423-Tx
Spare-1
RS423-Rx
SpO2-Tx
SpO2-Rx
ADC-Clock
FE-Clock
SPI-data-out
SPI-clock
Batt-ID
FE-Data
Recorder-Motor-Step
1 - Visual History Buffer Flush Status (’823 output)
2 - Reset Output (’823 input)
3 - Ground
4 - BDM Clock (’823 input)
5 - Ground
6 - Visual History Buffer Flush Status (’823 output)
7 - Reset Input (’823 Output)
8 - BDM Data Input (’823 Input)
9 - Vcc
10 - BDM Data Output (’823 Output)
On-Standby-Key
Speaker-Audio
Main-Supply-On
NIBP2-PW-ADC
3
Video-Data
Nurse-Call
Recorder-Data-Latch
Recorder-Strobe
SCL
SCD
HEADER 30x2
Test Points
2
TS_n
1
TP58
TP59
1
PA4
TA_n
1
TP60
TP61
1
PA5
Burst_n
1
TP62
TP63
1
PA6
PA14
1
TP64
TP65
1
PA7
PC6
1
TP66
TP67
1
PA15
PC13
1
TP68
TP69
1
RD/WR_n
CLKOUT
1
TP70
TP71
1
SPIMOSI
PC10
1
TP72
TP73
1
SPIMISO
PC12
1
TP74
TP75
1
SPISEL_n
PB16
1
TP76
TP77
1
SPICLK
TP78
1
Video-Clock-3
2
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic:
Jim Belesiu Mar 5, 1999
620005.dsn
Jim Belesiu Mar 5, 1999 Title
Atlas CPU Subsystem
L. Phillips
3/19/99
Z. Psenicnik
3/19/99
Size
C
J. Bello
3/19/99
Date:
Rev
C
Document Number
620005
Thursday, June 24, 1999
Sheet
E
1
of
6
A
B
C
D
E
REV
ECN/ECO
Description
A
Release to Production
B
Component change for
frequency modulation
Change Reset IC U3,
No Load C40
C
Init
Date
Ckd
5-39173
JAC
3/18/99
LPP
5-39353
JJC
4/15/99
ZIP
5-39830
LPP
6/24/99
4
4
R74
R76
2
1
1
1
2
2
3.09K
R130
3.09K
R131
TA_n
TEA_n
1
VDDH
2
DSCK
1.58K
R132
8
7
6
5
SPI-clock-x
SPI-data-out-x
LED-Latch-x
SPI-data-in-x
NL
R133
R104
100
1.58K
R134
MODCK1
2
C81
330pF
TRST_n
Recorder-Data-x
Recorder-Strobe-x
Recorder-Clock-x
Recorder-Data-Latch-x
C122
22pF
R78
100
2
C
C103
330pF
8
7
6
5
1
Recorder-Motor-Step-x
76.8KHz
TEXP
PC4
NL
100
C69
330pF
IRQ_n0
R120
2
C68
330pF
2
PC5
C67
330pF
2
C66
330pF
1
1
1
NIBP-Offset-DAC-x
PC7
2
8
7
6
5
1
2
3
4
Recorder-Motor-Step
Main-Power-Sync
Main-Supply-On
On-Standby-Key
R81
100
1
2
3
4
8
7
6
5
PB19
PC13
PB17
TIN3
C74
330pF
C75
330pF
TIN1
NIBP-15mmHg-x
NIBP-Overpressure-x
TIN2
1
FE-Clock-x
FE-Data-x
ADC-Clock-x
NIBP-Fault-x
8
7
6
5
C76
330pF
2
C77
330pF
100
PWM Input Timer Signals
1
8
7
6
5
1
EKG-PWM-ADC
NIBP-15mmHg
NIBP-Overpressure
NIBP-PWM-ADC
C104
330pF
C105
330pF
100
2
1
C102
330pF
VDDH
2
HSYNC-x
VSYNC-x
PC8
NIBP-Data-x
1
8
7
6
5
1
C97
330pF
1.58K
Video-Data-x
1
Video-Data
2
C93
330pF
R108
NL
2
1
2
3
4
IP_B4
IP_B5
IP_B6
IP_B7
R107
R151
215
2
C89
330pF
100
MODCK2
R152
1
Spare-1
WAIT_B_n IP_B2
IP_B3
1.58K
1
8
7
6
5
1
2
3
4
FE-Clock
FE-Data
ADC-Clock
NIBP-Fault
3
1.58K
RSTCONF_n
2
C96
330pF
R105
NL
2
6
7
8
9
VDDH
ALE_B
1
SPKROUT
TS_n
BG_n
Burst_n
MODCK (0,0) Selects 32KHz as main oscillator
RSTCONF = 0 allows ’823 to sample data bus
during HRESET
100
1
1
2
1
2
2
C95
330pF
2
10
C73
330pF
R90
1
2
3
4
10K
C92
330pF
AC-On
1
5
PC9
PB18
Key-Latch-x
PA6
R88
R16
2
R129
VDDH
8
7
6
5
1
2
3
4
C94
330pF
VDDH
1
2
2
C91
330pF
NIBP-Offset-DAC
Rec-Paper-Out
1
C
2
EKG-PWM-ADC
Spare-3
Batt-ID
PB16
C90
330pF
1
10
3.09K
BB_n
100
1
2
3
4
Video-Horizontal-Sync
Video-Vertical-Sync
Batt-ID
NIBP-Data
1
6
7
8
9
10K
C88
330pF
2
NIBP-PWM-ADC
Rec-Paper-Out
PC11
TMS
C87
330pF
1
1
2
3
4
R86
5
R128
BI_n
R87
1
VDDH
C86
330pF
2
NIBP-Overpressure
AC-On
PA15
ETCO2-Rx
1
6
7
8
9
1
RS423-Rx
NIBP-Fault
SpO2-Rx
NIBP-15mmHg
C
C80
330pF
Recorder-Data
Recorder-Strobe
Recorder-Clock
Recorder-Data-Latch
2
10
6.19K
VDDH
VDDH
C65
330pF
1
2
3
4
2
1
2
3
4
10K
SMRXD1
SMTXD1
RXD2
TXD2
R85
R49
5
C79
330pF
2
2
C78
330pF
C
VDDH
1
10K
10
8
7
6
5
1
2
3
4
2
IRQ_n3
IRQ_n2
IRQ_n1
IRQ_n0
C72
330pF
SPI-clock
SPI-data-out
LED-Latch
SPI-data-in
1
6
7
8
9
R127
R82
1
3
IRQ_n7
IRQ_n6
IRQ_n5
IRQ_n4
BR_n
6.19K
2
VDDH
5
2
IRQ_n[0:7]
C71
330pF
2
1
C70
330pF
GPL[0:7]
1
2
3
4
VDDH
1
2
3
4
RS423-CTS
Nurse-Call
Key-Latch
NIBP-Valve
C
R83
100
R80
PC10
NIBP2-PW-ADC
GPL5
GPL4
C64
330pF
1
10
C63
330pF
2
6
7
8
9
C62
330pF
2
10K
1
PA4
PA5
PC12
PA7
1
ETCO2-Rx
ETCO2-Tx
RS423-Rx
RS423-Tx
1
2
3
4
C57
330pF
R77
R103
5
C56
330pF
1
2
3
4
2
VDDH
I2CSDA
I2CSCL
SMRXD2
SMTXD2
2
C
C55
330pF
1
10
C54
330pF
8
7
6
5
2
VFLS1
DSDI
SRESET_n
RS423-CTS
1
6
7
8
9
10K
2
SCL
SCD
SPI-data-in
VFLS0
1
1
2
3
4
1
5
1
2
3
4
SCD
SCL
SpO2-Rx
SpO2-Tx
2
VDDH
R116
C
C124
330pF
1
1
1
C123
330pF
IP_B[2:7]
C125
330pF
C126
330pF
100
2
10
FRZ
DREQ1_n
DREQ2_n
On-Standby-Key
2
6
7
8
9
2
5
1
2
3
4
Spare-1
Spare-2
Spare-3
NIBP2-PW-ADC
1
R91 10K
2
VDDH
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic:
Jim Belesiu Mar 5, 1999
Jim Belesiu Mar 5, 1999 Title
L. Phillips
3/19/99
Z. Psenicnik
3/19/99
Size
C
J. Bello
3/19/99
Date:
620005.dsn
I/O Filters
Rev
C
Document Number
620005
Thursday, June 24, 1999
Sheet
E
3
of
6
A
B
C
D
E
REV
ECN/ECO
Description
A
Release to Production
5-39173
B
Component change for
frequency modulation
Change Reset IC U3,
No Load C40
5-39353
5-39830
C
Init
Date
JAC
Ckd
3/18/99
LPP
JJC
4/15/99
ZIP
LPP
6/24/99
4
4
BS_AB[0:3]
Burst_n
RD/WR_n
GPL[0:7]
2
CS_n0
CS_n1
CS_n2
CS_n3
CS_n4
CS_n5
CS_n6
CS_n7
D12
A14
B14
A15
B16
D13
C14
B15
CLK-SHIFT / PD3
HSYNC / LOAD / PD4
VSYNC / FRAME / PD5
BLANK / LOE / LCD_AC / PD6
FIELD / LD0 / PD7
VD7 / LD8 / PD15
VD6 / LD7 / PD14
VD5 / LD6 / PD13
VD4 / LD5 / PD12
VD3 / LD4 / PD11
VD2 / LD3 / PD10
VD1 / LD2 / PD9
VD0 / LD1 / PD8
TS_n
TA_n
TEA_n
BI_n
BR_n
BG_n
BB_n
PC15 / DREQ1_n / L1ST5
PC14 / DREQ2_n / RTS2_n / L1ST6
PC13 / L1ST7
PC12 / L1RQA / L1ST8
PC11 / USBRXP
PC10 / TGATE1_n / USBRXN
PC9 / CTS2_n
PC8 / CD2_n / TGATE1_n
PC7 / USBTXP
PC6 / USBTXN
PC5 / L1TSYNCA / SDACK1_n
PC4 / L1RSYNCA
SPKROUT
FRZ
P16
R15
R14
R13
N10
T9
T8
P8
T6
R6
N14
P15
P14
T15
T14
P12
N11
T11
T10
R9
R7
P7
N7
R5
R16
T16
P13
T13
R10
P9
R8
N8
T5
N6
P6
T4
PA15
PA14
RXD2
TXD2
SMRXD2
SMTXD2
3
PA7
PA6
PA5
PA4
SPISEL_n
SPICLK
SPIMOSI
SPIMISO
I2CSDA
I2CSCL
SMTXD1
SMRXD1
SDACK1_n
SDACK2_n
PB19
PB18
PB17
PB16
DREQ1_n
DREQ2_n
PC13
PC12
PC11
PC10
PC9
PC8
PC7
PC6
PC5
PC4
N4
P3
P2
R1
R2
R4
T3
P5
R3
N5
T2
P4
T1
OP2 / MODCK1 / STS_n
OP3 / MODCK2 / DSDO
D6
B6
C4
B8
A8
C8
D7
A9
B9
C9
C7
D8
TCK / DSCK
TMS
TDI / DSDI
TDO / DSDO
TRST_n
T12
R12
R11
N12
P11
XTAL
EXTAL
XFC
CLKOUT
EXTCLK
TEXP
A4
A5
B2
D1
A6
D5
NC4
NC5
PORESET_n
RSTCONF_n
HRESET_n
SRESET_n
VDDL1
VDDL2
VDDL3
VDDL4
WAIT_B_n
ALE_B / DSCK / AT1
IP_B0 / IWP0 / VFLS0
IP_B1 / IWP1 / VFLS1
IP_B2 / IOIS16_B_n / AT2
IP_B3 / IWP2 / VF2
IP_B4 / LWP0 / VF0
IP_B5 / LWP1 / VF1
IP_B6 / DSDI / AT0
IP_B7 / PTR_n / AT3
U1
CS_n[0:7]
CS0_n
CS1_n
CS2_n
CS3_n
CS4_n
CS5_n
CS6_n / CE1_B_n
CS7_n / CE2_B_n
IRQ_n0
IRQ_n1
IRQ_n2
IRQ_n3
SPKROUT
IRQ_n4
IRQ_n5
IRQ_n6
FRZ
IRQ_n7
N1
N2
D9
C3
B7
D4
D3
C2
A10
N3
IRQ0_n
IRQ1_n
RSV_n / IRQ2_n
DP0 / IRQ3_n
KR_n / IRQ4_n / RETRY / SPKROUT
DP1 / IRQ4_n
DP2 / IRQ5_n
DP3 / IRQ6_n
FRZ / IRQ6_n
IRQ7_n
GPL0
GPL1
GPL2
GPL3
GPL4
GPL5
GPL6
E13
C16
C15
D14
D11
B13
C12
TSIZ0
TSIZ1
F15
E15
C13
B10
A13
D10
A12
C11
B12
B11
C10
A11
D16
E16
D15
F13
TSIZ0 / REG_n
TSIZ1
RD / WR_n
Burst_n
BDIP_n / GPL_B5_n
TS_n
TA_n
TEA_n
BI_n
BR_n
BG_n
BB_n
WE0_n / BS_AB0_n / IORD_n
WE1_n / BS_AB1_n / IOWR_n
WE2_n / BS_AB2_n / PCOE_n
WE3_n / BS_AB3_n / PCWE_n
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
MPC823ZC
GND1
GND2
GND3
GND4
GND5
GND6
GND7
GND8
GND9
GND10
GND11
GND12
GND13
GND14
GND15
GND16
GND17
GND18
GND
VSSSYN
KAPWR VDDSYN
WKHPRQVWHU
B3
C5
B5
B4
E14
J13
PA15 / USBRXD
PA14 / USBOE_n
PA13 / RXD2
PA12 / TXD2
PA9 / L1TXDA / SMRXD2
PA8 / L1RXDA / SMTXD2
PA7 / CLK1 / TIN1 / L1RCLKA / BRGO1
PA6 / CLK2 / TOUT1_n / TIN3
PA5 / CLK3 / TIN2 / L1TCLKA / BRGO2
PA4 / CLK4 / TOUT2_n / TIN4
MPC823
VSSSYN
VSSSYN1
VDDSYN
KAPWR
A7
G1
J16
T7
IRQ_n[0:7]
CS_n[0:7]
PB31 / SPISEL_n / LCD_A
PB30 / SPICLK
PB29 / SPIMOSI
PB28 / SPIMISO
PB27 / I2CSDA / BRGO1
PB26 / I2CSCL / BRGO2
PB25 / SMTXD1
PB24 / SMRXD1
PB23 / SMSYN1_n / SDACK1_n
PB22 / SMSYN2_n / SDACK2_n
PB19 / L1ST1 / LCD_B
PB18 / RTS2_n / L1ST2
PB17 / L1ST3 / LCD_C
PB16 / L1RQA / L1ST4
A1
A2
B1
A3
VDDL
VDDH17
VDDH18
VDDH19
VDDH20
VDDH21
VDDH22
VDDH23
VDDH24
VDDH25
VDDH26
VDDH27
VDDH28
VDDH29
VDDH30
GND25
GND26
GND27
GND28
GND29
GND30
GND31
GND32
GND33
GND34
GND35
GND36
GND37
GND38
GND39
GND40
GND41
GND42
Attach GND and
VSSSYN at a
single point.
