Download Emerson 752I User's Manual

Transcript
User’s Manual
from Emerson Network Power ™
Embedded Computing
Katana®752i: Intelligent CompactPCI Blade for cPSB
April 2008
The information in this manual has been checked and is believed to be accurate and reliable. HOWEVER, NO RESPONSIBILITY IS ASSUMED BY EMERSON NETWORK POWER,
EMBEDDED COMPUTING FOR ITS USE OR FOR ANY INACCURACIES. Specifications are subject to change without notice. EMERSON DOES NOT ASSUME ANY LIABILITY ARISING OUT
OF USE OR OTHER APPLICATION OF ANY PRODUCT, CIRCUIT, OR PROGRAM DESCRIBED
HEREIN. This document does not convey any license under Emerson patents or the rights of
others.
Emerson. Consider It Solved is a trademark, and Business-Critical Continuity, Emerson Network Power, and the Emerson Network Power logo are trademarks and service marks of
Emerson Network Power, Embedded Computing, Inc.
© 2008 Emerson Network Power, Embedded Computing, Inc.
Revision Level:
Principal Changes:
Date:
10006024-00
Original release
February 2006
10006024-01
Updates to page 10-4
March 2006
10006024-02
ECR01059: Added MTBF and RoHS cable info
January 2007
10006024-03
Updated block diagram and FRU info
July 2007
10006024-04
Updated format, Emerson contact and
regulatory info, and monitor section; changed
750GX to 750GL
April 2008
Copyright © 2006-2008 Emerson Network Power, Embedded Computing, Inc. All rights reserved.
Regulatory Agency Warnings & Notices
The Emerson Katana752i meets the requirements set forth by the Federal Communications
Commission (FCC) in Title 47 of the Code of Federal Regulations. The following information
is provided as required by this agency.
This device complies with part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device
must accept any interference received, including interference that may cause undesired
operation.
FCC RULES AND REGULATIONS — PART 15
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy
and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely
to cause harmful interference, in which case the user will be required to correct the interference at his own expense.
Caution: Making changes or modifications to the Katana752i hardware without the explicit consent
of Emerson Network Power could invalidate the user’s authority to operate this equipment.
!
EMC COMPLIANCE
The electromagnetic compatibility (EMC) tests used a Katana752i model that includes a
front panel assembly from Emerson Network Power.
Caution: For applications where the Katana752i is provided without a front panel, or where the front
panel has been removed, your system chassis/enclosure must provide the required
!
electromagnetic interference (EMI) shielding to maintain EMC compliance.
10006024-04
Katana®752i User’s Manual
i
(continued)
EC Declaration of Conformity
According to EN 45014:1998
Manufacturer’s Name:
Emerson Network Power
Embedded Computing
Manufacturer’s Address:
8310 Excelsior Drive
Madison, Wisconsin 53717
Declares that the following product, in accordance with the requirements of 2004/108/EEC, EMC
Directive and 1999/5/EC, RTTE Directive and their amending directives,
Product:
Real-Time Processing Blade
Model Name/Number:
Katana752i/10006008-xx
has been designed and manufactured to the following specifications:
EN55022:1998 Information Technology Equipment, Radio disturbance characteristics, Limits and
methods of measurement
EN55024:1998 Information Technology Equipment, Immunity characteristics, Limits and methods
of measurement
EN300386 V.1.3.2:2003-05 Electromagnetic compatibility and radio spectrum matters (ERM);
Telecommunication network equipment; EMC requirements
As manufacturer we hereby declare that the product named above has been designed to comply
with the relevant sections of the above referenced specifications. This product complies with the
essential health and safety requirements of the EMC Directive and RTTE Directive. We have an internal production control system that ensures compliance between the manufactured products and
the technical documentation.
Bill Fleury
Compliance Engineer
Issue date: April 21, 2008
ii
Katana®752i User’s Manual
10006024-04
Contents
1 Overview
Components and Features . . . . . . . . . . . 1-1
Functional Overview . . . . . . . . . . . . . . . . 1-4
Additional Information . . . . . . . . . . . . . . 1-5
Product Certification . . . . . . . . . . . . . 1-5
RoHS Compliance. . . . . . . . . . . . . . . . 1-6
Terminology and Notation . . . . . . . . 1-6
Technical References. . . . . . . . . . . . . 1-6
2 Setup
Electrostatic Discharge . . . . . . . . . . . . . . 2-1
Katana®752i Circuit Board. . . . . . . . . . . 2-1
Identification Numbers . . . . . . . . . . . 2-7
Connectors . . . . . . . . . . . . . . . . . . . . . 2-7
Fuses. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Katana®752i Setup . . . . . . . . . . . . . . . . . 2-9
Power Requirements . . . . . . . . . . . .2-10
Environmental Requirements . . . .2-10
Troubleshooting . . . . . . . . . . . . . . . . . . . 2-10
Technical Support . . . . . . . . . . . . . .2-11
Product Repair . . . . . . . . . . . . . . . . .2-11
3 Reset Logic
General Overview . . . . . . . . . . . . . . . . . . . 3-1
Reset Sources . . . . . . . . . . . . . . . . . . . . . . 3-3
CompactPCI Reset Enable . . . . . . . . 3-3
Power Monitor . . . . . . . . . . . . . . . . . . 3-3
750GL Processor Reset . . . . . . . . . . . 3-3
Exception Processing. . . . . . . . . . . . . . . . .4-9
Cache Memory . . . . . . . . . . . . . . . . . . . . 4-11
L1 Cache . . . . . . . . . . . . . . . . . . . . . . 4-11
L2 Cache . . . . . . . . . . . . . . . . . . . . . . 4-11
JTAG/COP Headers. . . . . . . . . . . . . . . . . 4-13
5 System Controller
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1
CPU Interface . . . . . . . . . . . . . . . . . . . . . . .5-2
SDRAM Controller . . . . . . . . . . . . . . . . . . .5-3
Device Controller Interface. . . . . . . . . . . .5-3
Internal (IDMA) Controller . . . . . . . . . . . .5-4
Timer/Counters . . . . . . . . . . . . . . . . . . . . .5-4
PCI Interface . . . . . . . . . . . . . . . . . . . . . . . .5-4
PCI Configuration Space. . . . . . . . . . 5-4
PCI Identification . . . . . . . . . . . . . . . . 5-5
PCI Read/Write. . . . . . . . . . . . . . . . . . 5-5
PCI Interface Registers . . . . . . . . . . . 5-5
Doorbell Registers . . . . . . . . . . . . . . . . . . .5-6
Outbound Doorbells . . . . . . . . . . . . . 5-6
Inbound Doorbells. . . . . . . . . . . . . . . 5-6
Watchdog Timer . . . . . . . . . . . . . . . . . . . .5-6
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-6
On-Card Memory . . . . . . . . . . . . . . . . . . . .5-7
User Flash . . . . . . . . . . . . . . . . . . . . . . 5-7
SDRAM. . . . . . . . . . . . . . . . . . . . . . . . . 5-7
EEPROMs . . . . . . . . . . . . . . . . . . . . . . . 5-8
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . .5-8
GPIO Signal Definitions . . . . . . . . . . . . . 5-10
Console Serial Port . . . . . . . . . . . . . . . . . 5-11
6 Device Bus PLD
4 Processor
Processor Overview . . . . . . . . . . . . . . . . . 4-1
Features . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Physical Memory Map . . . . . . . . . . . . 4-2
Processor Reset. . . . . . . . . . . . . . . . . . . . . 4-4
Processor Initialization. . . . . . . . . . . . . . . 4-4
Hardware Implementation Dependent
0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Hardware Implementation Dependent
1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Hardware Implementation Dependent
2 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Exception Handling . . . . . . . . . . . . . . . . . 4-8
10006024-04
Reset Registers . . . . . . . . . . . . . . . . . . . . . .6-1
Interrupt Registers . . . . . . . . . . . . . . . . . . .6-2
Product Identification . . . . . . . . . . . . . . . .6-3
PCI Enumeration. . . . . . . . . . . . . . . . . . . . .6-3
Revision Registers . . . . . . . . . . . . . . . . . . .6-4
Board Configuration Registers. . . . . . . . .6-4
Other Registers. . . . . . . . . . . . . . . . . . . . . .6-6
7 Real-Time Clock
Block Diagram. . . . . . . . . . . . . . . . . . . . . . .7-1
Operation . . . . . . . . . . . . . . . . . . . . . . . . . .7-1
Clock Operation . . . . . . . . . . . . . . . . . . . . .7-2
Katana®752i User’s Manual
iii
8 Local PCI Bus
PCI Enumeration. . . . . . . . . . . . . . . . . . . . .8-1
PCI ID Select and Interrupts . . . . . . . . . . .8-1
Geographical Addressing . . . . . . . . . . . . .8-2
PCI Bus Control Signals . . . . . . . . . . . . . . .8-2
9 PTMC Interface
PTMC Installation . . . . . . . . . . . . . . . . . . . .9-1
PTMC Connector Pinouts . . . . . . . . . . . . .9-3
10 Ethernet Interfaces
Ethernet Address . . . . . . . . . . . . . . . . . . 10-1
Ethernet Ports . . . . . . . . . . . . . . . . . . . . . 10-2
Front Panel Ethernet Connector Pinouts . . .
10-2
Optional RMII PHY Devices . . . . . . . . . . 10-3
11 IPMI Controller
(blank page)
SMB/IPMI Overview . . . . . . . . . . . . . . . . 11-1
I/O Interface . . . . . . . . . . . . . . . . . . . . . . 11-4
I2C Interfaces . . . . . . . . . . . . . . . . . . . . . 11-5
IPMI Message Protocol . . . . . . . . . . . . . 11-6
IPMI Network Function Codes . . . .11-8
IPMI Completion Codes . . . . . . . . .11-9
Zircon PM IPMI Commands . . . . .11-10
Get Sensor Reading (Sensor/Event) . . .
11-11
Master Write-Read I2C (Application) . .
11-14
Write Setting (OEM) . . . . . . . . . . .11-15
Read Setting (OEM) . . . . . . . . . . . .11-16
Set Heartbeat (OEM) . . . . . . . . . . .11-17
Get Heartbeat (OEM). . . . . . . . . . .11-18
IPMI FRU Information . . . . . . . . . .11-19
IPMI Device SDR Repository . . . . .11-20
IPMI Event Messages . . . . . . . . . . .11-20
12 Hot Swap
Hot Swap Logic (HSL) PLD. . . . . . . . . . . 12-1
cPCI Functionality. . . . . . . . . . . . . . . . . . 12-2
Hot Swap LED and Ejector Switch Control . .
12-2
cPCI Hot Swap. . . . . . . . . . . . . . . . . .12-2
Non-cPCI Hot Swap . . . . . . . . . . . . .12-4
iv
Katana®752i User’s Manual
10006024-04
Timing Considerations . . . . . . . . . . . . . 12-5
HEALTHY* Signal . . . . . . . . . . . . . . . . . . 12-6
13 CT Bus Interface
PICMG 2.15 Configuration 2 . . . . . . . . 13-1
Katana®752i CT Bus Options. . . . . . . . 13-2
Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Signal Control . . . . . . . . . . . . . . . . . . . . . 13-3
CT Bus Routing Without the T8110 (option
1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
CT Bus Routing With the T8110 Installed
(option 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Local CT Bus Operation. . . . . . . . . . 13-7
H.110 CT Bus Operation. . . . . . . . . 13-8
14 Backplane Signals
Overview . . . . . . . . . . . . . . . . . . . . . . . . . 14-1
Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
15 Monitor
Command-Line Features. . . . . . . . . . . . 15-1
Basic Operation . . . . . . . . . . . . . . . . . . . 15-3
Power-Up/Reset Sequence . . . . . . 15-3
Power-Up Timing. . . . . . . . . . . . . . . 15-5
POST Diagnostic Results . . . . . . . . 15-6
Monitor SDRAM Usage . . . . . . . . . . 15-6
Monitor Recovery and Updates . . . . . . 15-7
Recovering the Monitor . . . . . . . . . 15-7
Updating the Monitor via TFTP . . . 15-7
Resetting Environment Variables . 15-8
Monitor Command Reference . . . . . . . 15-8
Command Syntax . . . . . . . . . . . . . . 15-8
Command Help . . . . . . . . . . . . . . . . 15-9
Typographic Conventions . . . . . . . 15-9
Boot Commands . . . . . . . . . . . . . . . . . . 15-9
bootbus . . . . . . . . . . . . . . . . . . . . . . . 15-9
bootcrc . . . . . . . . . . . . . . . . . . . . . . 15-10
bootd . . . . . . . . . . . . . . . . . . . . . . . . 15-10
bootelf . . . . . . . . . . . . . . . . . . . . . . . 15-10
bootm . . . . . . . . . . . . . . . . . . . . . . . 15-10
bootp . . . . . . . . . . . . . . . . . . . . . . . . 15-10
bootv . . . . . . . . . . . . . . . . . . . . . . . . 15-11
bootvx . . . . . . . . . . . . . . . . . . . . . . . 15-11
rarpboot . . . . . . . . . . . . . . . . . . . . . 15-11
tftpboot. . . . . . . . . . . . . . . . . . . . . . 15-11
Contents
(continued)
JFFS2 File Systems. . . . . . . . . . . . . . . . . 15-12
ls . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-12
fsinfo. . . . . . . . . . . . . . . . . . . . . . . . .15-12
fsload . . . . . . . . . . . . . . . . . . . . . . . .15-12
chpart . . . . . . . . . . . . . . . . . . . . . . . .15-12
Memory Commands . . . . . . . . . . . . . . 15-12
cmp. . . . . . . . . . . . . . . . . . . . . . . . . .15-13
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .15-13
find . . . . . . . . . . . . . . . . . . . . . . . . . .15-13
md. . . . . . . . . . . . . . . . . . . . . . . . . . .15-13
mm . . . . . . . . . . . . . . . . . . . . . . . . . .15-14
nm. . . . . . . . . . . . . . . . . . . . . . . . . . .15-14
mw . . . . . . . . . . . . . . . . . . . . . . . . . .15-14
Flash Commands . . . . . . . . . . . . . . . . . 15-15
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .15-15
erase . . . . . . . . . . . . . . . . . . . . . . . . .15-15
flinfo . . . . . . . . . . . . . . . . . . . . . . . . .15-15
protect . . . . . . . . . . . . . . . . . . . . . . .15-16
EEPROM / I2C Commands. . . . . . . . . . 15-16
eeprom . . . . . . . . . . . . . . . . . . . . . .15-16
icrc32 . . . . . . . . . . . . . . . . . . . . . . . .15-17
iloop . . . . . . . . . . . . . . . . . . . . . . . . .15-17
imd . . . . . . . . . . . . . . . . . . . . . . . . . .15-17
ipmifirmload . . . . . . . . . . . . . . . . . .15-17
imm . . . . . . . . . . . . . . . . . . . . . . . . .15-17
imw. . . . . . . . . . . . . . . . . . . . . . . . . .15-17
inm . . . . . . . . . . . . . . . . . . . . . . . . . .15-17
iprobe . . . . . . . . . . . . . . . . . . . . . . . .15-18
Ethernet Controller EEPROM Commands . .