J6
J7
J8
J9
J10
J11
K6
K7
K8
K9
K10
K11
L6
L7
L8
L9
L10
L11
J5
J12
K5
K12
L5
L12
M5
M6
M7
M8
M9
M10
M11
M12
VDDH1
VDDH2
VDDH3
VDDH4
VDDH5
VDDH6
VDDH7
VDDH8
VDDH9
VDDH10
VDDH11
VDDH12
VDDH13
VDDH14
F6
F7
F8
F9
F10
F11
G6
G7
G8
G9
G10
G11
H6
H7
H8
H9
H10
H11
Place VSSSYN
on a split
plane beneath
the MPC823 PLL
section
NC1
NC2
NC3
N9
NC6
N13
NC7
P1
NC8
P10
NC9
E5
E6
E7
E8
E9
E10
E11
E12
F5
F12
G5
G12
H5
H12
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
M13
N15
N16
M15
L13
M16
M14
L14
L15
L16
K14
K13
G13
K15
J15
J14
G14
H15
H13
H14
F14
K16
G16
H16
G15
F16
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
A16
C1
C6
VDDH
M1
L1
J2
J1
L2
H1
F1
E1
M2
K2
K3
K1
M4
M3
J3
J4
H2
K4
H3
G2
G3
F2
H4
L4
F3
G4
E4
L3
F4
E2
D2
E3
A[6:31]
A[6:31]
IRQ_n[0:7]
GPL_A0_n / GPL_B0_n
GPL_A1_n / GPL_B1_n / OE_n
GPL_A2_n / GPL_B2_n / CS2_n
GPL_A3_n / GPL_B3_n / CS3_n
UPWAITA / GPL_A4_n / AS_n
UPWAITB / GPL_B4_n
GPL_A5_n
D[0:31]
D[0:31]
GPL7
TS_n
TA_n
TEA_n
BI_n
BR_n
BG_n
BB_n
BS_AB0
BS_AB1
BS_AB2
BS_AB3
TSIZ[0:1]
TSIZ[0:1]
3
BS_AB[0:3]
GPL[0:7]
VIDEO[0:7]
Field
2
VIDEO0
VIDEO1
VIDEO2
VIDEO3
VIDEO4
VIDEO5
VIDEO6
VIDEO7
IP_B7
IP_B6
IP_B5
IP_B4
IP_B3
IP_B2
Blank
VSYNC
PORESET_n
RSTCONF_n
HSYNC
HRESET_n
SRESET_n
Video-Clock-3
XTAL
EXTAL
MODCK1
CLKOUT
MODCK2
XFC
EXTCLK
TEXP
DSCK
DSDI
IP_B[2:7]
TMS
IP_B[2:7]
DSDO
VFLS0
VFLS1
ALE_B
WAIT_B_n
TRST_n
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620005.dsn
Jim Belesiu Mar 5, 1999
Jim Belesiu Mar 5, 1999 Title
L. Phillips
3/19/99
Z. Psenicnik
3/19/99
Size
C
J. Bello
3/19/99
Date:
PowerPC MPC823 CPU
Rev
C
Document Number
620005
Thursday, June 24, 1999
Sheet
E
5
of
6
A
B
C
D
E
REV
MPC823 PLL
Supply
+3.3V_unfiltered
1
Ckd
5-39173
3/18/99
B
Component change for
frequency modulation
Change Reset IC U3,
No Load C40
5-39353
JJC
4/15/99 ZIP
5-39830
LPP
6/24/99
JAC
LPP
2
Ferrite-120
1
L2
Date
Release to Production
FM Section for spreading RF
emissions. R2 selects the
deviation.
VDDSYN
Init
A
C
to CPU PLL
pin B1
ECN/ECO
Description
C2
100nF
1
C107
NL
4
From FPGA
R2
1K
XFCX
PA14
1
2
2
2
6.8uF
R1
100
2
C18
C117
330pF
2
C17
100nF
1
1
1
4
C1
1.5uF
VSSSYN
2
PLL Filter
Capacitor
System Clock
to CPU PLL pins A1
and A2
XFC
R50 200K
xtalp
VDDH
XTAL
Place decoupling capacitors next to CPU VDDSYN pin B1 and VSSSYN pin A1 and A2
3.9M
FPGA Clock
R51
Use separate PPL VDDSYN power plane from 3.3V plain
EXTAL
Split ground plane under these components
R52
Y1
1536*830 < XFC < 1536*1470 pf Value selected for the final mulitplication ratio
1
Load C107 w/1.5uF and unload C1 for non-FM clocking
1
32768Hz
C109
22pF
2
2
C108
22pF
2
Video-Clock-25
G1
2
1
1
Place these components
as close to the
processor as possible
OE
GND
VDD
OUT
R94
4
3
33
EXTCLK
NL
VCLK
R117
200K
SG-636PCE-25.175M
VDDH
FLASH decoupling caps
VDDL
U2
3.0V
1
1
1
1
C6
100nF
C7
100nF
C106
100nF
2
2
C5
100nF
3
DRAM decoupling caps
VDDH
VDDH
1
1
C22
100nF
Oscillator
decoupling
cap
C128
100nF
2
2
6.8uF
C120
2
1
C21
100nF
2
C20
100nF
2
C19
100nF
2
2
C111
6.8uF
1
1
1
2
2
1
2
330pF
1
100nF
2
2
6.8uF
1
6.8uF
C16
C4
100nF
2
C110
6.8uF
1
330pF
C116
1
C115
330pF
2
C14
6.8uF
C114
1
C13
2
1
1
C12
3
1
2
Input Reset_n
2
2
Gnd
2
’244
decoupling cap
VDDH
1
to CPU
System
2
1
+3.3V_unfiltered
VDDH
1
RF Suppression
L1
Ferrite-120
3
MPC823 decoupling caps
1
C32
100nF
2
C31
100nF
2
C30
100nF
2
C29
100nF
1
1
1
C28
100nF
2
C112
6.8uF
2
R119
NL
2
C130
NL
1
Q1
NL
1
2
HRESET
1
Q1-Base
1
VDDH
3
R118
NL
2
VDDH
FPGA decoupling caps
R124
12.4K
1
1
2
2
C15
100nF
2
1
2
1
1
2
C44
100nF
R123
U3
2.0V
Input Reset_n
PORESET_n
C40
100nF
2
3
C119
330pF
1
2
330pF
C37
6.8uF
2
C36
100nF
2
1
C118
1
1
2
Gnd
2
1
2
C43
100nF
100K
R122
1
2
1
1
100nF
2
6.8uF
C39
C42
100nF
PORESET-Input
1
C38
1
HRESET_n
C41
100nF
NL
RF Suppression
L3
Ferrite-120
Vbackup
C113
6.8uF
R121
2
to CPU 32KHz
Clock
Supply RF/EMI
Filters and Reset
Circuits
2
2
VDDH
1.58K
KAPWR
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic:
Jim Belesiu Mar 5, 1999
Jim Belesiu Mar 5, 1999 Title
L. Phillips
3/19/99
Z. Psenicnik
3/19/99
Size
C
J. Bello
3/19/99
Date:
620005.dsn
Power Distribution, Clocks and Reset
Rev
C
Document Number
620005
Thursday, June 24, 1999
Sheet
E
6
of
6
A
B
C
D
E
REV
ECN/ECO
Description
A
Release to Production
Init
5-39251
Date
Ckd
3/23/99
JAC
B
No Load D16
5-39485
LPP
4/28/99
C
D13 to Low Profile, R51 to 316
5-39994
LPP
7/23/99
LPP
LPP
Break-Away PCB Section
Flag Pole Area
4
4
SW9
Trend
Trend-sw
2
SW11
Lead Select
Lead-Select-sw
1
2
SW13
Print
Print-sw
1
2
1
ACON-LED
Keyboard Circuits
On/Off-sw
Place capacitors
by connector
VCC
On/Off-sw
Clock1
Trend
Key-Clock-b
Lead-Select
Key-Latch-b
VCC
Key-data-b
Print
J2A
Trend
Lead-Select
Print
1
2
3
4
5
4.7uF
VCC
flex-cable-5
C27
+
2
ACLED-1
1
2
R66 1.21K
AC On LEDs
AC-On-x
1
2
1
R67 1.21K
2
ACLED-2
1
2
flex-cable-5
Front Panel - A
4.7uF
1
5x5 Green
D1
Silence-Switch
C9
+
R65 1.21K
2
J2xA
1
2
3
4
5
Key-Data-b
1
D2
5x5 Green
TP182
R68 1.21K
J1
U26
1
3
5
7
9
11
13
3
R51
316
R71
100
Key-Clock
Key-Latch-n
Key-Data
LED-Data
LED-Enable
2
4
6
8
10
12
14
2
4
6
8
11
13
15
17
LED-Latch-n
HEADER 7X2
1
4
3
2
1
19
R1
2.2K
1
On-Led
u26-18
Key-Latch-b
18
16
14
12
9
7
5
3
FP-Common
3
LED-Data-b
u26-9
u26-7
LED-Latch-1
LED-Latch-2
1G
2G
74HC244
I705144
8
5
6
7
D13
T1 (3mm) Green
1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4
1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4
LED_TP_Enable
On/Standby
TP183
2
VCC
R72
100
LED_TP_Data_In
Clock2
Silence Button
Break-Away PCB
Section
LED_TP_Clock
LED_TP_Latch
LED_TP_Data_Out
R2
2.15K
U1D
D10-Vcc
U1A
9
Front Panel - B
8
1
LED_TP_enable
2
TP2
D10-C
VCC
2
D10
1
u19-out
74HC04
74HC04
J3A
NIBP LED Circuits
U1E
U1B
11
LED_NIBP_Enable
10
3
2
4
LED_NIBP_enable
TP3
TP184
R73
100
Silence-LED
1
2
3
4
5
Silence-LED
Silence-Switch
LED_NIBP_Data_In
Clock3
74HC04
74HC04
12
5
Sil-Sw-a
SW22
Sil-Sw-b
flex-cable-5
1
6
LED_SPO2_enable
TP4
Silence
Switch
1
Front Panel - C
2
SW28
u13-out
74HC04
2
2
flex-cable-5
LED_NIBP_Data_Out
U1C
13
1
2
3
4
5
LED_NIBP_Clock
LED_NIBP_Latch
U1F
T1 (3mm) Red
Silence LED
J3xA
74HC04
I705124
LED_SpO2_Enable
VCC
VCC
VCC
VCC
VCC
LED_SpO2_Data_In
LED_SpO2_Clock
+
C1
+
4.7uF
VCC
C8
+
4.7uF
VCC
C10
+
4.7uF
VCC
C11
+
4.7uF
VCC
Place one tantalum
cap near each seven
segment LED group
C28
4.7uF
VCC
VCC
VCC
VCC
LED_SpO2_Latch
Front Panel - D
VCC
VCC
C2
C3
C4
C5
C6
C7
C12
C13
C14
C15
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
1
1
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
9
Place one
ceramic cap
near each
IC
VCC
10
8
7
6
5
Initial
Drawn
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
0.1uF
2
3
4
1
Pull-up Resistor Network Detail
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic:
Jim Belesiu 3/15/99
Jim Belesiu 3/15/99
Title
Front Panel Display Board
3/24/99
Size
C
Document Number
620008
3/24/99
Date:
L. Phillips
3/24/99
Z. Psenicnik
J. Bello
Rev
C
Friday, July 23, 1999
Sheet
E
1
of
5
A
B
C
D
E
REV
ECN/ECO
Description
A
Release to Production
5-39251
B
No Load D16
5-39485
C
D13 to Low Profile, R51 to 316
5-39994
Init
Date
Ckd
3/23/99
JAC
LPP
4/28/99
LPP
LPP
LPP
7/23/99
4
4
VCC
TP66
SW24
1
2
9
R5
10K
7
6
VCC
C
ETCO2 Alarm On-Off
8
5
2
10
SW23
1
10
5
TP67 TP68 TP69 TP70 TP71
2
HR Alarm On-Off
LH Select
LH Adjust (+)
SW3
1
SW5
1
10
11
12
13
14
3
4
5
6
2
2
15
1
2
SER
A
B
C
D
E
F
G
H
CLK
INH
SH/LD
R6
10K
QH
QH
9
u2-9
TP77
QRS Volume (+)
2
QRS Volume (-)
SW6
1
2
Alarm Volume (+)
SW8
1
Alarm Volume (-)
SW10
1
Time
SW12
1
7
SW7
1
QRSvol+sw
QRSvol-sw
Alarmvol+sw
Alarmvol-sw
Time-sw
74HC165
2
TP178
2
2
15
1
2
QH
CLK
INH
SH/LD
QH
9
3
7
2
1
Print
Print
SER
A
B
C
D
E
F
G
H
74HC165
Lead-Select
Lead-Select
10
11
12
13
14
3
4
5
6
U3-4
Trend
Trend
TP72 TP73 TP74 TP75 TP76
U3
SW4
1
3
LH Adjust (-)
5
10
1
2
3
4
Pull-up Resistor Network Detail
4
3
2
1
SW2
1
u2-10
etco2-sw
HRalarm-sw
LHselect-sw
LHAdjust+sw
LHAdjust-sw
9
8
7
6
2
C
SW1
1
1
2
3
4
6
7
8
9
U2
VCC
D48
BAV99L
SW26
1
2
R7
10K
C
NIBP Alarm On-Off
5
2
10
SW25
1
2
3
On / Standby
SpO2 Alarm On-Off
2
SW15
1
2
SW16
1
2
SW17
1
2
4
3
2
1
9
8
7
6
TP79 TP80 TP81 TP82
U4
10
11
12
13
14
3
4
5
6
NIBPalarm-sw
SpO2alarm-sw
RHselect-sw
RHadjust+sw
RHadjust-sw
BPauto-sw
BPstart/stop-sw
RH Select
SW18
1
TP84 TP85 TP86
2
2
15
1
SER
A
B
C
D
E
F
G
H
CLK
INH
SH/LD
SW14
1
2
SW27
1
2
On/Off-sw
TP83
QH
QH
9
Key-Data-b
2
7
TP87
RH Adjust (+)
SW19
1
74HC165
Key-Latch-b
2
RH Adjust (-)
TP88
BP Auto
SW20
1
2
BP Start-Stop
SW21
1
2
Clock1
Key-Clock-b
Silence-Switch
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
Welch Allyn Inc.
Date
Schematic: 620008.dsn
Jim Belesiu 3/15/99
Jim Belesiu 3/15/99
Title
Front Panel
Keyboard
Scanner
Display Board
3/23/99
Size
C
Document Number
620008
62008
3/23/99
Date:
L. Phillips
3/23/99
Z. Psenicnik
J. Bello
D
Rev
C
A
Friday, July 23, 1999
Sheet
E
Jim Belesiu 3/15/99
Jim Belesiu 3/15/99
12
of
5
A
B
C
D
E
REV
A
ECN/ECO
Description
Release to Production
5-39251
B
No Load D16
5-39485
C
D13 to Low Profile, R51 to 316
5-39994
Init
Date
JAC
Ckd
3/23/99
LPP
LPP
4/28/99
LPP
LPP
7/23/99
4
4
VCC
TP14
U14
LED-Data-b
LED_TP_Data_In
14
11
10
TP5
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
5
6
7
8
u14-15
u14-1
u14-2
u14-3
u14-4
u14-5
u14-6
u14-7
15
1
2
3
4
5
6
7
Temperature Tens
R26
150
d34-g
d34-f
d34-e
d34-d
d34-c
d34-b
d34-a
4
3
2
1
9
TP21
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
1
6
R29
150
74HC595A
3
2
4
5
8
9
10
7
U15
14
A
F
11
10
B
G
E
C
12
13
D
Anode-1
Anode-2
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
u15-15
u15-1
u15-2
u15-3
8
5
6
7
1
4
3
2
u15-4
u15-5
u15-6
u15-7
5
6
7
8
4
3
2
1
Temperature Ones
D35
d35-g
3
"G"
d35-f
2
A
"F"
d35-e
4
B
"E" F
d35-d
5
G
"D"
d35-c
8
C
"C" E
d35-b
9
D
d35-a 10 "B"
d35-dp 7 "A"
Dp
9
1
6
R30
150
74HC595A
TP25
7-SEG LED 0.36
TP12
VCC
R27
150
D34
4
3
2
1
5
6
7
8
TP10
VCC
R28
150
U16
14
11
10
12
13
Anode-1
Anode-2
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
u16-15
u16-1
u16-2
u16-3
8
5
6
7
1
4
3
2
u16-4
u16-5
u16-6
5
6
7
8
4
3
2
1
Temperature Tenths
D36
3
"G"
2
A
"F"
4
B
"E" F
5
G
"D"
8
C
"C" E
9
D
"B"
10
"A"
7
Dp
d36-g
d36-f
d36-e
d36-d
d36-c
d36-b
d36-a
9
1
6
R31
150
74HC595A
Anode-1
Anode-2
TP30
7-SEG LED 0.36
7-SEG LED 0.36
3
3
VCC
VCC
VCC
Degree C
R53
215
d47-c
2
u15-9
D47
1
Degree F
R52
215
VCC
d46-c
u16-7
2
D46
1
VCC
TP34
TP22
T1.75 (5mm) Green
T1.75 (5mm) Green
TP35
u14-9
Temperature Hundreds
D33
3
"G"
2
A
"F"
4
B
"E" F
5
G
"D"
8
C
"C" E
9
D
"B"
10
"A"
7
Dp
TP33
d33-c
d33-b
u16-9
TP37
1
6
VCC
Anode-1
Anode-2
7-SEG LED 0.36
TP38
VCC
u17-15
u17-1
u17-2
u17-3
U17
2
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
8
5
6
7
u17-4
u17-5
u17-6
SpO2 Pulse Rate Hundreds
D37
d37-g
3
"G"
d37-f
2
A
"F"
d37-e
4
B
"E" F
d37-d
5
G
"D"
d37-c
8
C
"C" E
d37-b
9
D
d37-a 10 "B"
"A"
7
Dp
1
4
3
2
5
6
7
8
4
3
2
1
9
TP50
74HC595A
TP40
VCC
R32
150
1
6
R35
150
Anode-1
Anode-2
U18
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
u18-15
u18-1
u18-2
u18-3
8
5
6
7
u18-4
u18-5
u18-6
u18-7
1
4
3
2
5
6
7
8
4
3
2
1
d38-g
d38-f
d38-e
d38-d
d38-c
d38-b
d38-a
9
SpO2 Pulse Rate Tens
D38
3
"G"
2
A
"F"
4
B
"E" F
5
G
"D"
8
C
"C" E
9
D
"B"
10
"A"
7
Dp
1
6
R36
150
74HC595A
TP42
VCC
R33
150
Anode-1
Anode-2
SpO2 Pulse Rate Ones
R34
150
U19
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
u19-15
u19-1
u19-2
u19-3
8
5
6
7
u19-4
u19-5
u19-6
u19-7
1
4
3
2
5
6
7
8
4
3
2
1
D39
d39-g
d39-f
d39-e
d39-d
d39-c
d39-b
d39-a
9
1
6
R37
150
74HC595A
TP52
3
2
4
5
8
9
10
7
TP64
7-SEG LED 0.36
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
2
A
F
B
G
E
C
D
Anode-1
Anode-2
7-SEG LED 0.36
7-SEG LED 0.36
VCC
VCC
VCC
u17-9
TP60
u18-9
TP61 TP62 TP63
TP59
LED-TP-Enable
LED_TP_Enable
Clock2
LED_TP_Clock
LED-Latch-1
LED_TP_Latch
u19-out
LED_TP_Data_Out
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620008.dsn
Jim Belesiu 3/15/99
Jim Belesiu 3/15/99
Title
Temp/Pulse LED Drivers
Document Number
620008
L. Phillips
3/24/99
Z. Psenicnik
3/24/99
Size
C
J. Bello
3/24/99
Date:
Rev
C
Friday, July 23, 1999
Sheet
E
3
of
5
A
B
C
D
E
REV
A
ECN/ECO
Description
Release to Production
5.-39251
B
No Load D16
5-39485
C
D13 to Low Profile, R51 to 316
5-39994
Init
Date
JAC
Ckd
3/23/99
LPP
LPP
4/28/99
LPP
LPP
7/23/99
VCC
4
VCC
TP89
U20
LED_NIBP_Data_In
u19-out
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
u20-15
u20-1
u20-2
u20-3
8
5
6
7
u20-4
u20-5
u20-6
5
6
7
8
d40-g
d40-f
d40-e
d40-d
d40-c
d40-b
d40-a
4
3
2
1
9
TP105
74HC595A
TP91
D40
1
4
3
2
10
9
1
2
4
6
7
5
3
8
R41
680
A
F
11
10
B
G
E
C
12
13
D
Anode-1
Anode-2
SER
QA
QB
QC
QD
QE
QF
QG
QH
SRCLK
SRCLR
RCLK
G
QH
15
1
2
3
4
5
6
7
Systolic Tens
R39
680
U21
14
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
4
VCC
Systolic Hundreds
R38
680
8
5
6
7
u21-15
u21-1
u21-2
u21-3
u21-4
u21-5
u21-6
u21-7
D41
1
4
3
2
5
6
7
8
d41-g
d41-f
d41-e
d41-d
d41-c
d41-b
d41-a
4
3
2
1
9
TP101
10
9
1
2
4
6
7
5
3
8
R42
680
74HC595A
TP93
7-SEG LED 0.5
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
U22
14
A
F
11
10
B
G
E
SER
C
SRCLK
SRCLR
12
13
D
RCLK
G
Anode-1
Anode-2
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
Systolic Ones
R40
680
8
5
6
7
U22-15
u22-1
u22-2
u22-3
u22-4
u22-5
u22-6
u22-7
D42
1
4
3
2
5
6
7
8
d42-g
d42-f
d42-e
d42-d
d42-c
d42-b
d42-a
4
3
2
1
9
TP103
3
8
R43
680
74HC595A
10
9
1
2
4
6
7
5
7-SEG LED 0.5
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
A
F
B
G
E
C
D
Anode-1
Anode-2
7-SEG LED 0.5
TP180
NIBP Alarm On/Off
R54
2.15K
u20-7
d15-c 2
D15
BP Sys Hi
R55
215
1
d6-c
VCC
D6
2
1
d8-c
VCC
TP110
2
D8
1
VCC
TP111
T1 (3mm) Red
T1.75 (5mm) Green
u20-out
TP112
BP Sys Lo
R56
215
T1.75 (5mm) Green
u21-out
TP113
TP181
u22-out
3
3
VCC
VCC
TP114
U23
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
8
5
6
7
u23-15
u23-1
u23-2
u23-3
u23-4
u23-5
u23-6
u23-7
d43-g
d43-f
d43-e
d43-d
d43-c
d43-b
d43-a
4
3
2
1
9
TP126
74HC595A
TP116
D43
1
4
3
2
5
6
7
8
VCC
Diastolic Hundreds
R44
680
10
9
1
2
4
6
7
5
3
8
R47
680
TP132
U24
14
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
A
F
11
10
B
G
E
C
12
13
D
Anode-1
Anode-2
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
8
5
6
7
u24-15
u24-1
u24-2
u24-3
u24-4
u24-5
u24-6
u24-7
4
3
2
1
3
8
R48
680
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
U25
14
A
F
11
10
B
G
E
SER
C
SRCLK
SRCLR
12
13
D
RCLK
G
Anode-1
Anode-2
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
8
5
6
7
u25-15
u25-1
u25-2
u25-3
u25-4
u25-5
u25-6
u25-7
2
D11
4
3
2
1
680
R49
R57
215
d14-c
VCC
TP137
10
9
1
2
4
6
7
5
3
8
TP130
TP136
TP141
d45-g
d45-f
d45-e
d45-d
d45-c
d45-b
d45-a
9
BP Dia Lo
1
D45
1
4
3
2
5
6
7
8
74HC595A
BP Dia Hi
R58
215
Diastolic Ones
R46
7-SEG LED 0.5
d11-c
2
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
A
F
B
G
E
C
D
Anode-1
Anode-2
7-SEG LED 0.5
D14
1
VCC
T1.75 (5mm) Green
T1.75 (5mm) Green
TP139
u23-out
TP140
u24-out
LED-Latch-2
LED_NIBP_Latch
2
10
9
1
2
4
6
7
5
7-SEG LED 0.5
VCC
TP138
d44-g
d44-f
d44-e
d44-d
d44-c
d44-b
d44-a
9
TP128
TP118
D44
1
4
3
2
5
6
7
8
74HC595A
680
Diastolic Tens
R45
680
LED_NIBP_Clock
Clock3
LED_NIBP_Enable
LED-NIBP-Enable
2
TP142
u25-out
R59
1.21K
TP1
U13
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
74HC595A
15
1
2
3
4
5
6
7
u13-15
u13-1
u13-2
u13-3
u13-4
u13-5
u13-6
u13-7
T1.75 (5mm) Green
1
D22
Qx
2
T1.75 (5mm) Green
D24
Q1
2
2
1
1
D26
Q3
T1.75 (5mm) Green
1
2
D25
Q5
T1.75 (5mm) Green
2
D28
Q10
T1.75 (5mm) Green
1
1
2
D29
Q15
T1.75 (5mm) Green
VCC
2
2
u13-out
LED_NIBP_Data_Out
D30
Q30
T1.75 (5mm) Green
TP179
T1.75 (5mm) Green
D31
Q60
1
VCC
1
Silence-LED
R24
150
5
6
7
8
4
3
2
1
5
6
7
8
4
3
2
1
d31-a
d30-a
d29-a
d28-a
d25-a
d26-a
d24-a
d22-a
9
TP8
R25
150
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620008.dsn
Jim Belesiu 3/15/99
Jim Belesiu 3/15/99
Title
NIBP LED Drivers
3/24/99
Size
C
Document Number
620008
3/24/99
Date:
L. Phillips
3/24/99
Z. Psenicnik
J. Bello
Rev
C
Friday, July 23, 1999
Sheet
E
4
of
5
A
B
C
D
E
REV
A
ECN/ECO
Description
Release to Production
Init
5-39251
Date
JAC
Ckd
3/23/99
LPP
LPP
B
No Load D16
5-39485
LPP
4/28/99
C
D13 to Low Profile, R51 to 316
5-39994
LPP
7/23/99
4
4
VCC
TP143
u13-out
LED_SpO2_Data_In