15-18
initeth4rom. . . . . . . . . . . . . . . . . . .15-18
filleth4rom . . . . . . . . . . . . . . . . . . .15-18
showeth4rom . . . . . . . . . . . . . . . . .15-18
Environment Parameter Commands 15-18
envinit . . . . . . . . . . . . . . . . . . . . . . .15-19
printenv . . . . . . . . . . . . . . . . . . . . . .15-19
saveenv . . . . . . . . . . . . . . . . . . . . . .15-19
setenv. . . . . . . . . . . . . . . . . . . . . . . .15-19
Test Commands . . . . . . . . . . . . . . . . . . 15-20
diags . . . . . . . . . . . . . . . . . . . . . . . . .15-20
mtest . . . . . . . . . . . . . . . . . . . . . . . .15-20
um. . . . . . . . . . . . . . . . . . . . . . . . . . .15-20
Other Commands. . . . . . . . . . . . . . . . . 15-20
autoscr . . . . . . . . . . . . . . . . . . . . . . .15-20
base . . . . . . . . . . . . . . . . . . . . . . . . .15-20
10006024-04
bdinfo . . . . . . . . . . . . . . . . . . . . . . . 15-20
coninfo . . . . . . . . . . . . . . . . . . . . . . 15-21
crc16 . . . . . . . . . . . . . . . . . . . . . . . . 15-21
crc32 . . . . . . . . . . . . . . . . . . . . . . . . 15-21
echo . . . . . . . . . . . . . . . . . . . . . . . . . 15-21
enumpci . . . . . . . . . . . . . . . . . . . . . 15-21
fpledoff . . . . . . . . . . . . . . . . . . . . . . 15-21
fruget. . . . . . . . . . . . . . . . . . . . . . . . 15-21
frugetuser . . . . . . . . . . . . . . . . . . . . 15-21
frusetuser . . . . . . . . . . . . . . . . . . . . 15-22
gethvr . . . . . . . . . . . . . . . . . . . . . . . 15-22
getmonver . . . . . . . . . . . . . . . . . . . 15-22
getpcimemsize . . . . . . . . . . . . . . . 15-22
getpcimode . . . . . . . . . . . . . . . . . . 15-23
getphysloc . . . . . . . . . . . . . . . . . . . 15-23
getspr . . . . . . . . . . . . . . . . . . . . . . . 15-23
go . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-23
help . . . . . . . . . . . . . . . . . . . . . . . . . 15-23
iminfo . . . . . . . . . . . . . . . . . . . . . . . 15-23
isdram . . . . . . . . . . . . . . . . . . . . . . . 15-24
loop . . . . . . . . . . . . . . . . . . . . . . . . . 15-24
memmap . . . . . . . . . . . . . . . . . . . . 15-24
moninit . . . . . . . . . . . . . . . . . . . . . . 15-24
pci. . . . . . . . . . . . . . . . . . . . . . . . . . . 15-24
reset . . . . . . . . . . . . . . . . . . . . . . . . . 15-25
run . . . . . . . . . . . . . . . . . . . . . . . . . . 15-25
setpcimemsize. . . . . . . . . . . . . . . . 15-25
setpcimode. . . . . . . . . . . . . . . . . . . 15-25
setspr . . . . . . . . . . . . . . . . . . . . . . . . 15-26
script . . . . . . . . . . . . . . . . . . . . . . . . 15-26
showmac. . . . . . . . . . . . . . . . . . . . . 15-26
showpci . . . . . . . . . . . . . . . . . . . . . . 15-26
showtemp. . . . . . . . . . . . . . . . . . . . 15-26
sleep. . . . . . . . . . . . . . . . . . . . . . . . . 15-26
vdhcp . . . . . . . . . . . . . . . . . . . . . . . . 15-26
version . . . . . . . . . . . . . . . . . . . . . . . 15-27
Environment Variables . . . . . . . . . . . . 15-27
Troubleshooting. . . . . . . . . . . . . . . . . . 15-30
Download Formats. . . . . . . . . . . . . . . . 15-30
Binary. . . . . . . . . . . . . . . . . . . . . . . . 15-30
Motorola S-Record . . . . . . . . . . . . 15-30
16 Acronyms
Katana®752i User’s Manual
v
(blank page)
vi
Katana®752i User’s Manual
10006024-04
Figures
Figure 1-1:
General System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Figure 2-1:
Katana®752i Front Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-2:
Component Map, Top (Rev. 03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-3:
Component Map, Bottom (Rev. 03). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Figure 2-4:
Jumper, Fuse, and Switch Locations, Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Figure 2-5:
Fuse, and LED Locations, Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Figure 3-1:
Katana®752i Reset Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 3-2:
750GL Reset Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Figure 4-1:
750GL Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Figure 4-2:
750GL Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Figure 5-1:
MV64460 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Figure 5-2:
I2C Interface Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Figure 5-3:
Standard Console Cable Wiring, #10007665-00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Figure 7-1:
M41T00 Real-Time Clock Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Figure 9-1:
PTMC Module Location on Baseboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
Figure 10-1:
RMII PHY to Transition Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
Figure 11-1:
IPMB Connections Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Figure 12-1:
Hot Swap Controller Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Figure 13-1:
Typical System Clocking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Figure 13-2:
CT Signal Routing Diagram —T8110 Not Installed (option 1) . . . . . . . . . . . . . . . . . . . 13-5
Figure 13-3:
CT Signal Routing Diagram —T8110 Installed (option 2) . . . . . . . . . . . . . . . . . . . . . . . 13-8
Figure 14-1:
cPCI Connector Pin Assignments, J5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6
Figure 15-1:
Example Monitor Start-up Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
Figure 15-2:
Power-up/Reset Sequence Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4
10006024-04
Katana®752i User’s Manual
vii
(blank page)
viii
Katana®752i User’s Manual
10006024-04
Tables
Table 1-1:
Regulatory Agency Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Table 1-2:
Technical References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Table 2-1:
Circuit Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Table 2-2:
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Table 4-1:
Katana®752i CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Table 4-2:
Katana®752i Address Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-3:
CPU Internal Register Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-4:
750GL Exception Priorities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Table 4-5:
Floating Point Exception Mode Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Table 4-6:
750GL JTAG/COP Interface Pin Assignments, (P3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Table 5-1:
PCI Identification Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Table 5-2:
NVRAM Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Table 5-3:
GPIO Signals Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Table 5-4:
Serial Console Port Pin Assignments, (P2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Table 7-1:
RTC Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Table 8-1:
ID Select Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Table 8-2:
Interrupt Connections for Katana®752i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Table 8-3:
Geographical Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Table 9-1:
J1x PTMC Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Table 9-2:
J2x PTMC Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
Table 10-1:
GbE Port LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Table 10-2:
82544EI Ethernet Port Pin Assignments, ETH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Table 10-3:
MV64460 Ethernet Port Pin Assignments, ETH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Table 10-4:
PTMC PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Table 11-1:
Zircon PM General Purpose I/O Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
Table 11-2:
Zircon PM Analog-to-Digital Input Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5
Table 11-3:
IPMB Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Table 11-4:
Format for IPMI Request Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Table 11-5:
Format for IPMI Response Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7
Table 11-6:
Network Function Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
Table 11-7:
Completion Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9
Table 11-8:
Zircon PM IPMI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10
Table 11-9:
Get Sensor Reading Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12
Table 11-10:
Master Write-Read I2C Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14
Table 11-11:
Write Setting Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15
Table 11-12:
Read Setting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16
Table 11-13:
Set Heartbeat Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Table 11-14:
Get Heartbeat Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18
Table 11-15:
FRU Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19
Table 11-16:
IPMI Event Messages Generating Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20
10006024-04
Katana®752i User’s Manual
ix
Tables
x
(continued)
Katana®752i User’s Manual
Table 11-17:
Event Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20
Table 11-18:
System Firmware Progress OEM Event Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-21
Table 12-1:
HSL PLD Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Table 13-1:
CT Clock Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Table 13-2:
Local CT Bus Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Table 14-1:
cPCI Connector Pin Assignments, J1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
Table 14-2:
cPCI Connector Pin Assignments, J2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
Table 14-3:
cPSB Connector Pin Assignments, J3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
Table 14-4:
cPSB Connector Pin Assignments, J4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5
Table 15-1:
Power-Up Timing for Booting from Soldered Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Table 15-2:
Power-Up Timing for Booting from Socketed Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Table 15-3:
POST Diagnostics Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Table 15-4:
Standard Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-27
Table 15-5:
Optional Environment Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-29
10006024-04
Registers
Register 4-1:
750GL Hardware Implementation Dependent, HID0. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Register 4-2:
750GL Hardware Implementation Dependent, HID1. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Register 4-3:
750GL Hardware Implementation Dependent, HID2. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Register 4-4:
CPU Machine State (MSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Register 4-5:
L2 Cache Control Register (L2CR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Register 6-1:
Reset Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Register 6-2:
Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Register 6-3:
Interrupt Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Register 6-4:
Interrupt Pending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Register 6-5:
Product ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Register 6-6:
EReady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Register 6-7:
Hardware Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Register 6-8:
PLD Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Register 6-9:
Board Configuration 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Register 6-10: Board Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Register 6-11: Board Configuration 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Register 6-12: IPMI Port Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Register 6-13: Programmable LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Register 10-1: MAC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10006024-04
Katana®752i User’s Manual
i
(blank page)
ii
Katana®752i User’s Manual
10006024-04
Section 1
Overview
The Emerson Katana® 752i is an intelligent input/output (I/O) processing blade for use in a
CompactPCI backplane. It is compatible with the CompactPCI Packet-Switched Backplane
(cPSB) and has two PCI Telecom Mezzanine Card (PTMC) sites that can support two telecommunications interface cards, such as the Emerson PM/3Gv. The Katana®752i draws
processing power from its IBM PowerPC® 750GL microprocessor, running at a speed of up
to 1GHz. A Marvell system controller serves as a PCI bridge. In the standard configuration,
the Katana®752i connects two Gigabit Ethernet ports to the front panel and two Gigabit
Ethernet ports to the J3 backplane connector, which (depending upon the configuration)
provides access to a rear transition module or cPSB. The Katana®752i supports various
memory configurations, user Flash memory, a front-panel serial port, and user I/O from the
PTMC sites. Optionally, the Katana®752i supports the H.110 Computer Telephony (CT) bus
and various clocking signals.
COMPONENTS AND FEATURES
The following is a brief summary of the Katana®752i hardware components and features:
CPU: The Katana®752i features an IBM 750GL central processing unit (CPU), operating at a rate
of up to 1GHz. The CPU is a 32-bit PowerPC RISC microprocessor with 32-kilobyte, Level-1,
data and instruction caches, as well as a one-megabyte, four-way, set-associative, Level-2
cache.
System Controller/PCI Bridge:
The Katana®752i employs a system controller/PCI bridge device from Marvell. The Discovery™ III MV64460 is a single-chip solution that provides a high-speed (up to 200MHz) 60x
bus interface, double-data rate (DDR) SDRAM controller, two 66-MHz PCI interfaces (64
bits for CompactPCI, 32 bits for PTMC sites), three 10/100/1000BaseT Ethernet MAC controllers, two multi-protocol serial controllers (MPSC), an interrupt controller, and 32 general-purpose input/output (I/O) signals. The MV64460 also includes an inter-integrated
circuit (I2C) interface.
10006024-04
Katana®752i User’s Manual
1-1
Overview:
Components and Features
SDRAM: The Katana®752i allows for a 72-bit Small-Outline Dual In-Line Memory Module (SODIMM) of up to two gigabytes to support the CPU. (Please contact Emerson for the availability of one- and two-gigabyte SO-DIMMs.) This SDRAM operates at a speed of up to 200
MHz and has Error Checking and Correction (ECC) code.
Flash: The Katana®752i supports up to 128 megabytes soldered user Flash memory for the CPU.
The Flash bank is 32 bits wide, using two or four 16-bit wide devices. The Katana®752i also
supports 512 kilobytes of socketed Flash. The Flash memory conforms to the Intel
StrataFlash™ architecture. The CPU is capable of booting from either Flash memory.
H.110: The Katana®752i has an optional configuration that supports the H.110 Computer Telephony (CT) bus in accordance with the PICMG 2.5 Computer Telephony Specification and
ECTF H.110 Specification, and it complies with Configuration 2 of the PICMG 2.15 PCI Telecom Mezzanine/Carrier Card Specification. The optional Agere Systems T8110 Time Slot
Interchanger (TSI) serves as a bridge between the H.110 and local CT bus.
Ethernet Ports: The Katana®752i provides four, 10/100/1000BaseT, Gigabit Media-Independent Interface
(GMII) Ethernet ports (three from the MV64460 system controller, one from the 82544EI
Ethernet controller). Two ports route to the front panel RJ45 connectors, and two ports
route to the J3 CompactPCI (cPCI) connector for use either by a rear transition module or a
cPCI packet-switched backplane (cPSB). Four PHY devices (three Broadcom BCM5461S,
one Intel 82544EI) provide the physical interface for these ports. Optionally, the
Katana®752i can support two Reduced Media-Independent (RMII) 10/100BaseT Ethernet
ports routed from the PTMC sites to connector J5. Two Micrel KS8721CL PHYs support
these ports.
Serial I/O: The MV64460 system controllers provides an asynchronous console serial port, which supports EIA-232 signal levels. This serial port is accessible via a mini-DB9 connector on the
Katana®752i front panel and the backplane connector J5.
CT Bus Clocks: Optionally, the Katana®752i can provide computer telephony (CT) bus clocking. One
option supports only the CT clocks (C8A, C8B, FRAMEA, FRAMEB, NETREF1, and NETFER2)
between J4 and the PTMC sites. A second option supports CT bus clocking plus CT data traffic via an Agere Systems T8110 Time Slot Interchanger (TSI). This routes H.110 to the backplane connector J4.
1-2
Katana®752i User’s Manual
10006024-04
Overview:
Components and Features
PTMC Sites: The Katana®752i has two standard PCI Telecom Mezzanine Card (PTMC) slots, which allow
for the use of two compatible PTMC boards, such as the Emerson PM/3Gv telecommunications interface card. (Refer to the PM/3Gv User’s Manual for details on the PM/3Gv.) The
Katana®752i complies with Configuration 2 of the PCI Telecom Mezzanine/Carrier Card Specification, PICMG 2.15.
IPMI: The Katana®752i supports an Intelligent Platform Management Interface (IPMI) by using a
Zircon PM controller device from QLogic Corporation.
Rear Transition Module:
An optional TmPIM rear transition module (RTM) can host two PCI Mezzanine Card
Input/Output Modules (PIMs). This RTM routes input/output signals from the Katana®752i
PMC slots to the PIM slots. It can also route two Ethernet ports and an EIA-232 serial port
from the J3 backplane connector to its rear panel. The Katana®752i also supports the
TM/cSpan-P16 and TM/cSpan-P8E RTMs from Emerson. See the appropriate RTM user manuals more information.
10006024-04
Katana®752i User’s Manual
1-3
32/64/128
MB Flash
512KB
Socketed
Flash
μDB-9
RS232
RJ45
RJ45
1000BaseT 1000BaseT
MAG
PMC Site #1
32 bit/33/66MHz PCI
64 User I/O
CT Bus per PT2MC
PMC Site #2
J14
J13
J22
J21
J24
J23
Opt.
Opt.
KS8721CL KS8721CL
J5 I/O
User I/O
MAG
BCM
5461S
32 bit/33/66MHz PCI
64 User I/O
CT Bus per PT2MC
J11
Opt. TSI
T8110
J12
Clock
Buffer
RMII
GbE
MAC/PHY
PCI
MAG MAG
BCM BCM
5461S 5461S
CT Bus Clocks
J3 cPSB & I/O Opt J4 H.110
RMII
Marvell
D-III
System
Controller
J2
User I/O
IBM
750GX
CPCI
256/512MB
1GB/2GB
DDR SDRAM
GMII
1.5V
NVRAM
RTC
3.3V
Power Supply
& Monitoring
Power
Voltage
Monitors
Temp
Sensors
FRU ROM
Switch
IPMI
CTRL
J1
2.5V
PTMCEthernet
1000BaseT
PCI
RS232
I2C
CT Bus
10006024-04
Katana®752i User’s Manual
1-4
Functional Overview
Overview:
FUNCTIONAL OVERVIEW
The following block diagram provides a functional overview for the Katana®752i.
Figure 1-1: General System Block Diagram
Overview:
Additional Information
ADDITIONAL INFORMATION
This section lists the Katana®752i hardware’s regulatory certifications and briefly discusses
the terminology and notation conventions used in this manual. It also lists general technical
references.
Mean time between failures (MTBF) has been calculated at 500,674 hours using Telcordia
SR-232, Issue 1, Reliability Prediction for Electronic Equipment at 40°C.
Product Certification
The Katana®752i hardware has been tested to comply with various safety, immunity, and
emissions requirements as specified by the Federal Communications Commission (FCC),
Underwriters Laboratories (UL), and others. The following table summarizes this compliance.
Table 1-1: Regulatory Agency Compliance
Type:
Specification:
Safety
IEC60950/EN60950 – Safety of Information Technology
Equipment (Western Europe)
UL60950, CSA C22.2 No. 60950, Third Edition – Safety of
Information Technology Equipment, including Electrical
Business Equipment (BI-National)
Global IEC – CB Scheme Report IEC 60950, all country deviations
Environmental
NEBS: Telecordia GR-63 –
Section 4.1.1 Transportation and Storage Environmental
Criteria;
Section 4.3 Equipment Handling Criteria;
Section 4.4.1 Earthquake Environment and Criteria;
Section 4.4.3 Office Vibration Environment and Criteria;
Section 4.4.4 Transportation Vibration Criteria
Section 4.5 Airborne Contaminants
EMC
FCC Part 15, Class A – Title 47, Code of Federal Regulations,
Radio Frequency Devices
ICES 003, Class A – Radiated and Conducted Emissions, Canada
NEBS: Telecordia GR-1089 level 3 – Emissions and Immunity
(circuit pack level testing only)
ETSI EN300386 – Electromagnetic Compatibility and Radio
Spectrum Matters (ERM), Telecommunication Network
Equipment, Electromagnetic Compatibility (EMC) Requirements
10006024-04
Katana®752i User’s Manual
1-5
Overview:
Additional Information
Emerson maintains test reports that provide specific information regarding the methods
and equipment used in compliance testing. Unshielded external I/O cables, loose screws, or
a poorly grounded chassis may adversely affect the Katana®752i hardware’s ability to comply with any of the stated specifications.
The UL web site at ul.com has a list of Emerson’s UL certifications. To find the list, search in
the online certifications directory using Emerson’s UL file number, E190079. There is a list
for products distributed in the United States, as well as a list for products shipped to Canada. To find the Katana®752i, search in the list for 10006008-xx, where xx changes with
each revision of the printed circuit board.
RoHS Compliance
The Katana®752i is compliant with the European Union’s RoHS (Restriction of Use of Hazardous Substances) directive, created to limit harm to the environment and human health
by restricting the use of harmful substances in electrical and electronic equipment. Effective July 1, 2006, RoHS restricts the use of six substances: cadmium (Cd), mercury (Hg),
hexavalent chromium (Cr (VI)), polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), and lead (Pb). Configurations that are RoHS compliant are built with
lead-free solder. Configurations that are 5-of-6 are built with tin-lead solder per the lead-insolder RoHS exemption.
To obtain a certificate of conformity (CoC) for the Katana®752i, send an e-mail to
[email protected] or call 1-800-356-9602. Please have the part number(s)
(e.g., C000####-##) for your configuration(s) available when contacting Emerson.
Terminology and Notation
Active low signals: An active low signal is indicated with an asterisk * after the signal name.
Byte, word: Throughout this manual byte refers to 8 bits, word refers to 16 bits, and long word refers to
32 bits, double long word refers to 64 bits.
PLD: This manual uses the acronym, PLD, as a generic term for programmable logic device (also
known as FPGA, CPLD, EPLD, etc.).
Radix 2 and 16: Hexadecimal numbers end with a subscript 16. Binary numbers are shown with a subscript
2.
Technical References
Further information on basic operation and programming of the Katana®752i components
can be found in the following documents.
1-6
Katana®752i User’s Manual
10006024-04
Overview:
Additional Information
Table 1-2: Technical References
Device/Interface:
Type:
Document: 1
CompactPCI® Specification
(PCI Industrial Computers Manufacturers Group, PICMG® 2.0
R3.0, Oct. 1, 1999)
CompactPCI
Hot Swap Specification
(PICMG® 2.1 R2.0, Jan. 17, 2001)
System Management Specification
(PICMG® 2.9 R1.0, Feb. 2, 2000)
PCI Telecom Mezzanine/Carrier Card Specification
(PICMG® 2.15 R1.0, Apr. 11, 2001)
Packet Switching Backplane Specification
(PICMG® 2.16 R1.0, Sept. 5, 2001)
CPU
750GL
http://www.picmg.org
IBM PowerPC™ 750GX and 750GL RISC Microprocessor User’s
Manual
(IBM Corporation, Version 1.2, March 27, 2006)
IBM PowerPC™ 750GL RISC Microprocessor Revision Level
DD1.X Datasheet
(IBM Corporation, Preliminary, Version 1.2,
March 13, 2006)
™
PowerPC Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors
(IBM Corporation, G522-0290-01)
™
PowerPC Microprocessor Family: The Bus Interface for 32-Bit
Microprocessors
(IBM Corporation, G522-0291-00)
http://www.ibm.com
10006024-04
Katana®752i User’s Manual
1-7
Overview:
Additional Information
Device/Interface:
Type:
Document: 1
Ethernet
BCM5461S
BCM5461S 10/100/1000Base-T Gigabit Ethernet Transceiver
Advance Data Sheet
(Broadcom Corp., 5461S-DS04-R, April 27, 2004)
(continued)
http://www.broadcom.com
82544EI
82544EI Gigabit Ethernet Controller Datasheet and Hardware
Design Guide; Application Note (AP-422)
(Intel Corp., Doc. No. A44740-005, Rev. 0.80, Dec. 2003)
http://www.intel.com
KS8721CL
KS8721CL 3.3V Single Power Supply 10/100BASE-TX/FX MII
Physical Layer Transceiver Data Sheet, Rev. 1.2
(Micrel, Inc., M9999-041405, April 2005)
http://www.micrel.com
IEEE Standard for Information Technology: IEEE Std 802.3, 2000
Edition
(IEEE: New York, NY)
http://www.ieee.org
Hot Swap
Controller
LTC1643L
LTC1643L/LTC1643L-1/LTC1643H PCI-Bus Hot Swap Controller
Data Sheet
(Linear Technology Corp., 1998)
http://www.linear.com
IPMI/IPMB
IPMI — Intelligent Platform Management Interface
Specification v1.5
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer
Corp., Rev. 1.1, Feb. 20, 2002)
IPMI — Intelligent Platform Management Bus
Communications Protocol Specification v1.0
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer
Corp., Rev. 1.0, Sept. 16, 1998)
http://www.intel.com/design/servers/ipmi/spec.htm
IPMI Controller
Zircon PM
Zircon PM Technical Manual
(QLogic Corp., 36000-510-03, Rev. C, Apr. 2002)
http://www.qlogic.com
PCI
PCI Local Bus Specification
(PCI Special Interest Group, Revision 2.3, March 29, 2002)
http://www.pcisig.com
PMC
IEEE Standard for a Common Mezzanine Card (CMC) Family: IEEE
Std 1386-2001
(IEEE: New York, NY)
IEEE Standard for Physical and Environmental Layers for PCI
Mezzanine Cards: IEEE Std 1386.1-2001
(IEEE: New York, NY)
http://www.ieee.org
1-8
Katana®752i User’s Manual
10006024-04
Overview:
Additional Information
Device/Interface:
Type:
Document: 1
H.110
T8110
Ambassador® T8110 PCI-Based H.100/H.110 Switch and Packet
Payload Engine
(Agere Systems, April 2001 AY01-021CT1)
(continued)
http://www.agere.com
H.110 Hardware Compatibility Specification: CT Bus
(ECTF, revision 1.0)
http://www.ectf.org
Serial
Interface
EIA-232-F
TIA/EIA-232-F: Interface Between Data Terminal Equipment and
Data Circuit-Terminating Equipment Employing Serial Binary
Data Interchange
(Electronic Industries Association, October 1997)
System Controller
MV64460
PTMC Module
PM/3Gv
Transition Module
TmPIM
TM/cSpan-P16
TM/cSpan-P8E
http://www.eia.com/
MV6446x System Controller for PowerPC Processors
(Marvell, MV-S101286-01, Rev. A, June 19, 2003)
http://www.marvell.com
PM/3Gv User’s Manual
(Emerson Network Power, Embedded Computing #10003035-xx)
http://www.emersonembeddedcomputing.com
TmPIM User’s Manual
(Emerson Network Power, Embedded Computing #10005691-xx)
TM/cSpan-P16 User’s Manual
(Emerson Network Power, Embedded Computing #10001320-xx)
TM/cSpan-P8E User’s Manual
(Emerson Network Power, Embedded Computing #10005363-xx)
http://www.emersonembeddedcomputing.com
1. Frequently, the most current information regarding addenda/errata for specific documents may be found
on the corresponding web site.
If you have questions, please call Emerson Technical Support at 1-800-327-1251, visit the
web site at http://www.emersonembeddedcomputing.com, or send e-mail to
[email protected].
10006024-04
Katana®752i User’s Manual
1-9
(blank page)
1-10
Katana®752i User’s Manual
10006024-04
Section 2
Setup
This chapter describes the physical layout of the boards, the setup process, and how to
check for proper operation once the boards have been installed. This chapter also includes
troubleshooting, service, and warranty information.
ELECTROSTATIC DISCHARGE
Before you begin the setup process, please remember that electrostatic discharge (ESD)
can easily damage the components on the Katana®752i hardware. Electronic devices,
especially those with programmable parts, are susceptible to ESD, which can result in operational failure. Unless you ground yourself properly, static charges can accumulate in your
body and cause ESD damage when you touch the board.
Caution: Use proper static protection and handle Katana®752i boards only when absolutely
necessary. Always wear a wriststrap to ground your body before touching a board. Keep
!
your body grounded while handling the board. Hold the board by its edges–do not touch
any components or circuits. When the board is not in an enclosure, store it in a staticshielding bag.
To ground yourself, wear a grounding wriststrap. Simply placing the board on top of a
static-shielding bag does not provide any protection–place it on a grounded dissipative
mat. Do not place the board on metal or other conductive surfaces.
KATANA®752I CIRCUIT BOARD
The Katana®752i circuit board is a 6U CompactPCI card assembly. It uses a 14-layer printed
circuit board with the following dimensions.
Table 2-1: Circuit Board Dimensions
Width:
Depth:
Height:
9.19 in. (233.35 mm)
6.30 in. (160 mm)
< 0.8 in. (< 20.32 mm)
The figures on the following pages show the front panel, component maps, and jumper
locations for the Katana®752i circuit board.
10006024-04
Katana®752i User’s Manual
2-1
Setup:
Katana®752i Circuit Board
Figure 2-1: Katana®752i Front Panel
PMC Site #2
PMC Site #1
Note:
PMC Site #1 is not available
for standard 2-GB SO-DIMM
configurations. However, it
may be available for some
custom 2-GB configurations.
Please contact Artesyn for
details.
Ethernet LED Coding
ACT
SP
green
green
green
yellow
green
off
flash green yellow or green
off
off
GbE Port, 82544EI
(ETH4)
1000BASE-T
100BASE-T
10BASE-T
activity
no link
Speed LED, ETH4
Activity LED, ETH4
GbE Port, MV64460
(ETH3)
Speed LED, ETH3
Activity LED, ETH3
EIA-232
Serial Port
Programmable
LEDs 1–4, Green
Reset Switch
2-2
Katana®752i User’s Manual
Fault LED, Red
Hot Swap LED, Blue
10006024-04
Katana®752i User’s Manual
C768
C769
C773
C774
U54
C19
C89
CR2
J7
R918
C807
R20
U5
U5S
C109
C775
C772
R943
C770
C60
C4
L4
C765
C92
C767
CR3
L2
U3
C5
C6
C3
RN1
R5
U7
C111
J1
RN19 RN20 RN21 RN22 RN23
C112
C58
C59
RN2
C763
U1
C98
C113
R831
C764
RN24 RN25 RN26 RN27 RN28 RN29
C97
U23HC
U23H
U11
R1
L26
C805
R284
R288
R923
R921
R924
C45
R919 R920
R946
R932
R17
CR6
L3
CR5
C25
RN3
C61
C7
C114
C108
JP1
C692
R14
R13
R16
R15
R8
R7
R10
R9
R11
R12
C23
C20
U8
U2
JP2
L9
C76
C790
RN30 RN31 RN32 RN33 RN34 RN35 RN36 RN37 RN38 RN39
C99
C62
C18
L1
C794
C762
C21
C29
C31
R4
C766
C68
U6
U10
C36
C41
C49
U77
C73
C82
C66
C75
U20