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
15
1
2
3
4
5
6
7
QA
QB
QC
QD
QE
QF
QG
QH
u12-15
u12-1
u12-2
u12-3
u12-4
u12-5
u12-6
u12-7
5
6
7
8
4
3
2
1
5
6
7
8
4
3
2
1
D27
d27-20
d27-19
d27-18
d27-17
d27-16
d27-15
d27-14
d27-13
d27-12
d27-11
9
QH
20
19
18
17
16
15
14
13
12
11
10 LED Bargraph
TP177
u12-out
TP151
VCC
HR Alarm
On/Off
ETCO2 Alarm
On/Off
SpO2 Alarm
On/Off
d7-c
VCC
d12-c
VCC
SpO2 % Hundreds
TP162
U5
14
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
u5-15
u5-1
u5-2
u5-3
u5-4
u5-5
u5-6
9
u5-out
R62
2.2K
1
2
3
4
d3-c
d3-b
TP175
10
9
1
2
4
6
7
5
3
8
R63
215
74HC595A
TP153
D3
8
7
6
5
d16-c
2
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
U6
14
A
F
B
G
E
C
D
Anode-1
Anode-2
11
10
12
13
SER
SRCLK
SRCLR
RCLK
G
QA
QB
QC
QD
QE
QF
QG
QH
QH
15
1
2
3
4
5
6
7
u6-15
u6-1
u6-2
u6-3
u6-4
u6-5
u6-6
u6-7
9
u6-out
8
7
6
5
TP155
1
2
3
4
8
7
6
5
TP168
74HC595A
R9
680
1
2
3
4
SpO2 % Tens
D4
d4-g
d4-f
d4-e
d4-d
d4-c
d4-b
d4-a
3
8
R12
680
7-SEG LED 0.5
D16
1
VCC
10
9
1
2
4
6
7
5
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
U7
14
A
F
11
10
B
G
E
C
12
13
D
Anode-1
Anode-2
SER
QA
QC
QB
QD
QE
QF
QG
QH
SRCLK
SRCLR
RCLK
G
QH
15
2
1
3
4
5
6
7
R10
680
8
6
7
5
u7-15
u7-1
u7-2
u7-3
u7-4
u7-5
u7-6
u7-7
SpO2 % Ones
D5
1
2
3
4
8
7
6
5
d5-g
d5-f
d5-e
d5-d
d5-c
d5-b
d5-a
1
2
3
4
9
TP170
74HC595A
10
9
1
2
4
6
7
5
3
8
R13
680
7-SEG LED 0.5
"G"
"F"
"E"
"D"
"C"
"B"
"A"
Dp
A
F
B
G
E
C
D
Anode-1
Anode-2
7-SEG LED 0.5
VCC
VCC
u7-out
SpO2 Hi
VCC
TP173
No Load
TP172
R64
215
d18-c
TP174
R70
681
1
D12
T1 (3mm) Red
2
D9
T1 (3mm) Red
VCC
R69
681
3
D7
T1 (3mm) Red
d9-c 2
2
1
3
1
TP152
2
1
2
3
4
5
6
7
8
9
10
R23
680
TP149
74HC595A
VCC
SpO2 Bargraph
R21
680
U12
2
D18
1
VCC
SpO2 Lo
T1.75 (5mm) Green
TP176
2
Clock1
LED_SpO2_Clock
LED-Latch-2
LED_SpO2_Latch
LED-SPO2-Enable
LED_SpO2_Enable
1
1
Initial
Drawn
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620008.dsn
Jim Belesiu 3/15/99
Jim Belesiu 3/15/99
Title
SPO2 LED Drivers
3/24/99
Size
C
Document Number
620008
3/24/99
Date:
L. Phillips
3/24/99
Z. Psenicnik
J. Bello
Rev
C
Friday, July 23, 1999
Sheet
E
5
of
5
A
B
C
D
Width Coil (L3)
inductance range
changed
E
REV
Vertical Amplifier
Vertical Sync
u2.1
U1.3
+5V
+12V
5-39097
JAC
3/9/99
LPP
B
5-39339
JJC
4/15/99
ZIP
C
Modify Video Amplifier
Reduce RF Emissions
Increase Flex Cable to
3 inches
5-39831
LPP
6/24/99
LPP
D
Width Coil Inductance
(L3) increased
5-40006
LPP
7/23/99
+12V
2
74HCT04
-
U2A
MC34072
R14
562
C1
.1uF
5.11K
C2
100pf
U1.2
2
1
2
D6
1N4148
3
R20
169
7
Q2
MPSW51A
R21
562
R16
10
U2B
MC34072
2 q4.b
vadj
u2.2
d6.c
R18
562
38.3
q2.b 2
4
R43
R15
q1.e
1
R17
10
+
5
-
6
R22
10K
4
4
U1A
TLC272
R13
169
+
+5V
q3.b
2
1
-
3
1
ramp
1
1
+
4
2
Q3
MPSW01A
3
3
U4.2
Q1
MPSW01A
1
8
R3
23.7K
U4A
R19
562
8
q1.b 2
8
16.7mSec
+12V
C5
22uF
+
R12
562
3
750uSec
C4
.047uF
3
C3
.047uF
R52
1.96K
Q4
MPSW51A
Size Adjust
u2.7
u2.6
1
R4
10K
D1
1N4148
To Yoke
R23
10K
R5
42.2K
R6
41.2K
J2
vertvert+
j2-3
hor+
hor-
u1.6
Video
VIN
VOUT
CON5
6
5
R7
41.2K
7
U1B
TLC272
C7
.047uF
R31
10K
u1.5
R8
41.2K
2
C6
.047uF
u1.7
+5V
GND
Vsync
Hsync
1
8
3
+
U3
MC78L05ACP
J1
1
2
3
4
5
6
5
4
3
2
1
4
+12V
-
To Main
Board
Ckd
Release to Production
+12V
2
Date
A
R2
7.50K
1
Init
Ramp Generator
R1
1K
4
ECN/ECO
Description
CON6
Zero Adjust
+12V
vcadj
R9
R11
vcadj+
+5V
vcadjR10
1.47K
1K
1.96K
6 Position flat ribbon cable
Connects Main CRT to CRT
socket Board
3
Horizontal Sync
+12V
C9
6.8uF
Break Away CRT socket Board
hlin
+12V
3
hwide
1/2W Carbon Comp
3
Horizontal Amplifier
Grid Voltages
Flex6
Flex6
R46
47K
R47
47K
D3
1N4935
8
1
2
+B
10
2
Vd
1
1
Grid1
+Vvid
L1
2
MUR120
+
Hor
C10
1000uF
7
5
C12
22uF
R29
d4.a
Brightness
Adjust
D4
1N4935
3
Vg1
1
Vg2
2
1
2
C15
.01uF
47uH
+
1
9
D2
+12filt
E1
+
+12V
2
1
2
3
4
5
6
7
CRT-Socket
2
C11
1000uF
J3.5
J3.6
2
Boost
J3.3
1
R50
1.96K
J4
tube.g1
tube.vd
tube.12V
tube.gnd
tube.g1
tube.g2
tube.g4
E2
74HCT04
To CRT
Anode
330
E3
T1
CRT-FBT
R45
2
Q5
2N3904
330
1
q5.b 2
1
2
3
4
5
6
R44
1
C22-2
J3x
J3
1
2
3
4
5
6
3
4
J3.1
1
1
3
R25
215
+12V
E4
q6.d
q5.c
C22
.022uF
u4.4
U4B
31.7uSec
C8
.022uF
Q6
IRF640
2
5.5uSec
R27
10
L3
15- 35uH
E5
R24
10K
L2
15uH
2
4
2
R26
1K
100K
R28
19.6K
Unused
C13
+
+Vvid
Video Amplifier
22uF
R30
100K
U4C
Grid2
5
D5
1N4937
1
2
C16
.01uF
6
74HCT04
d5.c
U4D
+5V
R36
1.96K
C14
.01uF
C19
.01uF
R37
1.96K
Focus
Adjust
9
R32
2.5Meg
8
Focus
74HCT04
q8-b
R51
19.6K
1
R48
100
10
74HCT04
1
u4-6
q7-g
q8-e
Q7
BS170
2
13
R41
681
74HCT04
vidout
C20
No Load
1
Initial
Date
Drawn
Rick Myers
Mar 4 1999
Designed
Rick Myers
Mar 4 1999
Checked
L.Phillips
3/9/99
Approved
Z.Psenicnik
3/9/99
Release For Production
A
12
3
U4E
1
D7
1N4148
U4F
Q8
2N3904
2
2
11
C17
.01uF
3
C18
.047uF
1
+5V
B
C
D
J.Bello
3/9/99
Welch Allyn Inc.
Schematic: 620011.dsn
Title
CRT Deflection Board
Size
C
Document Number
620011
Date:
Rev
D
Friday, July 23, 1999
Sheet
E
1
of
1
A
B
C
D
E
REV
ECN/ECO
Description
A
Release to Production
Init
5-39179
Date
JAC
Ckd
3/18/99
LPP
4
4
+5V
Temperature
Amplifier
+5V
C1
.047uF
R1
51.1K
TP3
TP9
3
2
R7
84.5K
C11
.047uF
1
+12V
R14
10K
14
U2-RT
7
A
A
TP21
C14
2200pF
A
RT/CT
A
3
A
2
Q6
MMBT3904L
R13
10
10
1
Q1
R16
19.6K
MTP30P06V
A
Q4-s
A
C13
5600pF
R17
0.1
A
R18
no-load
A
Printhead
Connector
R19
3.16K
+24V-switch
+5V
3
U5B
74HCT04
D
+5V
5
TP26
C18
.047uF
R33
1.47K
13
D
TP68
U3-3
3
Vpp
4
U3-5
5
U3-6
6
7
U3
14
D1
27V
ClkIn/Osc1/RB5
RB0
Clkout/Osc2/RB4
RB1
Vpp/MCLR/RB3
RB2
RC5/TOCK1
RC0
RC4
RC1
RC3
RC2
13
data-IO
12
clk
11
n24Von
TP27
R34
1.47K
U3-9
TP67
U6
ULN2065
u6-3
u6-6
u6-11
u6-14
1C
2C
3C
4C
CLMP1
CLMP2
9
+24V
2
7
9
16
1
8
+
u6-clmp
C19
.047uF
R35
1.47K
A
8
-
J3-3
J3-4
U1B
MC34072
4
J3-6
TP29
A
1
u1-7
A
phase 1
2
3
4
J3
J3-1
A
Connector Pin #
1 3 4 6
U3-8
TP28
7
C20
47uF
8
A
+
6
1B
2B
3B
4B
10
PIC16C505
5
3
6
11
14
3
2
TP66
+5V
14
Vdd
7
D
D
D
U5E
74HCT04
R24
1.96K
A
7
3
u3-clk
Vss
10
1
11
2
U5F
74HCT04
TP1
1
d6-c
A
12
U3-10
TP24
CON16
U5A
74HCT04
+5V
D
D6
27V
C10
.1uF
2
7
14
1
14
+5V
+5V
1
+24V
2
Strobe
Latch
Clock
Data
7
D
+5V
6
U5C
74HCT04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
7
14
R11
5.11K
J2
Thermistor1
Thermistor2
Strobe
4
RecVdc
+5V
BAV99L
3
R22
4.22K
D
A
3
D3
A
D
+5V
Thermistor
Input
A
5
Q6-e
TP23
C8
1800uF
Q4
MTP30N06VL
R15
147
TP19
ISENSE
+
2
4
U2-out
11
Vc
12
OUT
1
C21
.047uF
VREF
8
2
Q3
2N7002
3
1
R6
10K
U2-Ref
TP17
3
J1
CON24A
COMP
U2-Isense
1
VFB
R8 23.7K
4
2
U2
UC3843A
GND
U2-comp
+5V
Vcc
3
A
C3
.01uF
R5
1K
Printhead
On/Off Switch
TP6
U1-1
C5 .01uF
Q4-D
TP14
PWR-GND
TP8
R3
10K
D2
MBRS340T3
A
9
+5V
3
A
1
C6
1uF
C7
.01uF
A
C12
.047uF
q1-g
L1
22uH
14
+
Rec-Data-Latch
Rec-Clock
C4
1000uF
+
U2-fb
Rec-Supply-On
Rec-Motor-Step
+12V
Rec-Strobe
Rec-Data
Rec-Temp
U1A
MC34072
A
+12V
R12
10K
2
4
6
8
10
12
14
16
18
20
22
24
-
1
2
A
A
1
3
5
7
9
11
13
15
17
19
21
23
2
A
+24V Boost
(23.6 V nominal)
TP10
Vpp
U1-2
R2
1K
+
+24V
Q2
MMBT3904L
R10
10K
3
TP54
1
3
Q2-b
Q4-G
R9
10K
C2
.01uF
R4
9.09K
8
A
U1-3
4
RecVdc
R36
1.47K
1
2
3
4
5
6
+
+
+
+
+
+
+
+
CON6
U3-7
1
+5V
14
Initial
Drawn
9
8
Designed
U5D
74HCT04
7
Checked
Approved
D
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620014.dsn
Rick Myers
Mar 5, 1999
Rick Myers
Mar 5, 1999 Title
L.Phillips
3/22/99
Z. Psenicnik
3/19/99
Size
C
J. Bello
3/19/99
Date:
Printer Electronics
Rev
A
Document Number
620014
Monday, March 22, 1999
Sheet
E
1
of
1
B
C
D
E
14
REV
+5V
EKG-PWM-ADC
+5V
1
2
Tab-.187
EKG-Data-Clock
9
7
C22
.047uF
EKG-ADC-Clock
11
10
Battery
Batt-ID
12
13
RCLK
G
GND
CON3
QB
QC
QD
QE
QF
QG
QH
SRCLK
SRCLR
8
D
LPP
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
4
14
+5V
TP10
3