C793
C792
C78
C77
J13
U36
C717
C70
U24
C93
J14
C94
C116
C72
R3
C32
JP3
R911
R2
C115
C51
U17
R914
U4
P3
R21
C85
R18
C71
C88
C91
C110
U75
R873
Y2
C722
C691
C690
U15
C538
C43
C52
CR4
C638
C735
C64
C791
U32
U21
C86
C787
J12
J11
C40
C48
C69
C65
C63
C788
U34
C789
J3
C117
C118
C795
U29
C13
C11
CR7
U13
U35
C689
LP1
C688
P1
C100
M5
C123
C95
R6
Y1
C87
J6
P2
C102
C9
C8
J23
U33
C38
C42
C50
U14
U16
C103
U26
U27
F1
J24
F2
C119
C14
J4
C120
U76
C733 R886
U22
C734
C736
C24
C39
C44
C53
R945
R948
R936
R944
R952
C798
C800
C809
R934
R263
R262
C797
C776
R942
C781
C779
L28
U52
C803 C804
R940 R947 R949 R935 R941
R937
R950
R939
F3
C96
SW1
C101
C74
J22
J21
C786
C808
R931
C801
C796
C777
CR1
C778
F4
C785
C782
J5
C784
C121
C783
U19
C90
C806
U79
R953
C105
R19
C122
R904
J1 – cPCI Connector
C124
C104
U78
C802
R929 R930 R933
R951
R925
R928
R926
P3
JTAG
(750GX)
L27
RN13
U18
J2 – cPCI Connector
RN10 RN11 RN12
J3 – cPSB Connector
RN9
U28
MV64460
System Controller
J4 – cPCI Connector
RN8
RN14
J14 – PMC Site #1
RN7
U20
82544EI
Ethernet
Controller
J12 – PMC Site #1
U10
Soldered
Flash
J7
JTAG
(ISP)
10006024-04
RN6
C540
C539
J24 – PMC Site #2
U11
Soldered
Flash
U6
Soldered
Flash
RN5
U24
HSL
PLD
C541
J13 – PMC Site #1
U7
Soldered
Flash
U23
IBM 750GX
CPU
C544
C543
J11 – PMC Site #1
P2
Micro DB9
U5
Socketed
Flash
RN4
U29
T8110
TSI
C106
C546
J23 – PMC Site #2
U8
Device
Bus
PLD
C548
C810
J22 – PMC Site #2
C550
J21 – PMC Site #2
C553
P1
Dual RJ45
Connector with
LEDs
J6
HotSwap
U15
SO-DIMM
DDR
SDRAM
C552
J5 – cPCI Connector
C107
Setup:
Katana®752i Circuit Board
Figure 2-2: Component Map, Top (Rev. 03)
2-3
Setup:
Katana®752i Circuit Board
Figure 2-3: Component Map, Bottom (Rev. 03)
R306
C623
C347
C619
C646
R795
R794
R693
R796
C636
R367
R761
R760
C780
C604
RN222
C618
C645
C799
R491
R221
R217
R218
R219
R220
CR20
CR21
CR22
RN62
RN59
RN51
L10
L11
R907
R53
R57
R56
C150
R170
RN262
RN72 RN77 RN85 RN87
R42
R107
C182
RN261
C133
R68
C132
C126
U38
CR9
C130
R40
CR8
R22
R50
R59
C127
C131
R55
RN71 RN76 RN84 RN86
RN64
RN68 RN75 RN80
RN63
RN67 RN74 RN79
R149
C171
R281
R247
RN101
RN180
RN168
RN113 RN114
RN126 RN127 RN139
RN154 RN163 RN165 RN166
R368
R166
R497
C478
R401
R60
C125
R41
R416
R402
R118
R117
U37
R51
F5
R384
R393
C190
C359
R354
R369
C388
R160
R159
R158
R157
R156
R155
R39
RN50 RN41 RN40
R52
R168
R23
R25
R24
R26
R78
R96
C172
C757
R27
C191
C199
C129
R49
R48
R47
R46
R45
C128
R44
R43
C173
R161
R901
C240 C239
C264
C759
R79
C214
R188 R204
C265
C224
R69
C758
C753
RN42
C192
C228
R124
R123
C761
R903
C193
RN43
R28
R80
C755
C206
R108
C754
RN44
C154
C153
C152
C151
R29
R97
R150
R162
C241
RN45
R31 R30
C1
C194
C158
C157
C156
C155
R902
C200
R33
R32
L12
RN60
C756
R908
R109
R119
R139
C183
R145
RN81 RN73 RN69
C760
C134
C135
C136
C137
C138
C139
C140
C141
C210
C233
R900
R205
C234
R307
RN46
C142
C143
C144
C145
C146
C147
C148
C149
RN47
C160
C159
R99
R98
C184
R35
RN48
C162
C161
C201
RN49
R34
C2
C164
C163
RN52
RN53
C215 C211
C225
R38
C166
C165
R100
C185
RN88
R193
R192
R191
R190
R189
C245
RN100 RN99 RN98 RN97 RN96 RN95 RN94 RN93 RN92
R370
R917
R101
C212
RN91 RN90 RN89
R229
R228
R227
C249
R210
R209
R208
R207
R206
R66
R65
R64
R63
R62
R61
R36
R490
R475
U41 – IPMI
EEPROM
(0xA0)
C547
R549
C189
R121
R120
R125
R132
R86
R85
R84
R83
R82
R81
C186
R37
C551
C549
R619
R91 R90 R89
R732
R733
R730
R731
R615
R58
R75
R722
CR23
R105
R67
R70
R87
R88
R916
R103
R110
R122
C187
RN58 RN55
RN66
C220
R195
R194
C260
R680
R548
RN200 RN203 RN204
R742
C181
R141
R104
U44 – IPMI
EEPROM
(0xA2)
C188
C208
R163 C221
R543
R781
C169
R76
CR10
L13
U39
C235
C256
C433
R441
R483
RN206
RN205 RN207
U60
R764
C661
RN209 RN211
RN208 RN210
RN213
C587 R694
R799
C572
R602
10006024-04
R127
C217
C222
R151
U48
R196
C226
C771
F6
C202
RN82 RN78 RN70 RN65 RN61 RN57 RN54
C242
C250
C281
R235
L16
R357
U56
R442
R457
CR31
R133
R134
C207
R147
R169
R171
R211
C282
C368
R418
R443
R458
R586
R587
R606
C416
C204
R128
R136
R142
R153
R164
R165
R167
R146
C258
R356
R355
C367
C196
U47
R172
R183
R182
C246
R242
C311
C330
C340
C236
U53
C285
C336
C331
C369
C244
C679
RN102
C286
C308
C370
C348
C312 C301
U49
RN103
C313
C341
C332
C288 C287
C334
C343
C360
C372 C371
C302
CR19
R232
R832
C267
C289
R289
C362
C374 C373
C335
CR16
R184
RN104
C338
R337
R347 R331
C303
R71
C216
R231
R230
R214
R213
R212
C261
C290
R308
R358
C337
RN83
C251
RN105
C291
R359
R267
R268
R280
R287
L17
R286
C315 R291
R310
R309
R311
R316
R333
R332
C316
C349
C314
C304
C174
R126
U46
C247
R264 C262 R236
C305
C333 C309
C342
C361
R290
R285
C195
R152
R173
C581
RN119
RN106
C252
R312
R317
C363
C339
C344
CR11
C243
U40
C180 C167
R94
R93
R92
C179
C178
C177
R74
R73
C176
C175
R72
L15
C259
C435
R834
R468
R467
R466
R465
C423
C401
R464
R463
R462
R461
R403 C389
R460
R459 R417
C443
R434
R433
RN181
R567
R579
R578
R589
C573
F7
C253
RN121 RN120
RN108 RN107
RN115
RN140
RN128
RN158 RN157 RN156 RN155
C434
R580
C609 R702
U64
C588
R743
C509
C558 R554
C508
C507
C380
C379
RN201 RN198 RN187 RN185 RN182
R528
R527
R526
C381
C391
C393 C392 C390
C705
C611
R705
RN202 RN199 RN188 RN186 RN183
R234
RN122
RN116
RN141
RN129
RN159
C395 C394
C446
C564
C518
RN109
RN117
RN142
RN130
L18
RN118
RN143
RN131
C364
RN178 RN177 RN176 RN175 RN174 RN173 RN172 RN171
C447
C445
C444
C501
R519
R338
C396
CR17
R216
R215
C266
R385
C230
C229
R197
C269 C257
C268 R237
C310
C345
C514
R340
RN144
RN132
R349
R348
R248
C307
CR28
C254
RN123
RN134 RN133
RN146 RN145
R351 R350
C383 R374 R373
R375
RN179
C448
R511
C405
C449
R899
C752
RN164
R386
RN110
C506
RN147
RN135
R376
C417
C397
RN167
U58 R520
C750
C699
C700
R669
U61
C382
R394
C424
C450
C571
R269
R176
R175
R174
R233
R250
C168
C213
U43
IPMI
Controller
R177
U50
C272
C271
C270
R249
CR29
C346
C516
RN111
C499 C83
RN148
RN136
R341
R292
C318
C317
C680
C595
RN112
RN124
RN149
RN137
C375
R377
C400
R342
C354
R251
C273
R270
CR24
R239
R244
R243
RN125
RN150
RN138
RN162 RN161 RN160
C407
C418
C451
R419
C436
R444
R445
R470
R484
R485
R498
R513
R512
C519 C695
C223
C227
R283
R282
R329
R334
C355
R272
C294
C293
C292
C321
C320
C319
R293
R319
R252
R271
R294
R318
C350
C409
C398
C408
C468
C479
R515 C467
C500
C554
R603
R295
C563
R313
R339
C351
C295
C296
L14
Y3
CR15
R178
R202
R201
R200
R199
R198
C537
C203
R135
C255
R238
R253
C276
C275
C274
R273
R296
C352
RN170 RN169 C406
C425
R446
R471
C460
R499
R516
R514
C510
C567 C566
R635 C597 C596
C605
U67
C527
C532
C525
C531
R245
R315
R344
R343
C427
C474
C511
C503
RN241 RN242 RN243 RN244 RN245 RN246 RN247 RN248 RN249 RN250
R223
R179
R222
R246
R261
R891
R330
C385
C428
C480
C533
C612
C574
C568
C696
C697
C698
C598
C606
C600
RN235 RN236 RN237 RN238 RN239 RN240
U51
R180
R365
C386
C366
R387
R910
R395
R404
C429
R420
C452
C476
C437
R298
C324
C323
R297
R320
R257
R256
R255
R254
R830
R277
R276
R275
R274
C353
C453
C481
C477
C534
C569
C575
C579
C578
R568
C570
C703
U68
C601
C637
C620
R762
RN230 RN231 RN232 RN233 RN234
R203
C356
RN153 RN152 RN151
C357
U57
R912
C469
C528
C461
R588
R605
R604
R372
R371
C410
C426
C624
R704 R695
R703
C610
R259
C278
C298
C277
C297
R265 R258
R301
R300
C322
R299
R322
C419
C475
C520
R534
C526
C751
C694
C560
C555
R590
C625
C655 C654
RN212
R278
R302
R321
R279 R260
U42
R106
C248
R304
R326
R325
R324
R323
R915
C365
C438
C502
C559
C411
R913
C693
RN259
R502
R846
R547
R546
R545
R544
C263
C300
C299
C513
C326
C325
R303
R77
U45
C218
C306
U62
C565
C589
R696
RN226
RN225
RN228
RN227
C704
C599 C577
C702
C701
C582
R406
R405
R421
R472
R448
R447
C462
C505
C576 C561
U63 R591
U66
M8
C648
C647
R424
R423
R422
R473
CR36
C556
C585
R636
R671 R670 C590
R637
R717
C583
R328
C399 R360
C521
C562
R607
R909
R478
R477
R476
R474
R501
R835
R412
R411
R425
L21
R847
R845
R581
C591
R608
C602 C584
C706
R736
R735
R734
C649
R392
R451
R450
R449
R480
R479
R500
C504
R638
Y4
R763
C639
C631
C660 C659
Katana®752i User’s Manual
C454 C439 C430 C412
C463
R839
R850
R836 C713
CR42
C593
L24
RN224 RN223
2-4
C718
C719
C720
C283
C681
C327
R305
R327
C512
R555
R569
R582
R592
R609
R632
R640
R641
R718
R726
C640
R745
R744
C652
R797
R849
R866
R867
C707
R556
R570
R583
R593
R610
R633
R642
R673
C603
R720
R727 C626
C641
R746
R737
C628
CR32
R486
R851
C714
R728
C670
C653
R798
C712
R848
R861
U73
R782
R786
C667
C630
C629
R771
C656
R770
R769
R768
R767
R766
R765
R335
R345
R352
R361
R362
R378
R389
R397
C483
C482
R872
C580
R741
R740
R739
C632
R738
C658
R775
R774
R773
C657
R772
R336
R346
R353
R364
R363
R379
R390
R398
RN190
R870
R837
R783
C621
R777
R776
R440
L19
R650
R647
C557
C592
R672
Y5
C669
C668
C607
R706 RN214
C376
C384
R388
R396
C413
R407
C420
R413
R426
R436
R435
C455
C485
C484
R697
RN216
R438
R454
R455
C464
L23
RN192
RN191
R871
R838
R860
R721
R800
R698
U72
R780
R779
R778
C421
R906
R506
R505
R504
R503
C470
C489
C488
C487
C486
RN193
CR44
R868
R508
C471
R596
R595
CR43
C721
C711
C708 R869
C715
R863
C716
R862
R897 R898
R644
R643
R674
C627
R719
C328
R437
R453
R452
R481
R518
C490
R529
C613
R649
R648
C586
R707
R154
R888
R890
R314
C522
R895
R617
R655
R653
R597
R652
R784
R677
R676
R675
R708
C633
R889
U55
C465
R488
R487
C542
R865
R864
R678
U69
C662
R410
R489
R531 R530
R575 R574
R621
C608
R620
R651
R618
R616
R699
L25 R747
C329
C440
C515
R585
U65
R896
C614
C664
R679
R714
R713
R712
R711
R710
R709
C663
R509
C472 C456
R137
R560
R559
R894
C615
RN221 RN220 RN219 RN218 RN217
R656
R654
R748
Y6
C431
C231
R538
R551
R550
R561
R576
R724
R723
R729
C634
R801
R788
R787
R510 C457
R408
R893
R681
C650
R456
C523
U70
C651
C492
C491
R682
C594
C671
C441 C432 C422 C402
R539
R553
R552
R562
U71
RN215
C622
C642
C673
C672
R755
R752
C635
RN229
R785
R792 R791
R790
R789
C496
C495
C494
C493
RN194
U59
R753
R751
R750
L20
R700
R757
R754
R683
C616
R793
C674 RN258 RN257 RN256 RN255 RN254 RN253 RN252 RN251
R758
C666
C665
R428
R802
R725 R759
R756
R400
CR35
R659
R701
C675
RN195
RN196
R599
R660
R598
R658
CR33
R624
R661
R622
R657
C378
C377
R380
R391
C403
R399
C414
R409
R414
R427
R439
C442
R803
R684
R715
R855 R842
R804
R665
R663
R856
C498
RN197 C497
R666
R662
R623
R716
R887 C731 R859
R879
U74
R685
C676
R844
R905
R494
R493
R492
C458
L22
R601
R600
R627
R625
C459
C727
R805
R876
R877
R626
R664
C728
C729
R853
R690
R689
R688
R687
R686
RN260
C709
R806
R840
C710
R883
R882
C725
R852
R857
C724
R881 R880
C726
R874
R875
R691
C730
C732
C723
R884
R858
R854
R841
R843
R885
CR46
R878
R692
CR45
CR34
R634
C643
C678
C677
C617
C644
R811
R810
R809
R808
R807
CR30
Setup:
Katana®752i Circuit Board
Figure 2-4: Jumper, Fuse, and Switch Locations, Top
COPYRIGHT 2004
10006008-00 REV A
J5
J22
J21
F4
F4 – Fuse
for 5-Volt Supply to RTM, 2.5A
F3
F3 – Fuse
for 3.3-Volt Supply to RTM, 2.5A
F2
F2 – Fuse
for –12-Volt Supply to RTM, 1A
J24
J23
F1
J4
F1 – Fuse
for +12-Volt Supply to RTM, 1A
J12
J11
J3
10
8
6
4
2
JP1
9
7
5
3
1
10
8
6
4
2
JP2
9
7
5
3
1
CR1
JP2 – Configuration Jumpers
Jumpers off pins 10–7, MV64460 is Monarch
Jumper on pins 10 & 9, PPMC #2 is Monarch
Jumper on pins 8 & 7, PPMC #1 is Monarch
Jumper on pins 6 & 5, enable cPCI_PRST out
Jumper on pins 4 & 3, disable SROM load
Jumper on pins 2 & 1, boot from socket
J1
SW1
J2
P2
SW1 – Reset Switch
J14
P1
Note: To enable cPCI functionality, use a
jumper on pins 8-7 and on pins 2-1.