EKG - Page4
4
FE-Pwr-Sync
D
+5V
SPO2-Rx
CRT Board
Connector
C23
.047uF
2
7
D
D
+5V
14
.047uF
D
11
14
+5V
D
RS423Rx
D
+5V
14
14
1
U8E
74HCT04
U8A
74HCT04
+5V
10
Serial IO - Page8
2
R6
1.96K
CON6
Main PCA
Connector
U8D
74HCT04
D
7
Video-Data
8
+5V
1
2
3
4
5
6
+3.3V
9
SpO2Out
U1A
74HCT04
J6
Video-VSync
Video-HSync
+5V
SpO2 - Page4
D
1
C30
3
4/27/99
TP9
D
+12V
C3
220pF
LPP
U1B
74HCT04
NIBP-A/D-SelC
NIBP-A/D-SelB
NIBP-A/D-SelA
NIBP-Pump-On
NIBP-ADC-Clock
NIBP-Safety
NIBP-15mmHg
NIBP-Overpressure
NIBP-Valve-Close
NIBP-PWM-ADC
NIBP-Offset-DAC
U2
74HCT595
5-39455
D
NIBP - Page 2
9
QH
D
TP5
3
13
C1
.047uF
ac-on
D
Key-Latch-n
RS232-CTS
Rec-Clock
HRESET
SPI-data-in
R23
1.21K
SDA
SCL
A0
A1
A2
WC
R24
1.21K
1
2
3
7
PIC-Clk
Speaker-Audio
C29
.047uF
5
C40
.047uF
TP18
C41
1uF
+
Fan
Connector
D
CO2 Board
Connector
J3
U7-wc
D
+12V
U8C
74HCT04
+12V
D
J5
C39
.047uF
1
2
3
4
R16
3.48K
D
6
NurseCall
R15
1.96K
D
D
TP6
D
7
5
6
14
7
U7
AT24C02N-10SC-2.7
U8F
74HCT04
+5V
1
2
CON2
CON4
NIBP2-PW-ADC
+3.3V
+5V
D
Video-Data
14
Vbackup
+3.3V
PIC-Data
RS423Tx
U8B
74HCT04
Nurse-Call
Rec-Data-Latch
Rec-Strobe
SCL
SCD
Front Panel
Display Connector
1
3
Key-clock
2
U3A
74HCT08
7
D
4
TP17
NIBP-PWM-ADC
RS423-Tx
PIC-Data
RS423-Rx
SPO2-Tx
SPO2-Rx
ADC-Clock
FE-Clock
SPI-Data-Out
SPI-Clock
Batt-ID
FE-Data
Rec-Motor-Step
8
ETCO2-Tx
ETCO2-Rx
Spare-2
NIBP-Data
NIBP-15mmHg
LED-Latch
Video-HSync
Spare-3
Power-Sync
Vbackup
NIBP-Valve-Close
Video-VSync
NIBP-Offset-DAC
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
VCC
NIBP-OP
C2
.047uF
3
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
GND
NIBP-Safety
+3.3V
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
4
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
12
7
J4
D
LPP
FE-Data-In
Power-Sync
Audio-Shutdown
EROM-wr
3/15/99
FE-ADC-Clock
12
U1F
74HCT04
LED-On
See ECN worksheet
Mods to U2 clock line, Resp gain
amp, ECG supply, and NVRAM
pullup
Improvements for ESD, RFI,and
Fast Transients, Correct
Respiration Diff-Amp Topology
JAC
Ckd
5-39121
14
J2
13
TP1 TP2 TP3 TP4
15
1
2
3
4
5
6
7
Date
Release to Production
7
14
FE-Data
7
R20
10K
Serial
Data
Out QA
SER
VCC
16
U2-Reset
10
U1E
74HCT04
7
D
7
+3.3V
E
Init
TP8
+5V
D
TP11
1
2
3
FE-Data-Clock
ECN/ECO
D
14
A
D
+5V
11
4
B
TP7
D
14
Rec-GND
FE-PWM-ADC
8
U1D
74HCT04
+5V
CON7
7
1
2
3
4
5
6
7
5
A
U1C
74HCT04
14
AC+12V
6
Recorder
ESD Ground
J9
14
J1
EKG - Page6
Description
7
A
+5V
D
Key-Clock-b
Key-Latch-n-b
Key-Data
LED-Data-b
LED-On
14
Socket 30x2
D
D
4
2
2
4
6
8
10
12
14
6
LED-Latch-b
5
+5V
14
7
U3B
74HCT08
To PIC
On/Off-Key
+5V
J8
CON14AP
1
+ +
3
+ +
5
+ +
7
+ +
9
+ +
11
+ +
13
+ +
C5
.047uF
+
C4
330uF
2
D
D
D
9
8
LED-Data
D
+5V
U3C
74HCT08
AC+12V-fuse
Q1
MMBT3906L
2
3 ACON-LED
14
7
10
12
11
R1
10K
13
7
TP19
C35
4.7uF
PIC-Data
2
On/Off-Key
3
4
TP12
5
On/Off
6
U2-Reset
7
(pg 3)
ClkIn/Osc1/RB5
RB0
Clkout/Osc2/RB4
RB1
Vpp/MCLR/RB3
RB2
TC5/TOCK1
RC0
RC4
RC1
RC3
RC2
Rec-GND
13
R17
19.6K
R17-1
D
R18
1.21K
Rec-GND
TP23
CON24A
R25
1.21K
D
D
10
PIC-audio
8
uP-RESET
+
-
SP
8
SM
U9
TPA301
+
C7
330uF
Initial
Designed
Checked
Approved
Rec-GND
B
2
4Vpp max.
Release For Production
A
Q3
2N7002
1
1
C38
220pF
(To Processor)
TP16
Page1
CON3
C37
0.1uF
C8
.047uF
HRESET
D620361-MX10000
ac-on
1
2
3
Drawn
R5
19.6K
(To U2)
4
5
R21
10K
Welch Allyn Inc.
Date
TP24
TP26
9
+
R4
10K
J11
R19
19.6K
Rec+DCV
Q2
MMBT3904L
1
U9-3
D
PIC-Clk
3
Print-Temp
12
11
Q2-b
3
C14
.047uF
Rec+DCV
1
6
C36
4.7uF
+3.3V
2
Vss
(pg 1)
U10
+12V
Rec-Strobe
Rec-Data
TP21
TP25
U9-4
1
Vdd
1
Rec+DCV
C20
.047uF
Rec-Supply-On
+
14
D
R3
10K
ACON
Rec-Supply-On
Rec-Motor-Step
2
4
6
8
10
12
14
16
18
20
22
24
2
7
Rec-Data-Latch
Rec-Clock
Vbackup
R22
10K
1
3
5
7
9
11
13
15
17
19
21
23
TP20
q2-c
TP13
J7
PIC-Vprog
C42
.047uF
(Front Panel Key)
R2
1.96K
3
+5V
TP22
Audio-Shutdown
TP14 TP15
Q1-e
Speaker Drive
Recorder Board
Connector
+5V
D
U3D
74HCT08
1
Jumper wire
from J4-20 to
J4-55
C
D
Schematic: 620017.dsn
Rick Myers
Mar 5, 1999
Rick Myers
Mar 5, 1999 Title
L. Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/16/99
Date:
Main Board - Model 220
Rev
E
Document Number
620017
Tuesday, July 13, 1999
Sheet
E
1
of
8
A
B
L201
220uH
C
D
E
REV
TP201
+12V
C229
10uF
R207
464K
TP202
P+12V
B
+
Init
Date
JAC
Ckd
Release to Production
5-39121
3/15/99
LPP
See ECN worksheet
5-39455
LPP
4/27/99
LPP
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
C205
P+12V
P+5V
U203-2
2
-
C222
.01uF
R210
464K
A
P+12V
R209
1K
U203-6 6
P+.75V
U202-5
C204
.047uF
-
R205
750
C232
.047uF
-
U203B
LM393
R236
3.83K
7
12
A
0mmHG = 0.5V
300mmHG = 4.0V
R239
1K
A
+12V
3
R242
10K
+Vpump
Q202
MMDF2N02E
TP213
A
TP214
Q202-G
TP215
P+12V
Q201
MMBT3904L
Q201-B 1
NIBP-Safety
C206
.047uF
R241
10K
TP216
C209
.047uF
2
4
3
R240
10K
6 P201-6
U207D
74HCT00
A
A
P201-Out
2
+5V
U202B
MC34072
R212
56.2K
Gain
and
Comp
11
13
R243
100K
2
3
A
U207C
74HCT00
A
P+5V
U208-7
Over Pressure
Fault Circuit
A
A
8
10
U208B
MC34072
NIBP-15mmHg
7
4
P201-pwr
+
6
9
u207-9
3
A
5
7
4
TP212
8
L202
Bead
7
14
+
C223
.01uF
P+12V
-
A
U203-5 5
P+5V
+
6
4
R211
1.96K
5
7
4
U202A
MC34072
A
R204
150
+3.3V
A
4
P+5V
TP203
14
TP209
-
R203
3.32K
TP239
1
TP210
C226
.047uF
P+12V
P+5V
5
6
+
2
TP211
NIBP-Overpressure
U203A
LM393
7
8
3
TP208
A
8
U202-3
A
TP240
1
.047uF
A
E
8
P+12V
TP207
A
+
1
C202
4.7uF
+
3
4
GND
GND
C203
R202
174
7
GND
6
GND
2
C201
.047uF
1
OUT
3
4
IN
U203-3
8
8
R201
576
Improvements for ESD, RFI,
and Fast Transients, Correct
Respiration Diff-Amp Topology
Mods to U2 clock line, Resp
gain amp, ECG supply and
NVRAM pullup
D
A
8
R206
1K
TP206
U201
78L05
R208
1.96K
.047uF
A
Primary
Transducer
A
+3.3V
ECN/ECO
Description
3
A
P+12V
J201
A
C207
1uF
C208
1uF
+
A
1
2
3
4
5
Pump+
Pump-
R246
31.6
TP204
NIBP-A/D-SelC
NIBP-A/D-SelB
U204B
MC34072
+
A
Valve+
Valve-
CON5
A
C231
.01uF
7
4
+
R217
5.62K
U204-2
8
5
6
R215
100K
C228
.047uF
TP221 TP222
U204-5
C207-1
3
U204A
MC34072
TP220
R216
19.6K
PWM D/A
76.8KHz
R213
237K
U204-1
1
A
TP219
R214
10K
NIBP-Offset-DAC
-
7
8
R244
21.5K
2
D202
BAV99L
R218
23.7K
5
6
Zero Adjust
+/-20mmHg range
+
1
+3.3V
3
R219
1.96K
D201-A
U204-3
A
4
A
TP217
A
8
1
P201
XFPM-050KPGR-P1
2
C227
680pF
NIBP-A/D-SelA
Q203
MMDF2N02E
A/D Mux
A
U204-7
2
NIBP-Valve-Close
4
NIBP-Pump-On
7
8
R247
1K
BattCurrent
BattVoltage
Print-Temp
P+12V
C216
.047uF
Safety
Transducer
P202-Out+
P202-2
3
2
R227
5.11K
+
1
4
U206A
MC34072
R223
21.5K
C214
.047uF
C217
C210
.047uF
.047uF
VEE
U209-Out
3
X
U210-2
C230
.047uF
R237
464K
P+5V
R229
1.96K
TP229
A
U206-2
A
P+5V
A
P+5V
+
7
R231
73.2K
U206-7
U206B
MC34072
R225
1K
C218
4.7uF
TP233
A
5VRef
C219
.047uF
A
+
2
-
+
U206-6
A
A
3
A
R232
10K
U207A
74HCT00
3
C215
.047uF
NIBP-ADC-Clock
C213
.01uF
R222
1K
7
U208A
MC34072
A
U207B
74HCT00
A
1
.01uF
2
1
U207-3
Initial
Drawn
TP234
U205B
MC34072
Designed
Approved
A
B
NIBP-PWM-ADC
PWM A/D
Converter
Release For Production
A
6
5
C220
Checked
A
4
U210
MAX941
A
TP235
D201
MMBD1503A
A
U205-7
4
6
U210-3
U210-7
7
-
7
8
D201-C
TP238
+
U208-1
TP236
R233
3.48K
2
3
R226
21.5K
3
R234
3.48K
1
TP237
5
1
A
P+12V
R221
3.16K
A
2 +
C224
1000pF
U208-2
1
Zero
Offset
P+5V
A
4
R220
806
C221
.047uF
U208-3
TP232
7
6
P+12V
8
5
P202-5
5
TP230
1
R224
1K
6
P202-Out-
TP231
R230
10K
4
-
8
+
P+12V
14
1
C225
.047uF
14
A
C212
680pF
3
TP228
A
P202
FPNS-07PGR
2
A
TP227
+5V
U206-1
NIBP
PWM A/D
Converter
R235
3.48K
1.96K
U205A
MC34072
R228
TP225
5
4
1
4
2
+
TP226
8
A
8
3
P4.25V
P.75V
PrimaryPres
SafetyPres
+5V/2
A
.047uF
U205-3
TP224
2
6
C211
X7
X6
X5
X4
X3
X2
X1
X0
R248
1K
U209
4051
16
P+12V
4
2
5
1
12
15
14
13
C
B
A
INH
VDD
2
VSS
A
9
10
11
6
3
1
P+.75V
C
D
Welch Allyn Inc.