J13
JP1 – Signal Enable Jumpers
(pins 10–9 are spares)
Jumper on pins 8 & 7, cPCI enabled
Jumper on pins 6 & 5, PCIXCAP enabled
Jumper on pins 4 & 3, CT_EN enabled
Jumper on pins 2 & 1, cPCI_RST enable
10006024-04
Katana®752i User’s Manual
2-5
Setup:
Katana®752i Circuit Board
Figure 2-5: Fuse, and LED Locations, Bottom
R306
C623
C619
C646
R795
R794
C347
R693
R796
C636
R367
R761
R760
C780
C604
C645
RN62
R170
R67
R70
R87
R88
R916
R103
R110
R122
R917
R101
RN46
RN51
L10
L11
R907
R53
R57
R56
C150
R221
RN262
RN72 RN77 RN85 RN87
R42
R107
C182
RN261
C132
C131
U38
CR9
C130
R40
CR8
R22
R50
R59
R55
RN71 RN76 RN84 RN86
RN64
RN68 RN75 RN80
RN63
RN67 RN74 RN79
C171
R491
R490
R281
R247
RN101
RN180
RN168
RN113 RN114
RN126 RN127 RN139
RN154 RN163 RN165 RN166
R368
R166
R149
R60
C126
C125
R41
R118
R117
C127
R51
F5
CR31
R401
U37
RN50 RN41 RN40
C190
R160
R159
R158
R157
R156
R155
R39
C133
R68
R168
R23
R25
R24
R26
R78
R96
C172
C757
R27
C191
C199
C129
R49
R48
R47
R46
R45
C128
R44
R43
C173
R161
R901
C240 C239
C264
C759
R79
C214
R188 R204
C265
C224
R69
C758
C753
RN42
C192
C228
R124
R123
C761
R903
C193
RN43
R28
R80
R108
C755
C206
RN44
C154
C153
C152
C151
R29
R97
R150
R162
C754
RN45
R31 R30
C1
C194
C158
C157
C156
C155
R902
C241
R33
R32
L12
R908
R145
C233
R109
R119
R139
C183
C234
RN60
C756
C134
C135
C136
C137
C138
C139
C140
C141
C210
RN88
RN81 RN73 RN69
C760
R36
RN47
C160
C159
C142
C143
C144
C145
C146
C147
C148
C149
C162
C161
C201
R34
C2
RN48
R35
RN49
C164
C163
RN52
C166
C165
R100
C185
R99
R98
C184
C200
C245
RN100 RN99 RN98 RN97 RN96 RN95 RN94 RN93 RN92
R900
R205
R38
RN53
C215 C211
C225
R66
R65
R64
R63
R62
R61
R37
R121
R120
R125
R132
C212
R229
R228
R227
C260
R307
R104
R141
R163 C221
C256
R370
R217
R218
R219
R220
CR20
CR21
CR22
RN59
C188
R475
C189
CR10
L13
C551
C549
C547
R549
CR23
R91 R90 R89
R619
R58
R75
R615
C181
R732
R733
R730
R731
R722
C169
R76
R127
R133
R134
C217
C222
R151
R195
R194
RN91 RN90 RN89
C281
R235
L16
R680
R548
RN200 RN203 RN204
10006024-04
R105
C207
R147
C282
C250
C311
C330
R384
R393
R416
R497
C478
R543
RN206
RN205 RN207
U60
RN209 RN211
C572
R602
F6
R86
R85
R84
R83
R82
R81
C186
RN82 RN78 RN70 RN65 RN61 RN57 RN54
C242
C771
R402
R441
R483
F7
C187
RN58 RN55
RN66
C220
R52
C359
R354
R369
C388
RN208 RN210
R442
R457
C416
U39
C235
R211
R242
C285
C433
R443
R458
R586
R587
R606
RN213
C587 R694
C609 R702
U64
C588
R764
R743
C509
R357
U56
RN181
R567
R579
R578
R589
C573
RN201 RN198 RN187 RN185 RN182
C558 R554
R356
R355
C367
C204
R128
R136
R142
C208
C226
C258
C368
R418
R580
RN202 RN199 RN188 RN186 RN183
C340
C196
R153
R164
R165
R167
U48
R196
C246
C236
C249
R210 R193
R209 R192
R208 R191
R207 R190
R206 R189
C259
C369
C202
C216
U53
C308
C286
C348
C336
C331
C434
R834
R468
R467
R466
R465
C423
C401
R464
R463
R462
R461
R403 C389
R460
R459 R417
C443
R434
R433
R146
R169
R171
C679
RN102
C313
C288 C287
C341
C332
C335
C302
C312 C301
R172
R183
R182
RN103
C289
R289
C334
C343
C303
U41
U44
C244
R232
R832
C338
R337
C370
R347 R331
C304
R71
R126
U46
C247
R231
R230
R214
R213
R212
C261
C290
R308
C314
C337
C174
L15
C267
C305
C333 C309
C342
C361
C360
C372 C371
C391
C393 C392 C390
C380
C379
C344
U49
RN104
C291
R267
R268
R280
R287
L17
R286
C316
C315 R291
R310
R309
R311
R316
R333
R332
C349
C362
C374 C373
C395 C394
C381
CR19
C251
RN105
RN115
R312
R317
RN158 RN157 RN156 RN155
RN128
RN140
R358
RN178 RN177 RN176 RN175 RN174 RN173 RN172 RN171
C396
R290
R285
C195
R152
R173
C581
RN129
RN116
RN159
RN141
R359
RN179
C405
C339
U47
R184
RN106
C252
RN130
RN117
C364
C363
C417
R338
CR11
C243
R264 C262 R236
C310
C345
C253
RN108 RN107
RN131
RN142
L18
RN118
RN143
CR28
RN83
R234
RN132
RN119
R340
RN144
CR29
C346
CR17
R197
C269 C257
C268 R237
C307
C230
C229
R216
R215
C266
R385
C435
C518
C508
C507
RN109
RN134 RN133
RN121 RN120
R341
RN146 RN145
R248
U43
F5 – Fuse
for 3.3V JTAG (J7), 0.75A
C500
R528
R527
R526
C514
R342
C354
C407
C418
RN170 RN169 C406
C425
C444
C501
R519
RN110
RN135
RN122
C506
RN123
RN147
RN162 RN161 RN160
R269
U40
C180 C167
R94
R93
R92
C179
C178
C177
R74
R73
C176
C175
R72
C254
RN136
C499 C83
RN148
C355
R270
R292
C318
C317
C680
C516
RN111
RN137
RN149
C427
C446
R899
C752
R511
RN164
C595
RN112
RN124
R344
R343
C428
C397
R386
C571
C168
C213
R177
R176
R175
R174
R233
R250
L14
Y3
CR15
U50
C272
C271
C270
R249
R271
CR24
R239
R244
R243
RN138
RN125
RN150
R251
C273
CR16
C223
C227
R283
R282
R329
R334
R349
R348
R387
R910
R395
R404
C429
R420
C447
U61
R245
R315
R351 R350
C383 R374 R373
R375
U57
R742
R179
R222
R246
R261
R891
R330
R376
C411
R913
R781
U51
R180
C366
C385
R411
R425
RN241 RN242 RN243 RN244 RN245 RN246 RN247 RN248 RN249 RN250
R203
C356
RN153 RN152 RN151
C357
R365
C386
C375
R377
C400
C448
C519 C695
C382
R394
RN167
R588
R605
R604
R319
C350
R272
C294
C293
C292
C321
C320
C319
R293
R318
R252
R273
R294
R320
C409
C398
C424
C450
C449
C554
R603
R253
C276
C275
C274
C203
R178
R202
R201
R200
R199
R198
R238
C295
C296
U42
R106
R135
C255
C537
R298
C324
C323
R297
R295
C563
R313
R257
R256
R255
R254
R830
R277
R276
R275
R274
R296
C352
C408
C468
C479
R515 C467
U58 R520
C705
R704 R695
R703
C610
C278
C298
C277
C297
R265 R258
R301
R300
C322
R299
R321
R339
C351
C451
R419
C436
R444
R445
R470
R484
R485
R498
R513
R512
C661
RN235 RN236 RN237 RN238 RN239 RN240
R392
R335
R345
R352
R361
R362
R378
R389
R397
R446
R471
C460
R499
R516
R514
C750
C564
R799
RN230 RN231 RN232 RN233 RN234
CR32
R336
R346
R353
R364
R363
R379
R390
R398
C474
C437
C445
C699
C700
C611
R705
C637
C620
R762
M8
R410
C480
C461
C624
C649
C648
C647
R428
C452
C476
C567 C566
C527
C532
C525
C531
R590
C625
C655 C654
RN212
R302
C353
C410
C426
C520
R534
C526
C751
C694
C560
C555
C510
C574
C568
C696
C697
C698
R669
RN225
C628
R372
R371
C453
C481
C477
C511
C503
C569
R635 C597 C596
C605
U67
C559
R326
R325
R324
R323
R322
C419
C502
U63 R591
U66
R259
R327
R915
C365
C438
C475
C533
R547
R546
R545
R544
R568
C570
C703
C598
C606
C600
RN226
Katana®752i User’s Manual
R912
C534
U62
C612
U68
C601
RN228
RN227
C704
C599 C577
C702
C701
C582
C706
R736
R735
R734
C575
C579
C578
C589
C565
R696
R737
C583
F6 – Fuse
for 3.3V JTAG (P3), 0.75A
2-6
C469
C528
R581
R636
R671 R670 C590
R637
R717
R763
C639
C630
C629
R278
C306
C585
C591
R638
Y4
R741
R740
R739
C632
R738
C631
C660 C659
C652
R797
C693
RN259
R846
C593
L24
RN224 RN223
C667
C653
R798
R502
R847
R845
CR42
R555
R569
R582
R592
R609
R632
R640
R641
R718
R726
C640
R745
R744
C602 C584
R406
R405
R421
R472
R448
R447
C462
C576 C561
C218
C248
R279 R260
R304
C326
C325
R303
R77
U45
C263
C300
C299
C513
C681
C327
R305
R328
C399 R360
C556
C562
R607
F7 – Fuse
for 2.5V JTAG (P3), 0.75A
C668
R473
CR36
C504
R608
R412
R909
R424
R423
R422
R478
R477
R476
R474
R501
R500
R835
C505
CR31 – LED
750GX Checkstop Indicator
C669
R836 C713
C714
R556
R570
R583
R593
R610
R633
R642
R673
C603
R720
R727 C626
C641
R746
R706 RN214
R450
R449
R480
R479
C512
C521
C580
RN216
R400
CR35
L21
R849
R848
R728
C670
R719
R451
R486
R851
R837
R861
U73
R782
R786
R866
R867
C707
C454 C439 C430 C412
C463
R839
R850
C557
C592
R672
C621
R771
C656
R770
R769
R768
R767
R766
R765
R838
R860
R783
C607
Y5
C658
R775
R774
R773
C657
R772
C718
C719
C720
R697
U72
R777
R776
R868
L19
C613
R721
R800
R674
C627
R780
R779
R778
C712
R872
C721
C711
C708 R869
C715
R863
C716
R862
C376
C384
R388
R396
C413
R407
C420
R413
R426
R436
R435
C455
C464
L23
R529
R895
R617
C608
R784
R870
R906
R506
R505
R504
R503
C470
C483
C482
RN190
R871
R508
C471
C489
C488
C487
C486
C485
C484
RN192
CR44
C283
CR10 – LED
IPMI Status Out Indicator
RN191
CR43
R437
R453
R452
R481
C522
R575 R574
R518
C490
R650
R647
R649
R648
R897 R898
R644
R643
R698
R707
C633
C421
R314
RN193
R596
R595
C586
U69
R154
R888
R890
C328
R438
R454
R455
R488
R487
C542
R699
C662
R889
U55
C465
R531 R530
R585
R621
R655
R653
R597
R652
R865
R864
R678
R677
R676
R675
R708
L25 R747
C329
C440
R489
C515
R560
R559
U65
R896
C614
C664
R679
R714
R713
R712
R711
R710
R709
C663
C231
R538
R551
R550
R561
R576
R894
C615
RN221 RN220 RN219 RN218 RN217
R620
R651
R618
R616
R748
Y6
C431
R509
C472 C456
R539
R553
R552
R562
C622
R729
C634
R801
R656
R654
R681
R788
R787
R510 C457
R408
R893
PMC Slot 1 Ethernet LEDs
CR43 – PMC1 Act
CR44 – PMC1 Link
C650
R456
GbE Port 2 LEDs
CR23 – Link1, CR22 – Link2
CR21 – Link, CR20 – Act
C523
U70
C651
C441 C432 C422 C402
Ethernet LED Coding
Link1 Link2
on
on
1000BASE-T
on
off
100BASE-T
off
on
10BASE-T
off
off
no link
R137
R682
C594
C671
L20
R700
U71
RN215
R724
R723
C642
C673
C672
R755
R752
C635
RN229
R785
R792 R791
R790
R789
C492
C491
U59
R753
R751
R750
RN194
RN196
R599
R660
R683
C616
R793
C674 RN258 RN257 RN256 RN255 RN254 RN253 RN252 RN251
R757
R754
RN195
C496
C495
C494
C493
R598
R658
CR33
R802
R758
C666
C665
R856
C498
RN197 C497
R666
R662
R701
R725 R759
R756
C378
C377
R380
R391
C403
R399
C414
R409
R414
R427
R439
C442
R622
R657
R440
R803
R624
R661
R659
C675
R855 R842
R804
R623
R684
R887 C731 R859
R879
U74
R685
R716
R715
R844
R905
R494
R493
R492
C458
L22
R601
R600
R627
R625
R665
R663
C459
C727
R805
R876
R877
R626
R664
C676
C728
C729
R853
R690
R689
R688
R687
R686
RN260
C709
R806
R840
C710
R883
R882
C725
R852
R857
C724
R881 R880
C726
R874
R875
R691
C730
C732
C723
R884
R858
R854
R841
R843
R885
CR46
R878
R692
CR45
CR34
R634
C643
C678
C677
C617
C644
R811
R810
R809
R808
R807
CR30
R223
RN222
C618
GbE Port 1 LEDs
CR35 – Link1, CR34 – Act
CR33 – Link2, CR32 – Link
C799
PMC Slot 2 Ethernet LEDs
CR45 – PMC2 Act
CR46 – PMC2 Link
Setup:
Katana®752i Circuit Board
Identification Numbers
Before you install the Katana®752i circuit board in a system, you should record the following information:
❐ The board serial number:____________________________________________ .
The board serial number appears on a bar code sticker located on the back of the board.
❐ The board product identification: _____________________________________ .
This sticker is located near the board serial number.
❐ The monitor version: _______________________________________________ .
The version number of the monitor is on the monitor start-up display.
❐ The operating system version and part number: _________________________ .
This information is labeled on the master media supplied by Emerson or another vendor.
❐ Any custom or user ROM installed, including version and serial number:
________________________________________________________________ .
It is useful to have these numbers available if you need to contact Technical Support at
Emerson Network Power, Embedded Computing.
Connectors
The Katana®752i circuit board has various connectors, summarized as follows:
P1: P1 is a dual-RJ45 connector that provides front panel access to two 10/100/1000BaseT
Ethernet ports (see Fig. 2-1). One port routes to the MV64460 system controller. The other
routes to the 82544EI Ethernet controller on the local PCI bus. The connector also has integrated link, speed, and activity LEDs for each port. See Chapter for pinouts.
P2: P2 is a 9-pin Micro D connector on the front panel that provides EIA-232 console port access
for the 750GL processor. See Table 5-4 for pinouts.
P3: P3 is a 16-pin header on the circuit board for the 750GL COP/JTAG interface. See Table 4-6
for pinouts.
J1: J1 is a 110-pin connector that routes power supply signals, various CompactPCI (cPCI) utility signals and Intelligent Platform Management Interface (IPMI) control signals to and from
the CompactPCI backplane. See Chapter for pinouts.
J2: J2 is a 110-pin connector that routes Geographical Address (GA) signals and power supply
signals from the CompactPCI backplane. See Chapter for pinouts.
J3: J3 is a 95-pin connector that routes the gigabit Ethernet signals to and from the CompactPCI packet-switched backplane (cPSB) or rear transition module. It also routes user
input/output signals directly from the J14 connector at PTMC expansion site #1. See
Chapter for pinouts.
10006024-04
Katana®752i User’s Manual
2-7
Setup:
Katana®752i Circuit Board
J4 : J4 is a 90-pin connector that routes computer telephony (CT) bus signals to the CompactPCI backplane. See Chapter for pinouts.
J5: J5 is a 110-pin connector that routes user input/output signals directly from the J24 connector at PTMC expansion site #2. It also routes optional RMII signals from both PTMC sites. See
Chapter for pinouts.
J6: J6 is a 3-pin header on the circuit board for the ejector switch (for factory use only).
J7: J7 is a 10-pin header on the circuit board that provides an in-system programmable (ISP)
JTAG interface to the programmable logic (PLD) devices (factory use only).
J11—J14: J11, J12, J13, and J14 are 64-pin connectors that support PTMC expansion site #1. See
Table 9-1 for pinouts.
J21—J24: J21, J22, J23, and J24 are 64-pin connectors that support PTMC expansion site #2. See
Table 9-2 for pinouts.
Fuses
There are seven fuses on the Katana®752i circuit board.
Note: The part numbers for these fuses are subject to change. Please check with Emerson before ordering replacement fuses.
F1—F2: These 1-amp fuses (see Fig. 2-4) protect the ±12-volt power supplies. They are Emerson part
number 02739005-00.
F3—F4: These surface-mounted, socketed, 2.5-amp fuses (see Fig. 2-4) protect the 3.3-volt and 5volt power supplies. They are Emerson part number 02959021-00.
F5—F7: These 0.75 amp fuses (see Fig. 2-5) protect the power supplies for the COP/JTAG interface
(P3) and PLD header (J7). They are Emerson part number 02959012-00.
LEDs
The Katana®752i has various light-emitting diodes (LEDs), as described in the following
table. Please refer to Fig. 2-1 and Fig. 2-5 to locate these LEDs.
Table 2-2: LEDs
LED:
Color:
Signal Name:
Comments:
CR1
Blue
HOTSWAP_LED*
front panel Hot Swap status
CR2
Red
PWRLED_OUT
front panel Fault LED
750GL_CHKSTP_OUT*
CPU checkstop indicator
CR31
2-8
Katana®752i User’s Manual
10006024-04
Setup:
Katana®752i Setup
LED:
Color:
Signal Name:
Comments:
CR3
Green
750GL_LED4
programmable LED on front
panel
(via light pipe LP1)
CR4
750GL_LED3
CR5
750GL_LED2
CR6
750GL_LED1
CR10
IPMI_STATUSOUT
IPMI controller status
CR32
GIG0_LINK_LED*
Port 1 Gigabit Ethernet
CR33
GIG0_LINK2*
CR34
GIG0_ACT_LED*
CR35
GIG0_LINK1*
CR20
GIG1_ACT_LED*
CR21
GIG1_LINK_LED*
CR22
GIG1_LINK2*
CR23
GIG1_LINK1*
CR39
PMC0_ACTLED
CR41
PMC0_LINKLED_R
CR38
PMC1_ACTLED
CR40
PMC1_LINKLED_R
–
Green/Ye
llow
Port 2 Gigabit Ethernet
PMC1 RMII
PMC2 RMII
FP1_LED1_1
FP1_LED1_2
front panel SP LED for ETH4
(integrated with connector
P1)
–
FP1_LED2_1
FP1_LED2_2
front panel ACT LED for ETH4
(integrated with connector
P1)
–
FP2_LED1_1
FP2_LED1_2
front panel SP LED for ETH3
(integrated with connector
P1)
–
FP2_LED2_1
FP2_LED2_2
front panel ACT LED for ETH3
(integrated with connector
P1)
KATANA®752I SETUP
You need the following items to set up and check the operation of the Emerson
Katana®752i.