Date
Schematic: 620017.dsn
Rick Myers
Mar 5, 1999
Rick Myers
Mar 5, 1999 Title
L. Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/16/99
Date:
NIBP ELECTRONICS
Rev
E
Document Number
620017
Tuesday, July 13, 1999
Sheet
E
2
of
8
A
B
C
D
E
REV
U407
78L05
1
S
GND
GND
B
C430
.047uF
D
2
GND
7
C403
.047uF
3
+
Release to Production
5-39121
See ECN worksheet
5-39455
Init
Date
JAC
Ckd
3/15/99
LPP
LPP
4/27/99
LPP
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
8
IN
6
C406
100uF
OUT
GND
iso+5Vdig
A
ECN/ECO
Description
S
E
S
Improvements for ESD, RFI,
and Fast Transients, Correct
Respiration Diff-Amp Topology
Mods to U2 clock line, Resp
gain amp, ECG supply and
NVRAM pullup
S
8
7
3
S
+
f+V
C424
.047uF
+
C409
470pf
C405
100uF
5
1uF
S
C402
.047uF
S
R419
215
+
C409-1
TP450
S
L401
220uH
R419-2
fVcc
R405
215
5
C414
.047uF
2
C433
470pf
8
C434
10uF
D
S
S
E
E
S
Q401
MTD3055V
4
D405
BAV99L
1
TP456
3
IsoXfmr
T401-4
f-V
Q402
MMBT3906L
R406
0.2
MBRS130T3
12
11
13
14
U402-e
1
R409
5.11K
U402-sen
3
C407
100uF
C404
.047uF
TP454
1
+
L402
220uH
2
TP458
R408
100
U402
4
5
VREF
SHTDWN
CA
EA
CB
EB
OSCOUT
RT
CT
+SENSE
-SENSE
C410
.01uF
V+
VCOMP
TP451
C420
.047uF
16
10
3
6
7
FE-Pwr-Sync
TP455
U402-rt
U402-ct
TP457
2
1
9
LM3524DM
3
U402-1
TP468
R407
10
D403
3
U402-ref
TP453
4
2
+
TP466
T401-8
3
C431
10uF
TP449
1
S
+
+12V
T401
S
TP452
C412
10uF
T401-1
15
GND
U404
C421 79L05
D401
MBRS130T3
2
3
6
7
IN
IN
IN
IN
VIN
OUT
Grounded SpO2
Circuits
GND
1
+12V
Isolated SpO2
Circuits
S
C411
2200pF
R410
7.5K
8
S
s-5V
Isolation
Barrier
C401
.047uF
4
S
6
2
3
TAP
SENS
Q402-e
U403
LP2951C
2
+
4
Q401-g
VIN
FDBK
SHTDN
U403-fb
C415
1uF
VOUT
ERR
GND
1
5
s+5V
4
Q401-s
fVee
S
C432
10uF
S
C435
10uF
+
+
f+V
S
S
+5V
R422
10K
8
TP459
U401-3
U401-2
f+V
R415
100
U401-7
f+5V
7
U401B
LM358
5
-
6
U401-5
+
C417
680pF
TP465
S
1
U401A
LM358
C418
4.7uF
6
opto-fb
5
4
R404
196K
S
R401
10K
R411
5.11K
iso401-b
2
S
C408
.01uf
R402
10K
S
C408-2
s+5V
S
-
iso401-a
U401-1
1
TP462
s+5V
4
C416
.047uF
+
R416
10K
2
+
4
8
TP461
TP460
R423
5.11K
3
U410
4N25
R403
1K
S
R417
10K
TP463
TP464
2
2
S
Nonin SpO2
Connector
J401
f+V
1
2
3
4
sSpO2tx
C419
10uF
+
J403
SpO2 ESD
Ground
iso+5Vdig
1
2
C413
.047uF
Tab-.187
+5V
CON4
S
S
D
3
S
sSpO2tx
1
s-5V
1
iso+5Vdig
+
+
+
+
+
+
+
C422
.047uF
R412
196
Q403-e
iso402-a 2
+
+
+
+
+
+
+
TP469
8
6
TP467
2
4
6
8
10
12
14
R414
1.96K
U411
HCNW4503
R424
10K
J402
1
3
5
7
9
11
13
Q403
MMBT3904L
2
Nellcor SpO2
Connector
E
U411-6
SpO2Out
3
5
C436
1000pF
SpO2-Reset
D
E
s+5V
1
CON14AP
S
C427
.047uF
S
C428
10uF
+
C429
.047uF
Initial
Drawn
S
S
S
Designed
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620017.dsn
Rick Myers
Mar 5, 1999
Rick Myers
Mar 5, 1999 Title
L. Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/16/99
Date:
Power Isolation and SpO2 Interface
Rev
E
Document Number
620017
Tuesday, July 13, 1999
Sheet
E
4
of
8
A
B
C
D
E
REV
A
B
U702
U703
D
fVcc
C715
.047uF
E
f+5V
5-39121
See ECN worksheet
5-39455
Improvements for ESD, RFI,
and Fast Transients, Correct
Respiration Diff-Amp Topology
Mods to U2 clock line, Resp
gain amp, ECG supply and
NVRAM pullup
Date
JAC
Ckd
3/15/99
LPP
LPP
4/27/99
LPP
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
11
10
D
Q
8
E
13
E
Q
9
CLK
7
E
PR
C718
.047uF
GND
C717
.047uF
4
CL
12
VCC
fVee
4
Release to Production
Init
E
14
E
C716
.047uF
ECN/ECO
Description
U701B
74HC74
E
Isolation
Barrier
Respiration
Drive
Circuit
f+5V
-Clamp
+Clamp
+
C719
4.7uF
iso+5Vdig
iso+5Vdig
D701
MMBD1503A
E
D701-3
C701-1
RespDr+
5
Q
D
TP704
6
Q
1
1
D702
MMBD1503A
2
C702
1000pF
3
R702
1.96K
Left-Arm
TP705
D702-3
U710
HCNW4503
R725
2.15K
2
resp-clk
3
u710-6
8
D
D
Resp-DC
C720
.047uF
Respiration
Diff Amp
fVcc
3
+
2
-
U702A
AD712
4
R709
464K
U702-1
1
R711
15.8K
R715
3.16K
TP711
R716
3.16K
C712
3.3uF
1
U702-2
U703-2
D704-3
E
5
6
AD712
+
7
U702-7
TP716
R719
51.1K
E
E
E
U703A
AD712
7
An-Resp
U703B
AD712
R721
316K
2
U703-6
R722
316
TP719
C714
.047uF
TP722
R713
1K
4
R710
464K
-
TP713
TP717
3
E
TP721
6
fVee
E
TP718
Q701
MMBF4393L
+
C713
0.1uF
Q701-d
fVcc
-
R718
825K
2
U702B
8
3
3
C707 TP720
330pF
U702-5
1
C711
0.1uF
5
1
2
D703-1
4
2
fVcc
8
D704
MMBD1503A
R717
3.16K
+
R712
1K
TP714
-
E
U703-5
2
fVee
Gain =1000
B.W. = 10Hz
TP712
R720
100K
Resp-AC
3
fVee
fVcc
B.W. = .06Hz to 16 Hz
D705
MMBD354LT1
8
TP710
U702-3
TP709
4
D703-3
E
TP708
Q701-g
C706
330pF
8
2
3
E
TP707
R724
196K
R707
1.96K
R708
1.96K
FE-Pwr-Sync
RespDr-
D703
MMBD1503A
1
3 iso701-a
E
d705-c
2
R706
215
5
TP706
1
2
6
C721
100pF
Resp-Off
C702-1
E
+5V
3
E
R704
31.6K
C705
0.1uF
R705
2.15K
TP723
7
TP701
CL
CLK
3
U701A
74HC74
14
TP703
R703
31.6K
VCC
Right-Arm
TP702
GND
3
C701
1000pF
4
2
PR
1
R701
1.96K
E
D706
MMBD1503A
fVee
1
U702-6
2
TP715
Resp-Reset
3
E
R714
15.8K
R723
1Meg
E
E
1
1
Initial
Drawn
Rick Myers
Mar 5, 1999
Designed
Rick Myers
Mar 5, 1999
L. Phillips
3/16/99
Z. Psenicnik
Checked
Approved
Release For Production
A
B
C
D
J. Bello
Welch Allyn Inc.
Date
Schematic: 620017.dsn
Title
Respiration
3/16/99
Size
C
Document Number
620017
3/16/99
Date:
Rev
E
Wednesday, July 14, 1999
Sheet
E
7
of
8
A
B
C
D
E
REV
Q303
4
2
C331
4.7uF
6
2
D
VOUT
ERR
A
Release to Production
5-39121
See ECN worksheet
5-39455
Improvements for ESD, RFI,
and Fast Transients, Correct
Respiration Diff-Amp Topology
Mods to U2 clock line, Resp
gain amp, ECG supply and
NVRAM pullup
D
E
V+18V
3
R308
17.8K
D
TP302
D303
5.1V
+
C306
1uF
C310
1000uF
+
On/Off Circuit
18V Boost - Mosfet Gate Voltage
R309
4.64K
TP305
R310
10K
1
ISWC
Vcc
+
3
TCAP
1
C307
.047uF
R306
61.9K
4
C339-1
Q302-B 1
+
2
C339
1uF
R307
4.64K
C308
2200pF
TP311
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
RT/CT
2
11
+12V
2
4
5
U302-sense
C311
1000uF
+
+
C312
1000uF
Q305
+
C336
.047uF
C313
330uF
MTP30N06VL
1
TP308
ISENSE
R315
196
Q304-e
Q304
MMBT3904L
R313
1.96K
TP312
D312
BAV99L
C309
5600pF
R316
0.1
R317
7.5K
2 D312-c
1
AC+12V-fuse
D304-C
R312
3.83K
3
Q302
MMBT3904L
TP354
Vc
12
7
TP315
TP316
3
1
U302-ct
3
R304
100K
3
On/Off
C304
100uF
+
TP310
2
R303
51.1K
R311
10K
Q302-c
TP313
OUT
R314
10
U301-comp
5
COMP
VREF
2
2
C303
470pf
R302
1.96K
TP314
5VRef
10
COMP
8
C302
1uF
Q301-b
1
14
1
C301
330uF
+
TP309
U301-ct
GND
D301
MBR2535CTL
LPP
3
IPK
6
ISWE
R301
10K
4/27/99
Q305-s
U301-pwr
VFB
Q305-g
IDC
7
U301-sw
8
3
U302-comp
9
Q301
MPSW51A
1
3
2
Battery
LPP
U302
UC3843A
U302-out
D302
BAV99L
6078
TP306
GND
TP307
Vcc
U301
MC34063AD
3
R305
1
4Amp
C305
5600pF
PWR-GND
L301
1mH
F303
3
LPP
L305
Bead
Q305-d
HS301
2
4
3/15/99
4
D304
MBRS340T3
C305-1
1
JAC
Ckd
L302
22uH
U301-7
AC+12V
Date
TP304
+Vfuse
Heatsink
for D301
Init
U302-pwr
1
U302-fb
D
4
B
C332
4.7uF
+
LP2951CD-3.3
L303
Bead
C335
.047uF
+12V Boost
(12.1V nominal)
1
VBackup
TAP
SENS
4
+
VIN
FDBK
SHTDN
GND
u307-6
1
5
ECN/ECO
Q303-s
3
On/Off Switch
U307
8
7
3
MTP30N06VL
L302-1
Rec+DCV
Description
D313
NO LOAD
3
F301
4Amp
+Vpump
D310
MBRS340T3
Bat-fuse
HS302
Heatsink
forQ312
Q312
Battery
Charger
4
2
C318
330uF
D306
MBRS340T3
1
Q308-g
TP324
C314
.047uF
U303-fb
C324
1000pF
C324-2
+5V Linear
Low
Dropout
TP320
D305
BAV99L
TP321
TP322
R331
1
U305-6
U305A
MC34072
3
2
3
7
8
D308
TP335
BAV99L
2
1
U304A
MC34072
2
3
TP323
TP336
R333
19.6K
TP337
C326
.01uF
+
5
U304-5
R343-1
2
TP346
1
R343
10K
1
R335
4.32K
TP344
4
Q309
MMBT3906L
Ref-Batcharge
U304-6
R342
19.6K
2
R334
19.6K
Q309-b
C321
.01uF
R354
5.11K
2N7002
R355
14.7K
3
1K
R345
10K
1
Initial
Drawn
Designed
Checked
Release For Production
3
B
Ibatt=0: BattCurr=0.74V
Ibatt=1.5: BattCurr=2.87V
+5V
Approved
A
C334
.047uF
Q310-c
Q310
MMBT3904L
1
2
ACON
R338
2
Q314
3
TP350
1
Bat-Adj
R344
10K
Q310-b
8
AC+12V-fuse
BattCurrent
TP348 RT301
10K
RT301-1
R337
8.87K
TP343
2
D309
BAV70L
Q309-3
R336
7.5K
Float Voltage
TP355
Q314-d 3
TP347
TP352
7
U304B
MC34072
C333
.047uF
TP340
R353
5.11K
TP339
6
2
10K
BattVoltage
R352
5.11K
+12V
+12V
TP345
U304-7
2
TP338
R339-2
R340
10K
R350
I-Batt
U304-3
C322
.047uF
TP342 R339
19.6K
5VRef
TP334
2N7002
Q313-d 3
D309-a
TP341
R349
10K
U305-3
Q313
AC+12V-fuse
Batt-fb
D
TP331
R341
10K
Ref-Batcharge
D
D
C327
.047uF
Ref-Batcharge
R351
5.11K
8
3
R322
10K
AC+12V-fuse
2
TP332
1
C330
.047uF
1
Current Limit
(1.5 Amp)
C329
100uF
U305-pwr
U304-2
R324
10K
+
1
TP329
1
R332
19.6K
3
U303-5
+3.3V
3
t
5
+12V
U305B
MC34072
4
ISENSE
C320
.01uF
U304-1
GND
2
TP330
3
OUT
D311
BAV70L
TP328
U303-ct
1
5
Q306
MMBT3904L
1
R321
27.4K
ACON
4
2
3
Q306-b
U305-5
TP333
C316
2200pF
6
Q306-c
R323 1.96K
9
RT/CT
10
U303-out
11
Vc
Vcc
12
7
OUT
PWR-GND
R320
7.5K
VREF
8
C315
.047uF
COMP
+
14
TP326
-
U303-cp 1
VFB
+
3
-
TP351
R330
33.2K
IN
D
8
33.2K
U303
UC3843A
C328
.047uF
TP319
R329
1K
2
R319
19.6K
1
R347
10K
TP318
R328
1K
Q307-e
R325
1.96K
U306
LF33CV
R348
10K
TP317
1
R318
10K
C338
.047uF
+
R326
10
1
Q307
MMBT3904L
3
2
C319
1000uF
R346
100
U305-2
+
D307-A
C325
100uF
+
Q312-g
4
C337
.047uF
C319-1
Q308-d
2
4
C323
100uF
U305-1
L306
Bead
C340
.047uF
3
+
Q311
MTP30N06VL
1
AC+12V-fuse
D307
MBRS340T3
+
F302-2
TP353
R327
0.1
GND
L304
47uH
MTP23P06V
F302
4Amp
+5V
4
2
3
1
Q308
6078
3
-
TP349
MTP30N06VL
2
3
C
D
Welch Allyn Inc.