❐ Emerson Katana®752i board
❐ Card cage and power supply
❐ Serial interface cable (EIA-232)
❐ Terminal
Save the antistatic bag and box for future shipping or storage.
10006024-04
Katana®752i User’s Manual
2-9
Setup:
Troubleshooting
Power Requirements
The Emerson Katana®752i circuit board typically requires about 35 watts of power when
performing a simple memory test with no PMC/PTMC modules installed. The exact power
requirements for the Katana®752i circuit board depend upon the specific configuration of
the board, including the CPU frequency, amount of memory installed on the board, and
PTMC configuration. Please contact Emerson Technical Support at 1-800-327-1251 if you
have specific questions regarding the board’s power requirements.
Note: The power value is an approximate–not measured–value.
Environmental Requirements
The Emerson Katana®752i circuit board is specified to operate in an ambient air temperature range of 0° to +55° Centigrade. This range meets the NEBS Telecordia GR-63 specification. The entire chassis should be cooled with forced air. The recommended minimum air
flow rate is 11 cubic feet/minute. The exact air flow requirement depends upon the chassis
configuration and the ambient air temperature. The Katana®752i board’s relative humidity
and storage temperature ranges fully comply with NEBS Telecordia GR-63 specification.
TROUBLESHOOTING
In case of difficulty, use this checklist:
❐ Be sure the Katana®752i circuit board is seated firmly in the card cage.
❐ Be sure the system is not overheating.
❐ Check the cables and connectors to be certain they are secure.
❐ If you are using the Katana®752i monitor, run the power-up diagnostics and check the
results. Chapter describes the power-up diagnostics.
❐ Check your power supply for proper DC voltages. If possible, use an oscilloscope to look
for excessive power supply ripple or noise (over 50 mVpp below 10 MHz).
❐ Check that your terminal is connected to a console port.
The Katana®752i monitor uses values stored in on-card NVRAM (I2C EEPROM) to
configure and set the baud rates for its console port. The lack of a prompt might be
caused by incorrect terminal settings, and incorrect configuration of the NVRAM, or a
malfunctioning NVRAM.
To force the board to boot using the default settings, first configure the terminal
parameters to: 9600 baud, no parity, 8 data bits, and 1 stop bit. Then, reset the board
while holding down the ‘s’ key. After the board boots to the prompt, you can initialize
the configuration settings to their factory defaults with the following command:
2-10
Katana®752i User’s Manual
10006024-04
Setup:
Troubleshooting
moninit <four-digit board serial number> noburn
Executing the above command will set all environment variables to default values and
erase any user-added environment variables. Please see “Environment Parameter
Commands” on page 15-18, for additional information.
Technical Support
If you need help resolving a problem with your Katana®752i, visit
http://www.emersonembeddedcomputing.com on the Internet or send e-mail to [email protected]. Please have the following information handy:
• Katana®752i serial number and product identification from the stickers on the board
• baseboard model number and BIOS revision level (if applicable)
• version and part number of the operating system (if applicable)
• whether your board has been customized for options such as a higher processor speed
or additional memory
• license agreements (if applicable)
If you do not have Internet access, please call Emerson for further assistance:
(800) 327-1251 or (608) 826-8006 (US)
44-131-475-7070 (UK)
Product Repair
If you plan to return the board to Emerson Network Power for service, visit
http://www.emersonembeddedcomputing.com on the internet or send e-mail to [email protected] to obtain a Return Merchandise Authorization (RMA) number. We will
ask you to list which items you are returning and the board serial number, plus your purchase order number and billing information if your Katana752i hardware is out of warranty.
Contact our Test and Repair Services Department for any warranty questions. If you return
the board, be sure to enclose it in an antistatic bag, such as the one in which it was originally
shipped. Send it prepaid to:
Emerson Network Power, Embedded Computing
Test and Repair Services Department
8310 Excelsior Drive
Madison, WI 53717
RMA #____________
10006024-04
Katana®752i User’s Manual
2-11
Setup:
Troubleshooting
Please put the RMA number on the outside of the package so we can handle your problem
efficiently. Our service department cannot accept material received without an RMA number.
2-12
Katana®752i User’s Manual
10006024-04
Section 3
Reset Logic
This chapter provides a system-level overview of the reset logic for the Katana®752i. It also
describes the various reset sources.
GENERAL OVERVIEW
The Katana®752i uses discrete logic on a programmable logic device (PLD) to implement
the reset circuitry. Fig. 3-1 on the following page shows an overview of the reset signals and
logic.
10006024-04
Katana®752i User’s Manual
3-1
3.3V
IPMI Power
2.5V
PMC
3.3V
LTC1728
Voltage
Monitor
2.5V
3.3V
5V
Default:
Jumper Out =
cPCI reset is disabled
cPCI_RST
core
reset
rstout_1
rstout_2
rstout_3
Zircon PM
cPCI_RST_OU
T
Enable
OSC_EN
1.8V
Voltage
Monitor
Front Panel
Push Button
Voltage
Monitor
Oscillators
OSC_E
N
pmc_rst
por_rst
aux_por_rst
ipmi_rst
eth_rst
Pci1_rst
Bcm5461_rst
750GL
Complex
FL_RP
Soldered
Flash
RP
PMC Site 1
reset
PMC Site 2
reset
Notes:
1. All discrete logic located inside PLD
2. PLD powered from early power
3. Zircon PM powered from IPMI power
82544
MAC
reset
reset
KS8721CL
reset
BCM5221
reset
reset
BCM5221
BCM5461
reset
BCM5221
T8110 TSI
reset
10006024-04
Katana®752i User’s Manual
3-2
General Overview
Reset Logic:
Figure 3-1: Katana®752i Reset Diagram
Reset Logic:
Reset Sources
RESET SOURCES
The Katana®752i circuit board can be reset from the following sources:
• Power-On Reset (POR) circuitry
• CompactPCI Reset
• Power Monitor Reset
• 750GL Processor Reset (JTAG header)
• Remote IPMI Reset
• Front Panel Reset
• Watchdog Timer Reset
CompactPCI Reset Enable
The Katana®752i has an optional configuration jumper at JP2 (see Fig. 2-4). When installed
(default condition), this jumper enables the board to send a reset signal (when the front
panel reset switch is pressed) to the cPCI system controller via the cPCI_PRST pin. Upon
receiving this signal, the cPCI system controller generates a cPCI reset. When the jumper is
not installed, the Katana®752i does not send the reset signal to the cPCI system controller
when the reset switch is pressed.
Another optional configuration jumper at JP1 (see Fig. 2-4), when installed (default condition), enables the cPCI reset signal to drive a local PCI reset to the 750GL reset logic (see
Fig. 3-2). When the jumper is not installed, the Katana®752i ignores the cPCI reset signal.
Power Monitor
The Katana®752i has a power monitor circuit that detects low voltage conditions on any of
the power supply sources. The circuit will hold the oscillators off and drive the power-on
reset (POR) for as long as the low voltage condition exists.
750GL Processor Reset
The Device Bus PLD (see Chapter ) on the Katana®752i implements the 750GL processor
reset logic. Fig. 3-2 shows how the reset signals connect to the related devices.
Note: The Device Bus PLD is also known as the MVC PLD.
10006024-04
Katana®752i User’s Manual
3-3
Reset Logic:
Reset Sources
Figure 3-2: 750GL Reset Logic
hreset
sreset
flash_wp
Soldered
Flash
trst
COP/JTAG
cop_hreset
fl_rp
cop_sreset
PMC Sites
cop_trst
start_lrst
pmc_rst
cpu_hreset
pwr_good
pwr_good
por_rst
Device cpu_trst
Bus ks8721_rst
eth_rst
PLD
ipmi_rst
por_rst
cpci_rst
750GX
GL
reset
reset
KS8721CL
PHY
KS8721CL
gt_pci0
HSL
PLD
gt_pci1
gt_sysrst
IPMI
trst
start_rst (switch_rst)
gt_wde
cPCI
sreset
cpu_sreset
Power
rst
hreset
rst
reset
reset
KS8721CL
gt_wde
sysrst
PHY
reset
KS8721CL
PHY
5461S
MV64460
pci1_rst
pci0_rst
3-4
Katana®752i User’s Manual
10006024-04
Section 4
Processor
The Katana®752i processor complex consists of a processor and a system controller/PCI
bridge device (see Chapter ) with associated memory and input/output interfaces. The processor complex supports soldered and socketed user Flash memory, DDR SDRAM, an EIA232 serial console port, and three 10/100/1000BaseT Ethernet ports.
PROCESSOR OVERVIEW
This chapter provides an overview of the processor logic on the Katana®752i. It includes
information on the CPU, exception handling, and cache memory. The Katana®752i utilizes
the IBM PowerPC™ 750GL microprocessor. For more detailed information, please refer to
the following IBM document: PowerPC™ Microprocessor Family: The Bus Interface for 32-Bit
Microprocessors.
Features
The following table outlines some of the key features for the 750GL CPU.
Table 4-1: Katana®752i CPU Features
Category:
750GL Key Features:
Instruction Set
32-bit
CPU Speed (internal)
Up to 1GHz
Data Bus
64-bit
Address Bus
32-bit
Four stage pipeline control
Fetch, dispatch/decode, execute,
complete/write back
Cache (L1)
32KB Instruction, 32KB Data, 8-way set
associative
Cache (L2)
1MB, 4-way set associative, ECC checking
Execution Units
Branch Processing, Dispatch, Decode,
Load/Store, Fixed-point, Floating-point,
System
Dual issue superscalar
control
Maximum of two instructions completed plus
one branch folded per cycle
Voltages
Internal, 1.5V; input/output, 2.5V
The following block diagram provides an overview of the IBM 750GL architecture.
10006024-04
Katana®752i User’s Manual
4-1
Processor:
Processor Overview
Figure 4-1: 750GL Block Diagram
Control Unit
Completion
Instruction Fetch
Branch Unit
32KB I-Cache
with Parity
System
Unit
Dispatch
BHT/BTIC
GPRs
FXU1
FXU2
FPRs
LSU
Rename
Buffers
Rename
Buffers
FPU
1MB
32KB D-Cache
with Parity
L2 Tags
with Parity
Physical Memory Map
L2 Cache
w/ECC
Enhanced 60x
BIU
The Katana®752i monitor (see Chapter ) initializes the devices required to configure the
memory map for the 750GL bus. The following figure shows the 750GL physical memory
map.
4-2
Katana®752i User’s Manual
10006024-04
Processor:
Processor Overview
Figure 4-2: 750GL Memory Map
32-Bit
Hex Address:
FFFF,FFFF
Boot Mirror
FF80,0000
F834,0000
Reserved
F830,0000
SRAM
F821,0000
HSL PLD Registers
F820,0000
Device Bus PLD Registers
F811,0000
Reserved
F810,0000
MV64460 Registers
F808,0000
Reserved
F800,0000
Flash Socket
FLASH
(up to 128MB)
E800,0000
cPCI
I/O Space
E000,0000
cPCI
Memory Space
C000,0000
Reserved
B400,0000
PMC
PCI I/O Space
B000,0000
PMC
PCI Memory Space
8000,0000
SDRAM
(up to 2GB)
0000,0000
10006024-04
Katana®752i User’s Manual
4-3
Processor:
Processor Reset
This table summarizes the physical addresses for the 750GL on the Katana®752i board and
provides a reference to more detailed information.
Table 4-2: Katana®752i Address Summary
Hex Address
(32-bit):
Access
Mode:
Description:
FF80,0000
R
Boot Mirror
See Page:
F834,0000
—
Reserved
–
F830,0000
R/W
MV64460 SRAM
page 5-1
F821,0000
R/W
HSL PLD Registers
page 4-1,
page 13-1
page 6-1
F820,0000
R/W
Device Bus PLD Registers
F811,0000
—
Reserved
–
F810,0000
R/W
MV64460 Registers
page 5-1
F808,0000
—
Reserved
–
F800,0000
R/W
Flash socket
page 5-7
E800,0000
R/W
Flash (up to 128MB)
page 5-7
E000,0000
R/W
cPCI I/O Space
page 5-4
C000,0000
R/W
cPCI Memory Space
page 5-4
B400,0000
—
Reserved
–
B000,0000
R/W
PMC PCI I/O Space
page 5-4
8000,0000
R/W
PMC PCI Memory Space
page 5-4
0000,0000
R/W
SO-DIMM SDRAM (up to 2GB)
page 5-7
PROCESSOR RESET
Circuitry on the Katana®752i resets the processor and the board. Please refer to Chapter
for details.
PROCESSOR INITIALIZATION
Initially, the Katana®752i powers up with specific values stored in the CPU registers. The initial power-up state of the Hardware Implementation Dependent registers (HID0) and the
Machine State register (MSR) are given in Table 4-3.
Table 4-3: CPU Internal Register Initialization
4-4
Katana®752i User’s Manual
Register:
Default After Initialization (Hex):
Notes:
HID0
8000,0000
(icache and dcache off)
8000,C000
(icache and dcache on)
Hardware Implementation Dependent
register. (See Section )
MSR
0000,B032
Machine State register.
(See Section )
10006024-04
Processor:
Processor Initialization
Hardware Implementation Dependent 0 Register
The Hardware Implementation Dependent 0 Register (HID0) contains bits for CPU-specific
features. Most of these bits are cleared on initial power-up of the Katana®752i. Please refer
to the IBM PowerPC documentation for more detailed descriptions of the HIDx registers.
The following register map summarizes HID0 for the 750GL CPU:
Register 4-1: 750GL Hardware Implementation Dependent, HID0
0
1
2
3
EMCP
DBP
EBA
EBD
4
6
Reserved
7
8
9
10
11
12
13
14
15
PAR
DOZE
NAP
SLEEP
DPM
RISEG
Res.
MUM
NHR
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ICE
DCE
ILOCK
DLOCK
ICFI
DCFI
SPD
IFEM
SGE
DCFA
BTIC
Res
ABE
BHT
Res
NOOPTI
EMCP: Enable Machine Check Pin. Initially enabled on the Katana®752i.
DBP: Disable 60x Bus address and data Parity generation (in conjunction with EBA/EBD).
EBA: Enable 60x Bus Address parity checking.
EBD: Enable 60x Bus Data parity checking.
PAR: Disable Precharge of ARTRY* and shared signals.
DOZE: Select low-power doze.
NAP: Select low-power nap.
SLEEP: Select low-power sleep.
DPM: Enable Dynamic Power Management.
RISEG: Read Instruction Segment Register (test only).
NHR: Not Hard Reset (software use only).
MUM: Miss-Under-Miss Enable.
ICE/DCE: Instruction and Data Cache Enables.
I/DLOCK: Instruction and Data Cache Lock bits.
ICFI/DCFI: Instruction and Data Cache Flash Invalidate bits.
SPD: DCache and ICache Speculative access disable.
IFEM: Enable M bit on bus for Instruction Fetches.
SGE: Store Gathering Enable.
DCFA: Data Cache Flush Assist.
Force data cache to ignore invalid sets on miss replacement selection.
10006024-04
Katana®752i User’s Manual
4-5
Processor:
Processor Initialization
BTIC: Branch Target Instruction Cache enable.
ABE: Address Broadcast Enable (for cache ops, eieio, sync).
BHT: Branch History Table enable.
NOOPTI: No-op the dcbt/dcbst instructions.
Hardware Implementation Dependent 1 Register
The 750GL includes two phase-lock loops (PLL0 and PLL1), which allow the processor clock
frequency to be changed to one of the PLL frequencies via software control. The HID1 register contains:
• Fields that specify the frequency range of each PLL
• The clock multiplier of each PLL
• External or internal control of PLL0
• A bit to choose which PLL is selected (source of the processor clock at any given time):
Register 4-2: 750GL Hardware Implementation Dependent, HID1
0
4
5
PCE
6
PRE
16
20
PC0
21
22
PR0
7
8
PSTAT1
ECLK
23
9
13
Reserved
24
Res.
28
PC1
PCE: PLL External Configuration bits (read only).
PRE: PLL External Range bits (read only).
PSTAT1: PLL Status (not supported in DD1.x).
0 = PLL0 is the processor clock source
1 = PLL1 is the processor clock source
ECLK: Enable the CLKOUT pin (set to 1).
PI0: PLL 0 Internal configuration select.
0 = Select external configuration and range bits to control PLL0
1 = Select internal fields in HID1 to control PLL0
PS: PLL Select.
0 = Select PLL0 as source for processor clock
1 = Select PLL1 as source for processor clock
PC0: PLL0 Configuration bits.
4-6
Katana®752i User’s Manual
10006024-04
29
14
15
PI0
PS
30
PR1
31
Res.
Processor:
Processor Initialization
PR0: PLL0 Range select bits.
PC1: PLL1 Configuration bits.
PRI: PLL1 Range bits.
Hardware Implementation Dependent 2 Register
Parity is implemented for the following arrays: I-Cache, I-Tag, D-Cache, D-Tag, and L2 Tag.
Status bits are set when a parity error is detected and cleared when the HID2 register is
written.
Register 4-3: 750GL Hardware Implementation Dependent, HID2
0
2
Reserved
3
4
15
STMUMD
1
6
1
9
Reserved
Reserved
20
21
22
23
24
25
26
27
28
29
30
31
FICBP
FITBP
FDCBP
FDTBP
FL2TBP
ICPS
DCPS
L2PS
Res.
ICPE
DCPE
L2PE
STMUMD: Disable store miss-under-miss processing.
FICBP: Force I-Cache bad parity.
FITBP: Force I-Tag bad parity.
FDCBP: Force D-Cache bad parity.
FDTBP: Force D-Tag bad parity.
FL2TBP: Force L2-Tag bad parity.
ICPS: L1 I-Cache/I-Tag Parity Error Status/Mask.
DCPS: L1 D-Cache/D-Tag Parity Error Status/Mask.
L2PS: L2 Tag Parity Error Status/Mask.
ICPE: L1 I-Cache/I-Tag Parity checking Enable.
DCPE: L1 D-Cache/D-Tag Parity checking Enable.
L2PE: L2 Tag Parity checking Enable.
10006024-04
Katana®752i User’s Manual
4-7
Processor:
Exception Handling
EXCEPTION HANDLING
Each CPU exception type transfers control to a different address in the vector table. The
vector table normally occupies the first 2000 bytes of RAM (with a base address of
0000,000016) or ROM (with a base address of F800,000016). An unassigned vector position
may be used to point to an error routine or for code or data storage. Table 4-4 lists the
exceptions recognized by the processor from the lowest to highest priority.
Table 4-4: 750GL Exception Priorities
Exception:
Vector Address
Hex Offset:
Trace
00D00
Lowest priority. Due to MSR[SE]=1 or MSR[BE]=1 for
branches.
Data Storage (DSI)
00300
DABR address match.
Notes:
TLB page protection violation.
Any access except cache operations to T=1 (bit 5 of
DSISR) or T=0->T=1 crossing.
BAT page protection violation.
Due to eciwx, ecowx with EAR(E)=0 (bit 11 of
DSIDSR).
Alignment
00600
Program (PI)
00700
Any alignment exception condition.
Due to a floating-point enabled exception.
Due to an illegal instruction, a privileged instruction,
or a trap.
Floating Point Unavailable (FPA)
00800
Any floating-point unavailable exception.
System call (SC)
00C00
Execution of system call (sc) instruction.
Instruction Address Breakpoint
(IABR)
01300
Any IABR exception condition.
Instruction Storage (ISI)
00400
Instruction fetch exceptions.
Thermal Management (TMI)
01700
Junction temperature exceeds the threshold
specified in THRM1 or THRM2, and MSR[EE]=1.
Decrementer (DEC)
00900
Decrementer passed through zero.
Performance Monitor (PFM)
00F00
Programmer-specified.
External (EI)
00500
INT* (Refer to Section for description of interrupt
sources and interrupt handling.)
System Management (SMI)
01400
MSR[EE]=1 and SMI* is asserted.
Machine check
00200
Assertion of TEA*, 60x Address Parity Error, 60x Data
Parity Error, L2 ECC Double Bit Error, MCP*, L2-Tag
Parity Error, D-Tag Parity Error, I-Tag Parity Error, ICache Parity Error, D-Cache Parity Error, or locked L2
snoop hit.
System reset
00100
Soft reset (SRESET*).
Highest priority. Hard reset (HRESET* and POR).
4-8
Katana®752i User’s Manual
10006024-04
Processor:
Exception Processing
Exception:
Vector Address
Hex Offset:
Notes: (continued)
–
00000
Reserved.
EXCEPTION PROCESSING
When an exception occurs, the address saved in Machine Status Save/Restore register 0
(SRR0) helps determine where instruction processing should resume when the exception
handler returns control to the interrupted process. Machine Status Save/Restore register 1
(SRR1) is used to save machine status on exceptions and to restore those values when an rfi
instruction is executed.
When an exception is taken, the 750GL controller uses SRR0 and SRR1 to save the contents
of the Machine State register (MSR) for the current context and to identify where instruction execution resumes after the exception is handled.
The Machine State register (MSR) configures the state of the 750GL CPU. On initial powerup of the Katana®752i, most of the MSR bits are cleared. Please refer to the IBM PowerPC
documentation for more detailed descriptions of the individual bit fields.
Register 4-4: CPU Machine State (MSR)
0
1
12
Reserved
13
14
15
POW
Res.
ILE
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
EE
PR
FP
ME
FE0
SE
BE
FE1
Res.
IP
IR
DR
Res.
PM
RI
LE
POW: Power Management enable. Setting this bit enables the programmable power management modes: nap, doze, or sleep. These modes are selected in the HID0 register. This bit
has no effect on dynamic power management.
0= Power management disabled (normal operation mode)
1= Power management enabled (reduced power mode)
ILE: Exception Little-Endian mode.
EE: External interrupt Enable. This bit allows the processor to take an external interrupt, system
management interrupt, or decrementer interrupt.
0= External interrupts and decrementer exception conditions delayed.
1= External interrupt or decrementer exception enabled.
PR: Privilege level.
0= User- and supervisor-level instructions are executed
1= Only user-level instructions are executed
10006024-04
Katana®752i User’s Manual
4-9
Processor:
Exception Processing
FP: Floating-Point available. This bit is set on initial power-up.
0= Prevents floating-point instructions dispatch (loads, stores, moves).
1= Executes floating-point instructions.
ME: Machine check Enable.
0= Machine check exceptions disabled.
1= Machine check exceptions enabled.
FE0/FE1: These bits define the Floating-point Exception mode.
Table 4-5: Floating Point Exception Mode Bits
FE0:
FE1:
FP Exception Mode:
0
0
Disabled
0
1
Imprecise nonrecoverable
1
0
Imprecise recoverable
1
1
Precise
SE: Single-step trace Enable.
0= Executes instructions normally.
1= Single-step trace exception generated.
BE: Branch trace Enable.
0= Executes instructions normally.
1= Branch type trace exception generated.
IP: Exception Prefix. Initially, this bit is cleared so that the exception vector table is placed at
the base of RAM (0000,000016). When this bit is set, the vector table is placed at the base of
ROM (FFF0,000016).
IR/DR: Instruction and Data address translation enables.
0= Address translation disabled.
1= Address translation enabled.
PM: Marks a process for the Performance Monitor.
0= Process is not marked.
1= Process is marked.
RI: Recoverable exception enable for system reset and machine check. This feature is enabled
on initial power-up.
0= Exception is not recoverable.
1= Exception is recoverable.
LE: Little-endian mode enable.
0= Big-endian mode (default).
1= Little-endian mode.
4-10
Katana®752i User’s Manual
10006024-04
Processor:
Cache Memory
CACHE MEMORY
The 750GL processor provides both level 1 (L1) and level 2 (L2) cache memory. This section
describes this memory.
L1 Cache
The 750GL processor has separate, on-chip, 32-kilobyte, Level 1 (L1) instruction and data
caches with eight-way, set-associative translation lookaside buffers (TLBs). The CPU supports the modified/exclusive/invalid (MEI) cache coherency protocol. The data bus width
for bus interface unit (BIU) accesses of the L1 data cache array is 256 bits. This enables
cache line data burst to be read from or written to the cache array in a single cycle, reducing
cache contention between the BIU and the load-store unit. The 750GL also employs
pseudo-least recently used (PLRU) replacement algorithms for enhanced performance.
L2 Cache
The internal L2 cache is four-way set associative. Each way contains 4096 blocks, and each
block consists of two 32-byte sectors. It can be configured with any combination of individual ways locked. It can lock half or all of the ways, or it can unlock them all. When unlocked,
the L2 cache is four-way set associative. Each way contains 262144 blocks, and each block
consists of two 32-byte sectors.
The L2 cache can be configured to contain instructions or data only. Array read and write
operations execute in one processor cycle—writes are 64 bits wide and reads are 256 bits
wide. The L2 has a 1MB SRAM which includes an 8-bit ECC for every 64-bit word in memory
that can be used to correct most single bit errors and detect multiple bit errors.
The L2 cache control register (L2CR) configures and enables the L2 cache. The L2CR is
read/write and contents are cleared during power-on reset.
Register 4-5: L2 Cache Control Register (L2CR)
0
1
L2E
L2CE
2
1
9
16
Reserved
8
Reserved
9
10
11
12
13
L2DO
L2I
Res.
L2WT
L2TS
20
21
22
23
24
25
26
27
28
L2
L0CK LO
L2
LOCK HI
SHEE
SHERR
L2
LOCK0
L2
LOCK1
L2
LOCK2
L2
LOCK3
L2IO
29
14
15
Reserved
30
31
Reserved
L2IP
L2E: L2 Enable.
Enables and disables the operation of the L2 cache, starting with the next transaction.
L2CE: L2 double bit error Checkstop Enable.
10006024-04
Katana®752i User’s Manual
4-11
Processor:
Cache Memory
L2DO: L2 Data-Only.
Setting this bit inhibits the caching of instructions in the L2 cache. All accesses from the L2
instruction cache are treated as cache-inhibited by the L2 cache.
L2I: L2 global Invalidate.
Setting this bit invalidates the L2 cache globally by clearing the L2 status bits.
L2WT: L2 Write-Through.
Setting this bit selects write-through mode (rather than default copy-back mode) so all
writes to the L2 cache also write through to the 60x bus.
L2TS: L2 Test Support.
Setting this bit causes cache block pushes from the L1 data cache that result from dcbf and
dcbst instructions to be written only into the L2 cache and marked valid. Also causes singlebeat store operations that miss in the L2 cache to be discarded.
L2L0CKLO: L2 cache locking: lock ways 0 and 1.
L2LOCKHI: L2 cache locking: lock ways 2 and 3.
SHEE: Snoop Hit in locked line Error Enable.
SHERR: Snoop Hit in locked line Error.
L2LOCK0: Lock way 0 if either bit 20 or bit 24 is set to one.
L2LOCK1: Lock way 1 if either bit 20 or bit 25 is set to one.
L2LOCK2: Lock way 2 if either bit 21 or bit 26 is set to one.
L2LOCK3: Lock way 3 if either bit 21 or bit 27 is set to one.
L2IO: L2 Instruction-Only.
Setting this bit inhibits data caching in the L2 cache.
L2IP: L2 global Invalidate in Progress.
This read only bit indicates whether an L2 global invalidate is occurring.
The L2 cache is disabled following a power-on or hard reset. Before enabling the L2 cache,
configuration parameters must be set in the L2CR and the L2 tags must be globally invalidated. Initialize the L2 cache during system start-up per the following sequence:
1 Power-on reset (automatically performed by the assertion of HRESET* signal).
2 Disable interrupts and dynamic power management (DPM).
3 Disable L2 cache by clearing L2CR[L2E].
4 Perform an L2 global invalidate.
5 Enable the L2 cache for normal operation by setting the L2CR[L2E] bit to 1.
4-12
Katana®752i User’s Manual
10006024-04
Processor:
JTAG/COP Headers
JTAG/COP HEADERS
The 750GL CPU provides a dedicated user-accessible test access port (TAP) that is fully
compatible with the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. The internal common-on-chip (COP) debug processor allows access to internal scan
chains for debugging purposes, and can also be used as a serial connection to the core for
emulator support.
Table 4-6: 750GL JTAG/COP Interface Pin Assignments, (P3)
Pin:
Signal:
I/O:
Description:
1
TDO
Output
The Test Data Out is a standard JTAG signal. This is the scan
path output, driven by the falling edge of the TCK signal and
sampled on the rising edge of TCK.
2
—
—
Not connected
3
TDI
Input
The Test Data In is a standard JTAG signal, and is the input
data for the scan path. TDI is driven by the JTAG controller on
the falling edge of TCK, and sampled on the rising edge of
TCK by the JTAG slave.
4
TRST*
Input
Test Reset is a standard JTAG signal. When this signal is active
(low), the JTAG logic is reset and inactive, allowing normal
operation of the 750GL.
5
—
—
Not connected
6
+3.3V
Output
This is the power supply for the 750GL which indicates to the
debug station the voltage at which the target processor is
powered. (For the Katana®752i, this signal is tied to 2.5V
through a resettable PTC fuse.)
7
TCK
Input
The Test Clock is a standard JTAG signal, and is the clock for
the JTAG machine. JTAG signals are driven according to the
TCK falling edge and sampled over its rising edge.
8
—
—
Not connected
9
TMS
Input
The Test Mode Select is a standard JTAG signal. This signal,
along with TCK, controls the TAP controller state machine
allowing movement between its different states. When high,
it causes a change in the TAP controller state on the rising
edge of TMS. When low, the TAP controller state machine
remains in its current state.
10
—
—
Not connected
11
SRESET*
Input
The Soft Reset is required to enable the debug station to
either generate a Soft Reset sequence, or observe the 750GL
taking a Soft Reset sequence.
12
GND
—
Ground
13
HRESET*
Input
The Hard Reset is required to enable the debug station to
either generate a Hard Reset sequence, or observe the 750GL
taking a Hard Reset sequence.
14
Key
—
Pin 14 is not installed.
10006024-04
Katana®752i User’s Manual
4-13
Processor:
4-14
JTAG/COP Headers
Katana®752i User’s Manual
Pin:
Signal:
I/O:
Description: (continued)
15
CHKSTPO*
Output
Checkstop (halted) indication (see also Checkstop LED
indicator, CR31, in Fig. 2-5)
16
GND
—
Ground
10006024-04
Section 5
System Controller
The Katana®752i processor complex consists of a processor (see Chapter ) and a system
controller/PCI bridge device with associated memory and input/output interfaces. This
chapter describes the Marvell MV64460 system controller/PCI bridge device implementation.
OVERVIEW
The Discovery™ III PowerPC® System Controller (MV64460) from Marvell is an integrated
system controller with a PCI interface and communication ports for high performance control applications. The MV64460 has a five bus architecture:
• A 64-bit interface to the CPU bus
• A 64-bit interface to DDR SDRAM
• A 32-bit interface to devices
• Two PCI interfaces: The Katana®752i implementation uses a 32-bit interface for the
local PCI bus (PCI1) and a 32/64-bit interface for the CompactPCI bus (PCI0).