Date
Schematic: 620017.dsn
Rick Myers
Mar 5, 1999
Rick Myers
Mar 5, 1999 Title
L. Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/16/99
Date:
DC/DC Power Supplies
Rev
E
Document Number
620017
Tuesday, July 13, 1999
Sheet
E
3
of
8
A
B
C
D
E
REV
A
U501
U502
U503
U504
U505
U506
U507
U508
Release to Production
B
Improvements for ESD, RFI,
and Fast Transients, Correct
Respiration Diff-Amp Topology
Mods to U2 clock line, Resp
gain amp, ECG supply and
NVRAM pullup
D
C534
4.7uF
C518
.047uF
C520
.047uF
C522
.047uF
C524
.047uF
C526
.047uF
C528
.047uF
C530
.047uF
C532
.047uF
E
E
+clamp
Defib Protect
RFI Filtering
-clamp
E
E
E
E
E
E
Date
JAC
Ckd
3/15/99
LPP
5-39455
LPP
4/27/99
LPP
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
E
fVee
4
+
TP501
R506
10K
E
Init
5-39121
See ECN worksheet
fVcc
+
ECN/ECO
Description
C535
4.7uF
C519
.047uF
C521
.047uF
C523
.047uF
C525
.047uF
C527
.047uF
C529
.047uF
C531
.047uF
4
C533
.047uF
D506
5.1V
+clamp
fVcc
3
1
E
E
E
E
E
E
E
E
E
TP502
Input Buffers
Gain = 9.26
R507
10K
-clamp
1
D501
MMBD1503A
fVcc
TP508
10K
R509-1
1
VLdsOff
TP512
2
TP511
Left-Arm
U501-5
D502-3
C502
220pF
+
6
-
R511
22Meg
C507
220pF
E
R532
10K
R533
TP519
U501B
MC34002
TP520
R519
10K
0.1%
C511
220pF
R534
E
fVcc
LA
LL
LL
RA
LA
LL
V+
10K
TP521
U501-6
R558
22Meg
D503
MMBD1503A
R520
1.21K
0.1%
fVcc
1
VLdsOff
TP524
2
TP523
U502-3
3
+
E
U502A
MC34002
TP533
8
mux+ 5
3
X
X0
X1
X2
X3
X4
X5
X6
X7
6
R545
10K
0.1%
+
7
diff+
3
+
2
-
TP557 R565
121K
U507B
MC34002
TP514
1
fVee
fVee
INH
A
B
C
fVcc
U508A
AD712
-
4
-
3
+
1
U509
LMC7101
C542
220pF
E
fVee
u508-2
R547
10K
0.1%
TP528
diff-out
High Pass (0.05Hz or 0.5Hz)
Low Pass (150Hz)
C545
1000pF
TP529
fVee
E
R521
10K
0.1%
C543
.047uF
3
TP522
1
4
TP531
fVcc
fVee
TP516
-
R513
22Meg
C508
220pF
6
11
10
9
10K
E
2
C503
220pF
10K
13
14
15
12
1
5
2
4
TP525
8
D503-3
N503
LAMP NEON
R536
TP558
U506
4051
8
Left-Leg
10K
R537
R512
10K
3
R503
51.1K
R535
R546
0.1%
10K
U508-3
fVee
E
10K
fVee
E
Diff Amp
Gain = 1
U507A
MC34002
R544
0.1%
10K
INH
A
B
C
TP515
7
C544
1000pF
fVcc
R511-1
S
6
11
10
9
E
5
4
N502
LAMP NEON
10K
TP510
TP513
8
R510
10K
3
R502
51.1K
3
R531
diff-
E
fVcc
TP517
E
C515
3.3uF
C512
220pF
R550
19.6K
U508-5
ecg-hp
5
+
6
-
R513-1
D504
MMBD1503A
TP554
fVcc
c539-1
2
U502-5
5
+
TP526
An-ECG
U508B
AD712
R551
73.2K
C517
.01uF
fVee
U508-6
TP527
R552
1K
2
TP530
R523
10K
0.1%
C513
220pF
TP532
TP543
Q504
2N7002
E
1
fVee
E
N504
LAMP NEON
Mux-LdS-B
7
Mux-LdS-C
U502B
MC34002
R515-1
V-Lead
E
7
4
TP542
R504
51.1K
E
Q504-d
Mux-LdS-A
-
R515
22Meg
C509
220pF
E
R549
110K
E
6
E
R548
1Meg
TP537
TP540
8
D504-3
C539
330pF
3
C538
1000pF
R514
10K
TP536
R522
1.21K
0.1%
VLdsOff
TP539
TP538
2
C516
.047uF
U502-2
TP535
1
c538-1
R559
22Meg
TP518
3
TP553
R562
464K
fVee
E
U502-6
R560
22Meg
Q504-s
R553
100K
22
R561
34.8K
E
4
S
Gain Stage
Gain = 74
8
R518
1.21K
0.1%
fVcc
10K
1
2
D502
MMBD1503A
R530
-
5
U501-2
R557
22Meg
+
2
u509-4
E
mux- 3
u501-8
E
E
Shield
8
S
fVee
3
X
X0
X1
X2
X3
X4
X5
X6
X7
8
R529
13
14
15
12
1
5
2
4
4
C510
220pF
RA
RA
LA
aVR
aVL
aVF
V-
4
R517
10K
0.1%
4
U501A
MC34002
TP509
8
-
R509
22Meg
TP507
VEE
C506
220pF
TP506
U505
4051
7
C501
220pF
4
N501
LAMP NEON
fVcc
Wilson
Network
1
VEE
+
2
7
3
16
U501-3
fVcc
TP505
8
3
R508
10K
D501-3
Right-Arm
V+
TP504
VDD
TP503
1
2
3
4
5
6
Lead Select
LL
2
R501
51.1K
A/D Inputs
Leads Off
LA
VSS
1
RA
16
Left-Arm
J501
CON6
E
VDD
Right-Arm
3
D507
5.1V
VSS
fVee
1
C504
220pF
R524
1.21K
0.1%
TP561
VLdsOff
Q504-g
Sw-MonBw
Q505
2N7002
fVcc
3
E
3
TP560
1
c541-1
C540
1000pF
f+1.24V
U504
C541
330pF
Sw-RLD-RL
3
1
Sw-RLD-LL
14
16
Sw-RLD-LA
11
9
Sw-RLD-RA
6
8
E
D505
BAV99L
1
2
3
R505
51.1K
1
Right-Leg
D505-3
TP550
13
4
5
fVcc
fVee
E
N505
LAMP NEON
S1
IN1
D1
S2
IN2
D2
S3
IN3
D3
S4
IN4
D4
E
8
R555
30.1K
+
5
-
6
U503-5
f+5V
C536
.01uF
R556
10K
2
fVee
15
E
fVcc
7
R516
10K
V+
VGND
E
10
TP549
vRL
RL-mux
U503A
MC34002
1
DG202CSE
TP559
C505
220pF
S
U503B
MC34002
7
VLdsOff
TP556
Sw-RLD-V
c540-1
TP548
4
R564
464K
TP547
E
3
R525
10K
+
3
-
2
E
R526
10K
U503-2
TP551
RLD Amp
1
4
TP555
2
1
R563
34.8K
2
Q502
2N7002
8
Q501
2N7002
E
Q501-S
S
Initial
R527
1K
E
fVee
C514
0.1uF
C514-2
R528
51.1K
TP552
Drawn
Rick Myers
Mar 5, 1999
Designed
Rick Myers
Mar 5, 1999
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620017.dsn
Title
ECG Amp
L. Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/16/99
Date:
Rev
E
Document Number
620017
Wednesday, July 14, 1999
Sheet
E
5
of
8
A
B
U601
U602
U603
U608
C
D
E
REV
U609
fVcc
A
ECN/ECO
Description
Release to Production
5-39121
See ECN worksheet
5-39455
Init
Date
JAC
Ckd
3/15/99
LPP
LPP
4/27/99
LPP
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
fVcc
C639
.047uF
B
R623
46.4K
U603
U608
U609
7
Resp-Reset
fVee
C614
4.7uF
C626
.047uF
C627
.047uF
C638
.047uF
C640
.047uF
E
E
E
E
-
6
iso+5Vdig
E
Resp-Off
SpO2-Reset
C629
.047uF
D
E
E
D
fVcc
Serial/Parallel
Control Data
8
1
Sw-MonBw
U607A
LM393
+
3
-
2
TP606 TP607
15
1
2
3
4
5
6
7
Sw-RespReset
SW-RL-V
MuxB
MonBw
fVee
fVcc
SW-RLD-RL
SW-RLD-LL
8
7
SW-RLD-V
5
-
6
QA
QB
QC
QD
QE
QF
QG
QH
9
f+1.24V
TP610
SER
SRCLK
SRCLR
QH
D
TP613
TP617
TP618
+
C630
4.7uF
14
f+5V
SW-RLD-LA
SW-RLD-RA
Mux-LdS-C
Mux-LdS-B
Mux-LdS-A
fVee
8
fVcc
TP620
iso604-a
FE-Data-In
5
E
D
D
E
E
16
f+5V
U604B
74HCT04
14
U604-4
11
10
4
3
+5V
U612
HCNW4503
C642
0.1uF
R615
6.19K
8
R629
10K
D
2
E
U612-6
R620
619
6
3
iso603-a
FE-Data-Clock
5
12
13
RCLK
G
TP637
C644
220pF
E
D
D
E
E
3
U605-12
U604-6
7
7
D
X
3
3
R603
46.4K
+
E
U601A
MC34072
iso+5Vdig
U602-3
U601-1
R606
3.48K
TP630
2
+
3
-
2
fVcc
f+5V
R608
1K
7
U602
LM311
C632
.047uF
9
TP629
8
TP628
14
10
7
3
U604E
74HCT04
D601-2
1000pF
2
E
C621
E
R610
511
U610
HCNW4503
iso601-a
TP633
TP643
8
PWM
A/D
Converter
fVee
R632
5.11K
E
6 U610-6
TP632
FE-PWM-ADC
3
5
1
D
E
2
0.1uF
R611
6.19K
fVee
U604-10
R604
10K
Q601
MMBT3904L
1
U604D
74HCT04
+5V
3
TP626
TP625
U601-2
C601
E
R607
464K
C603
680pF
1
D
E
iso+5Vdig
fVcc
4
2
TP631
R605
3.48K
fVcc
R602
73.2K
FE-ADC-Clock
U603
4051
8
C636
2200pF
iso602-a
MuxA
U601-3
f+5V
R621
215
6
2
3
Temp-In
C645
100pF
Q601-e
TP627
R601
10K
J601
C
B
A
INH
X7
X6
X5
X4
X3
X2
X1
X0
2
E
U611-6
E
U604-8
E
C635 .01uF
11
8
D
3
fVee
16
0.1%
E
5
R617
2.15K
R631
5.11K
+5V
5
5
6
8
1.21K
f+5V
6
U611
HCNW4503
A/D Mux
3
X
U602-7
4
2
5
1
12
15
14
13
vRL
f+1.24V
RA
LA
LL
V+
An-ECG
2
2
8
VEE
TP642
4
1
R627
Temperature
Thermistor
f+5V
U604C
74HCT04
U602-5
9
10
11
6
MuxA
TP624
R625
1K
D602
BAV99L
C628
0.1uF
TP641
VEE
4
C634 .01uF
iso+5Vdig
E
R630
10K
MuxB
fVcc
U608A
AD712
fVee
+Clamp
U609
4051
-
TP623
C646
1000pF
E
16
Patient-Temp
U608-1
1
X7
X6
X5
X4
X3
X2
X1
X0
D
TP621
R626
1K
E
CON2
R619
619
6
E
SRCLK
SRCLR
QH
U602-2
+
C
B
A
INH
8
3
C633 U608-22
.01uF
2
1
SER
QA
QB
QC
QD
QE
QF
QG
QH
9
U603out
8
U608-3
f+1.24V
1
U613-6
U604-5
An-Resp
Temperature
Amplifier
U601-7
-Clamp
15
1
2
3
4
5
6
7
2
E
C643
220pF
14
fVee
4
2
5
1
12
15
14
13
VSS
U601B
MC34072
9
10
11
6
U604F
E 74HCT04
Resp-LdsOff
R624
51.1K
D
7
VDD
-
12
VSS
6
13
VDD
+
7
5
4
Resp-DC
8
R628
10K
TP636
7
3
1
+5V
U613
HCNW4503
C641
0.1uF
R613
6.19K
TP640
Mux-A/D-C
Mux-A/D-B
Mux-A/D-A
TP635
8
TP615
E
2
TP639
3
11
10
GND
TP616
U604-2
14
TP614
U606
74HCT595
f+5V
4
iso+5Vdig
TP612
U605-out
fVee
U604A
74HCT04
12
13
RCLK
G
TP611
4
AD712
U608B
+
f+5V
TP638
U605
74HCT595
4
TP609
Isolation
Barrier
iso+5Vdig
E
Improvements for ESD, RFI,
and Fast Transients, Correct
Respiration Diff-Amp Topology
Mods to U2 clock line, Resp
gain amp, ECG supply and
NVRAM pullup
iso+5Vdig
TP605
R622
46.4K
fVcc
C631
.047uF
14
+
E
5
U606
fVee
fVcc
4
+
U605
4
C625
.047uF
U607B
LM393
TP601
D
TP603
U604-1
U602
TP604
U604-3
E
14
E
7
E
7
U601
E
14
E
8
E
fVcc
7
C637
.047uF
16
C624
.047uF
VCC
C623
.047uF
GND
C609
4.7uF
8
+
VCC
C622
.047uF
C647
100pF
E
D601
MMBD1503A
52uSec
Integrator
Input
833uSec
(U604-10)
1
1
+5V
Comparator
Inputs
Analog In
-5V
Initial
Drawn
PWM-Out
(U602-7)
Designed
Checked
Approved
PWM-timer
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620017.dsn
Rick Myers
Mar 5, 1999
Rick Myers
Mar 5, 1999 Title
L. Phillips
3/16/99
Z. Psenicnik
3/16/99
Size
C
J. Bello
3/16/99
Date:
ECG A/D and Interface
Rev
E
Document Number
620017
Wednesday, July 14, 1999
Sheet
E
6
of
8
A
B
C
D
E
REV
A
B
D
E
ECN/ECO
Description
Release to Production
5-39121
See ECN worksheet
5-39455
Improvements for ESD, RFI,
and Fast Transients, Correct
Respiration Diff-Amp Topology
Mods to U2 clock line, Resp
gain amp, ECG supply and
NVRAM pullup
Init
Date
JAC
Ckd
3/15/99
LPP
LPP
4/27/99
LPP
5-39821
LPP
6/24/99
LPP
5-39936
LPP
7/9/99
4
4
D801
BAV99L
Isolation
Barrier
1
R812
215
R812-1
T801
1
T801-5
5
D802
BAV99L
6
IPK
GND
TCAP
R
3
D803
BAV99L
U801-1
IsoXfmr
T801-4
5
COMP
2
1
U801-5
RVee
R804
5.11K
4
3
C804
100uF
+
R
4
2
ISWE
+
U801-ct
C801
1uF
1
ISWC
Vcc
TP803
C807
470pf
8
IDC
3
C813
470pf
C805
100uF
3
7
R+5V
R815-1
+5V
C802
220pf
7
1
LED
R803
10K
C
COMP
6
2
ISO801-2
4
ISO801-4
C806
.01uF
R805
3.16K
TP804
FB
E
3
GND
R802
5.11K
R
ISO801-1
U805
R803-2
R801
1
2
+
+5V
R
1
3
TP801
C803
100uF
+
8
3
U801
MC34063AD
RVcc
TP802
T801-2
2
R816
215
2
3
Isolated Supply
Serial
Communication
T801-1
R806
1K
TP805
TPS5908
R
R
+Vfuse
TP810
2
q802-b
NurseCall
R+5V
3
R813
619
Q802
MMBT3904L
1
RVcc
2
K801
RELAY SPST
C808
.047uF
3
2
q802-e
C809
.047uF
4
1
2
R
R
8
R811
6.19K
11
6 iso803-c
14
5
12
3
10
Vdd
2RA
3RY
3RA
1DA
1DY
2DA
2DY
3DA
9
R
2RY
Vss
RS423Tx
2
R819 215
1RA
3DY
6
1
1
8
R808
619
2 iso802-a
2
U804
HCNW4503
R807
6.19K
q801-e
6
RS423Rx
R
R817 215
Rx
Tx
U802-3
3
contact2
5
RJ-45
7
C814
680pF
C812
680pF
R
R
3
C816
.047uF
1
2
3
4
5
6
7
8
TP808
RVee
R
+5V
J801
contact1
4
R+5V
+5V
U802-2
2
U802
TL145406
8
iso803-a
13
1RY
1
16
15
U803
HCNW4503
Serial I/O
connector
TP806
Vcc
TP807
C815
.047uF
R810
619
R
R+5V
GND
R+5V
Q801
MMBT3904L
R
C810
.047uF
U802-15
R
R
1
TP809
3
5
Initial
R
Drawn
Rick Myers
Mar 5, 1999
Designed
Rick Myers
Mar 5, 1999
Checked
Approved
Release For Production
A
B
C
D
Welch Allyn Inc.
Date
Schematic: 620017.dsn
Title
Serial Communication
3/16/99
Size
C
Document Number
620017
3/16/99
Date:
L. Phillips
3/16/99
Z. Psenicnik
J. Bello
Rev
E
Wednesday, July 14, 1999
Sheet
E
8
of
8
Appendix E
Equipment for perfoming Safety Tests on the Atlas Monitor:
CAUTION : High Voltages are generated and
used during the HI-Pot or Dielectric Test. DO
NOT OPERATE THIS EQUIPMENT AND OR
RUN THIS TEST UNLESS YOU HAVE BEEN
PROPERLY TRAINED AND ARE QUALIFIED
ON THIS PROCEDURE!
Description
Modified AC Cord
Safety Analizer
Hi-Pot
AC Power Source
Tool #
T-16761
601 Pro Series
Model 3500D
Model EW 371
Company
Welch Allyn
BioTek
Associated Research
Elgar
Test Procedure for Atlas Safety Test Station
Leakage Test Procedure:
1. Verify that all plugs removed from the Elgar AC Power Source and the Biotek 601 Pro Safety Tester
2. Turn on EW371 Elgar Supply
3. Set Voltage and Frequency (240VAC, 50 Hz) after self-test has completed
Key strokes: [Shift] [Range (300v)] [Shift] [2] [4] [0] [Enter] [V/F (frequency)] [5] [0] [Enter] [Out]
4. Plug in Biotek 601 Pro to front panel and power up Biotek.
5. Toggle [Class/Type] button until Class I, Type CF displayed on Main Menu if necessary.
6 Select Test Standard IEC601-1 by pressing the [More] key and then toggling the [Down Arrow]. Then select with
[Enter]. Once selected press [ESC]
7. Connect ECG leads to Biotek in accordance with color code directly above the top row of sockets: AP/RA (wht),
RL (grn), LA (blk), LL (red), V1 (brn)
8. Select Patient Leakage Current Connections: All-Earth[up/down arrows], Norm Pol [polarity], Earth[earth],
L2[L2], Class I Type CF. (no indicator lights are on in outlet control panel [dual rev. pol, no earth, no L2: all off])
9. Select Patient Leakage #7 to provide AC power to Biotek AC socket.
10. Turn on Atlas Monitor.
11. Press Mains on Applied Part #8.
11. Record All-Earth:Norm and All-Earth:Rev result (pass/fail) on Atlas Monitor Test Result form. If failure, then
place unit on Debug shelf.
12. Press Patient Leakage uA #7.
13. Record Patient Leakage result (pass/fail) on Atlas Monitor Test Result form. If failure, then place unit on Debug
shelf.
14. Turn off Atlas Monitor.
15. Remove ECG cable from Atlas.
16. Remove AC cord if no printer and proceed to Dielectric Tests.
17. If printer, continue to Ground Continuity Test.
Ground Continuity Test (Printer Models Only)
1.
2.
3.
4.
5.
6.
7.
8.
Press [Earth Resistance] key (#4)
Toggle [Test Current] key (#5) until Test Current is 1A if necessary
Plug red test lead from Front Panel red jack to green jack
Press [Cal] to calibrate test lead
After calibration complete, remove red lead from green jack and place red clip on red lead tip
Attach red lead from 601Pro to printer motor case
Press [Earth Resistance] (#4)
Record Earth Resistance result (pass/fail) on Atlas Monitor Test Result form. If failure, then place unit on Debug
shelf.
9. Press [ESC] key
10. Remove red lead from jack and printer motor
11. Disconnect AC cord from Atlas and continue to Dielectric Test.
Leakage Test Procedure after First Run of Day
1.
2.
3.
4.
5.
6.
7.
Verify Output Voltage and Frequency of EW371 Power Supply (240VAC, 50 Hz)
Plug power cord from Biotek 601Pro into Atlas Monitor.
Verify ECG Lead Connection to Biotek 601 Pro.
Connect ECG plug from Biotek to Atlas Monitor.
Select Patient Leakage #7 to provide AC power to Biotek AC socket.
Turn on Atlas Monitor.
Press Mains on Applied Part #8.
8. Record All-Earth:Norm and All-Earth:Rev result (pass/fail) on Atlas Monitor Test Result form. If failure, then
place unit on Debug shelf.
9. Press Patient Leakage uA #7.
10. Record Patient Leakage result (pass/fail) on Atlas Monitor Test Result form. If failure, then place unit on Debug
shelf.
11. Turn off Atlas Monitor.
12. Remove ECG cable from Atlas.
13. Remove AC cord if no printer and proceed to Dielectric Tests.
14. If printer, continue to Ground Continuity Test.
Ground Continuity Test (Printer Models Only)
1. Attach red lead from 601Pro to printer motor case
2. Press [Earth Resistance] (#4)
3. Record Earth Resistance result (pass/fail) on Atlas Monitor Test Result form. If failure, then place unit on Debug
shelf.
4. Press [ESC] key
5. Remove red lead from jack and printer motor
6. Disconnect AC cord from Atlas
At conclusion of last test of day, turn off Biotek 601Pro and Elgar power supply EW371.
CAUTION : High Voltages are generated and
used during the HI-Pot or Dielectric Test. DO
NOT OPERATE THIS EQUIPMENT AND OR
RUN THIS TEST UNLESS YOU HAVE BEEN
PROPERLY TRAINED AND ARE QUALIFIED
ON THIS PROCEDURE!
Dielectric Test
Three tests will be performed for Dielectric Withstand.
1. Mains to Instrument Common: 1500 VAC
2. Mains to ECG Output: 4000 VAC
3. Mains to Isolated RS232 (Models 210/220 only):
4000 VAC
Mains to Instrument Common: 1500 VAC
A. Connect the modified AC cord (Connection 1: hot and neutral joined, Connection 2: earth ground) to the back of
the Atlas Monitor.
B. Connect the black clip lead to the return jack of the Hypot 3500 Dielectric tester.
C. Connect the red clip lead to the HV jack of the Hypot 3500 Dielectric tester.
D. Turn on 3500D. Press [Set]
E. Set voltage to 1500 VAC with [up]/[down] buttons
F. Press [Set]
G. Set current limit to 3 mA with [up]/[down] buttons
H. Press [Set]
I. Set Timer to 60 seconds with [up]/[down] buttons
J. Press [Set]
K. Set Continuity off.
L. Scroll through settings with [Set] button.
M. When settings verified, press [Exit] button.
N. Connect Red Clip lead to joined Hot and Neutral lines of the test connector
O. Connect Blk Clip lead to grd wire of the modified AC cord.
P. Position electrical leads at rear of test bench
Q. Press green [Test] button. Wait for 60 seconds.
R. Record current: _______mA
Mains to ECG Output: 4KV
A. Plug modified ECG cables into ECG connector at front of Atlas unit.
B. Connect the modified AC cord (hot, neutral, and earth ground connected) to the back of the Atlas Monitor.
C. Connect the black lead banana plug to the return jack of the Hypot 3500 Dielectric tester.
D. Connect the red lead banana plug to the red jack of the Hypot 3500 Dielectric tester.
E. Turn on 3500D. Press [Set]
F. Set voltage to 1500 VAC with [up]/[down] buttons
G. Press [Set]
H. Set current limit to 3 mA with [up]/[down] buttons
I. Press [Set]
J. Set Timer to 60 seconds with [up]/[down] buttons
K. Press [Set]
L. Set Continuity off.
M. Scroll through settings with [Set] button.
N. When settings verified, press [Exit] button.
O. Connect the red clip lead from HV Jack of Hypot 3500D to modified AC connector cord with all lines connected
(Hot, Neutral, and Ground)
P. Connect Blk Clip lead to common connection of joined ECG leads
Q. Position electrical leads at rear of test bench
R. Press green [Test] button. Wait for 60 seconds.
S. Record current: _______mA
Mains to Isolated RS232 (Models 210/220 only):
4000 VAC
A. Plug modified RS232 cable (all wires connected) into the RS232 connector at rear of Atlas unit.
B. Connect the modified AC cord (hot, neutral, and earth ground connected) to the back of the Atlas Monitor.
C. Connect the black lead banana plug to the return jack of the Hypot 3500 Dielectric tester.
D. Connect the red lead banana plug to the HV jack of the Hypot 3500 Dielectric tester.
E. Apply power to 3500D. Press [Set]
F. Set voltage to 1500 VAC with [up]/[down] buttons
G. Press [Set]
H. Set current limit to 3 mA with [up]/[down] buttons
I. Press [Set]
J. Set Timer to 60 seconds with [up]/[down] buttons
K. Press [Set]
L. Set Continuity off.
M. Scroll through settings with [Set] button.
N. When settings verified, press [Exit] button.
O. Connect the red clip lead from HV Jack of Hypot 3500D to modified AC connector cord with all lines connected
(Hot, Neutral, and Ground)
P. Connect Blk Clip lead to common connection of joined RS232 leads
Q. Position electrical leads at rear of test bench
R. Press green [Test] button. Wait for 60 seconds.
S. Record current: _______mA
Atlas Test Results
Patient Leakage test (10uA Maximum)
Mains on applied part (50 uA Maxlmum)
tarth Resistance (printer only) (.200 Ohms Max)
Dielectric Withstand Test Results
Mains to tarth @ 1.5kV (3mA Max)
Mains to tarth @ 4.0kV (3mA Max)
Mains to isolation RS232 @ 4 kV (3mA Max)
Other
Functional Tests Results
Initialize
I
I
Battery
Power Supply
Blood Pressure
SpO2
Kespiration
ECG 1
ECG 2
ETCO,
T emperature
Other
Failure Detail I Repairs Made
I
I