The five buses function independently which enables simultaneous operation of the CPU
bus, PCI device, and access to memory.
The MV64460 communications unit includes the following:
• Three Gigabit Ethernet ports
• Two multi-protocol serial controllers (MPSC)
• Ten serial DMAs (SDMA)
• Two baud rate generators (BRG)
• I2C interface
The crossbar fabric, or central routing unit, controls the data path routing. It contains programmable arbitration mechanisms to optimize device performance.
10006024-04
Katana®752i User’s Manual
5-1
System Controller:
CPU Interface
Figure 5-1: MV64460 Block Diagram
CPU at up to 200 MHz
CPU Interface
+ 2 Mb SRAM
4 DMA
2 XOR
SCC, TWSI
GPIO, SCC,
TWSI, Int,
Timers
10/100/1000
3 Ports Gb
Ethernet +
FIFO Interface
DDR
72-bit at up to
200 MHz
Device
32-bit at
66 MHz
PCI
PCI
64-bit at 33/66 MHz
64-bit at 33/66 MHz
CPU INTERFACE
CPU interface features include:
• 32-bit address and 64-bit data buses
• Support for Symmetrical Multi-Processing (SMP) in both 60x and MPX bus modes
• Support for up to four slave devices on the same 60x bus
• Up to 200 MHz CPU bus frequency
• CPU address remapping to PCI
• Support for access, write, and cache protection to a configurable address range
• Support for up to 16 pipelined address transactions
Note: Proprietary information on the Marvell MV64460 device is not available in this user’s manual. Please refer to
the Marvell web site at http://www.marvell.com for available documentation.
The Katana®752i monitor configures the MV64460 controller so that it provides these 32bit registers to the PowerPC processor in the correct byte order (assuming the access width
is 32 bits). The CPU setting of the CPU Configuration register affects the MV64460 behavior
on subsequent CPU accesses. This register activates with transactions pipeline disabled. In
order to gain the maximum CPU interface performance, change this default by following
these steps:
5-2
Katana®752i User’s Manual
10006024-04
System Controller:
SDRAM Controller
1 Read the CPU Configuration register. This guarantees that all previous transactions in the
CPU interface pipe are flushed.
2 Program the register to its new value.
3 Read polling of the register until the new data is being read.
Caution: Setting the CPU Configuration register must be done only once. For example, if the CPU
interface is configured to support Out of Order (OOO) read completion, changing the
!
register to not support OOO read completion is fatal.
SDRAM CONTROLLER
The MV64460 supports double data rate (DDR) synchronous dynamic random access
memory (SDRAM). The SDRAM controller supports up to four banks of SDRAMs. It has a 16bit address bus (M_DA[13:0] and M_BA[1:0]) and a 72-bit data bus (M_DQ[63:0] and
M_CB7[7:0]). The SDRAM controller supports both registered and unbuffered SDRAM
devices. Other features include:
• 64-bit wide (+ 8-bit ECC) SDRAM interface
• Up to 200-MHz SDRAM frequency
• Support for 64-megabit to one-gigabit DDR SDRAM devices
• Supports both physical and virtual bank interleaving
The MV64460 has a number of SDRAM registers. Refer to the Marvell web site for available
documentation.
DEVICE CONTROLLER INTERFACE
The device controller supports up to five banks of devices. Each bank’s supported memory
space can be programmed separately in one megabyte quantities up to 512 megabytes of
address space with a total device space of 2.5 gigabytes. Other features include:
• Dedicated 32-bit multiplexed address/data bus (separate from the SDRAM bus)
• 66 MHz bus frequency
• Five chip selects, each with programmable timing
• Use as a high bandwidth interface to user specific logic
• Supports many types of standard memory and I/O devices
Each bank has its own parameter register and can be programmed to 8, 16, or 32-bits wide.
The device interface consists of 128 bytes of write buffer and 128 bytes of read buffer.
10006024-04
Katana®752i User’s Manual
5-3
System Controller:
Internal (IDMA) Controller
INTERNAL (IDMA) CONTROLLER
Each of the four DMA engines can move data between any source and any destination, such
as the SDRAM, device, PCI_0, or CPU bus. These engines optimize system performance by
moving large amounts of data without significant CPU intervention. Read and write are
handled independently and concurrently.
TIMER/COUNTERS
Each of the four 32-bit wide timer/counters can be selected to operate as a timer or a
counter. Each timer/counter increments with every Tclk rising edge. In counter mode, the
counter counts down to terminal count, stops, and issues an interrupt. In timer mode, the
timer counts down, issues an interrupt on terminal count, reloads itself to the programmed
value, and continues to count. Reads from the counter or timer are completed directly from
the counter, and writes are to the timer/counter register.
PCI INTERFACE
The MV64460 supports two 64-bit PCI interfaces, which comply with the PCI Local Bus Specification revision 2.3. Other features include:
• Supports P2P memory, I/O, and configuration transactions
• PCI bus speed up to 66 MHz with zero wait states
• Operates either synchronous or asynchronous to CPU clock; at slower, equal, or faster
clock frequency
• 32/64-bit PCI master and target operations
For the Katana®752i, PCI1 is a 32-bit, 33/66MHz local PCI bus interface.
PCI_0 is a 32/64-bit, 33/66MHz cPCI bus interface.
PCI Configuration Space
The PCI slave supports Type 00 configuration space header as defined in the PCI specification. The MV64460 is a multi-function device and the header is implemented in all eight
functions. The PCI interface implements the configuration header and this space is accessible from the CPU or PCI bus.
5-4
Katana®752i User’s Manual
10006024-04
System Controller:
PCI Interface
PCI Identification
The Katana®752i has been assigned the following PCI identification numbers.
Table 5-1: PCI Identification Values
Field:
Value:
Vendor ID
0x11AB
Description:
Marvell
Device ID
0x6480
MV64460 System Controller
Subsystem Vendor ID
0x1223
Emerson Network Power
Subsystem Device ID
0x0048
Katana®752i
PCI Read/Write
The MV64460 becomes a PCI bus master when the CPU, IDMA, or MPSC SDMAs initiate a
bus cycle to a PCI device. Conventional PCI mode allows unlimited DMA bursts between PCI
and memory. It supports all PCI commands including 64-bit addressing using dual access
cycles (DAC).
The MV64460 acts as a target when a PCI device initiates a memory access (or an I/O access
in the case of internal registers, or a P2P transaction). It responds to all memory read and
write accesses, including DAC, and to all configuration and I/O cycles in the case of internal
registers. Its internal buffers allow unlimited burst reads and writes, and they support up to
four pending delayed reads in conventional PCI mode.
PCI Interface Registers
PCI0 and PCI1 contain the same set of internal registers, but are located at different offsets.
A CPU access to the MV64460 PCIx Configuration register is performed via the PCIx Configuration Address and Data registers.
All PCI configuration registers are located at their standard offset in the configuration
header, as defined in the PCI specification, when accessed from their corresponding PCI
bus. For example, if a master on PCI1 performs a PCI configuration cycle on PCI’s Status and
Command register, the register is located at 0x004.
A host access from the PCI interface to this register allows the target PCI device to acknowledge the interrupt by turning off the INTA* interrupt. Although the interrupts are active
low, the register values are active high. For example, a value of one in the INTA field indicates that an interrupt is pending on INTA*. Also, writing a one to this location asserts the
INTA* interrupt.
The Katana®752i may generate interrupts to other PCI devices by accessing doorbell-type
interrupt-generating registers or address ranges within their PCI bridges. The board will
respond to interrupts caused by another PCI device when it accesses a programmable
range of local memory, as provided by the MV64460 memory controller. In addition, it may
10006024-04
Katana®752i User’s Manual
5-5
System Controller:
Doorbell Registers
monitor the state of the PCI bus INTA*—INTD* signals (PCI1 only). The MV64460 contains
registers that control the masking, unmasking, and priority of the PMC interrupts as inputs
to the processor.
DOORBELL REGISTERS
The MV64460 uses the doorbell registers in the messaging unit (MU) to request interrupts
on both the PCI and CPU buses. There are two types of doorbell registers:
Outbound: These are set by the MV64460’s local CPU to request an interrupt service on the PCI bus.
Inbound: These are set by an external PCI agent to request interrupt service from the local CPU.
Outbound Doorbells
The local CPU generates an interrupt request to the PCI bus by setting bits in the Outbound
Doorbell register (ODR). The interrupt may be masked in the Outbound Interrupt Mask register (OIMR), but that does not prevent the bit from being set in the ODR. The ODR is
located at PCI_0 offset 0x1C2C.
Note: The CPU or the PCI interface can set the ODR bits. This allows for passing interrupt requests between CPU and
PCI interfaces.
Inbound Doorbells
The PCI bus generates an interrupt request to the local CPU by setting bits in the Inbound
Doorbell register (IDR). The interrupt may be masked in the Inbound Interrupt Mask register (IIMR), but masking the interrupt does not prevent the bit from being set in the IDR. The
IDR is located at PCI_0 offset 0x1C20.
Note: The interrupt request triggered from the PCI bus can be targeted to the CPU or to the PCI interface, depending
on the software setting of the interrupt mask registers.
WATCHDOG TIMER
The 32-bit count down watchdog timer generates a nonmaskable interrupt or resets the
system in the event of unpredictable software behavior. After the watchdog is enabled, it is
a free-running counter that requires periodic servicing to prevent its expiration. After reset,
the watchdog is disabled.
RESET
Circuitry on the Katana®752i resets the entire board if the voltages fall out of tolerance or if
the optional on-board reset switch is activated. Please refer to Chapter for additional information.
5-6
Katana®752i User’s Manual
10006024-04
System Controller:
On-Card Memory
ON-CARD MEMORY
The Katana®752i has various types of on-card memory to support the MV64460 system
controller and the 750GL processor. It has user Flash, SDRAM for data storage, and several
serial EEPROMs for non-volatile memory storage. The following subsections describe these
memory devices.
User Flash
The Katana®752i user Flash memory interface supports soldered devices of 32, 64, or 128
megabytes for the processor complex. The 32-megabyte configuration uses one bank of
two 128 Mbit devices. The 64-megabyte configuration uses two banks of two 128 Mbit
devices or one bank of 256 Mbit devices. The 128-megabyte configuration uses two banks
of two 256 megabit devices. The soldered Flash banks provide a maximum of 128 megabytes of contiguous true Flash file system (TFFS) memory. The MV64460 controls this
memory, located at E800,000016 on the processor 60x bus. By default, the 750GL processor boots from the soldered Flash (see Jumper JP2 location on page 2-5).
In addition to the soldered Flash memory, the Katana®752i also supports a single Flash
memory device of up to 512 kilobytes for the 750GL processor complex. This memory
device is socketed and located at F800,000016 on the processor 60x bus. The 750GL processor can write to and boot from this memory.
SDRAM
The Katana®752i supports up to two gigabytes of 72-bit wide synchronous dynamic random access memory (SDRAM) for the 750GL processor complex. The SDRAM interface
implements eight additional bits to allow for error correcting code (ECC).
Note: If a standard two-gigabyte SO-DIMM is installed, PMC Site #1 becomes inaccessible due to the dimensions of
the SO-DIMM. Also, the CPU and local bus frequencies are slightly different for this configuration. Using a
two-gigabyte SO-DIMM will slightly increase the Katana®752i’s airflow requirements.
The SDRAM is in the form of a small-outline, dual in-line memory module (SO-DIMM)
device. A serial EEPROM on the SO-DIMM provides configuration information, accessible via
the I2C interface at address AE16. The SDRAM occupies physical addresses from
0000,000016 to 7FFF,FFFF16 on the processor 60x bus. The MV64460 controls the SDRAM
and supports a double data rate (DDR) interface that allows for transfer speeds of up to 400
MHz (clock rates of up to 200 MHz).
10006024-04
Katana®752i User’s Manual
5-7
System Controller:
I2C Interface
EEPROMs
The MV64460 uses an 8-kilobyte serial EEPROM at hex location 5316 on the I2C bus to store
configuration data. Also, the MV64460 provides a second 8-kilobyte serial EEPROM at hex
location A616 on the I2C bus to provide additional non-volatile information such as board,
monitor, and operating system configurations. All Emerson-specific data is stored in the
upper 2 kilobytes of the device. The SROM data organization is allocated as follows.
Table 5-2: NVRAM Allocation
Address Offset:
Name:
Window Size:
0x1E00-0x1FFF
Reserved
0x0200 (512) bytes
0x1DDC-0x1DFF
BootVerify parameters
0x0024 (36) bytes
0x1DD8-0x1DDB
Power-on self-test (POST) diagnostic results
0x0004 (4) bytes
0x1800-0x1DD7
Monitor configuration parameters
0x05D8 (1496) bytes
0x1600-0x17FF
Operating system
0x0200 (512) bytes
0x0000-0x15FF
User Defined
0x1600 (5632) bytes
I2C INTERFACE
The MV64460 has a built-in inter-integrated circuit (I2C) interface that supports master and
slave I2C devices. The following devices connect to the I2C bus:
• SO-DIMM SDRAM
• two 64-kilobit serial EEPROMs
• real-time clock (RTC) device
• Zircon PM IPMI controller and associated devices
The multiplexer shown in Fig. 5-2 actually consists of two switches. One switch allows the
750GL processor to access the IPMI serial ROMs only while the IPMI controller is held in
reset. The second switch allows the 750GL processor to access I2C Port #1 only while backend power is up–otherwise this connection is isolated. (Please refer to the Katana®752i
schematics for details.)
5-8
Katana®752i User’s Manual
10006024-04
I2C Interface
System Controller:
Figure 5-2: I2C Interface Diagram
Marvell
MV64460
Bridge
Configurable
address
through
software
control
MV1_SDA/SCL
0xA4
SODIMM
ROM
0xD0
Real-time
clock
0xA6
NVRAM
0xAE
MV64460 initialization
ROM
mv1_port_sel
Temperature
sensor
IPMI_SDA/SCL
Temperature
sensor
0x92
0xA2
IPMI
Bootloader
and FRU ROM
0xA0
PVT_SDA/SCL
0x90
ipmi_rst*
MUX
IPMI Bootcode
ROM
I2C #1
I2C #2
Configurable
address
through
software
control
I2C #0
Backplane IPMB
Qlogic
ZirconPM IPMI
Controller
ipmi_rst*
Devices on IPMI power
5-9
Katana®752i User’s Manual
10006024-04
System Controller:
GPIO Signal Definitions
GPIO SIGNAL DEFINITIONS
The MV64460 system controller on the Katana®752i has 32 general-purpose input output
(GPIO) pins that are used for various purposes. The following table describes the GPIO pin
assignments.
Table 5-3: GPIO Signals Definitions
5-10
Katana®752i User’s Manual
Pin:
Direction:
0
output
Description:
console port transmit data
1
input
console port receive data
2
output
PTMC site #1 PCI grant
3
input
PTMC site #1 PCI request
4
output
PTMC site #2 PCI grant
5
input
PTMC site #2 PCI request
6
output
Ethernet MAC PCI grant
7
input
Ethernet MAC PCI request
8
input
PCI1 INTA
9
input
PCI1 INTB
10
input
PCI1 INTC
11
output
INIT_ACT, driven to indicate the bridge is loading from serial ROM
12
input
input from CPLD, used as synchronous versions of PERR and SERR
13
output
driven low to turn off front panel fault LED once processor section is up
and running
14
input
PCI1 INTD
15
–
unused
16
output
watchdog NMI
17
output
watchdog expired
18
output
I2C_HOLDOFF signal (Zircon PM)
19
output
output enable for PTMC RMII clocks
20
input
baud rate input clock for serial port
21—22
–
unused
23
input
IPMI Timerout, driven by IPMI microcontroller when there is a timeout condition
24
output
POST indicator
25
output
driven high to put the IPMI microcontroller in reset
26
input
Watchdog Maskable Interrupt (in)
27
input
GIG0_INT interrupt signal from gigabit PHY (unused on rev. 0—1
boards)
28
input
GIG1_INT interrupt signal from gigabit PHY (unused on rev. 0—1
boards)
29
input
GIG2_INT interrupt signal from gigabit PHY (unused on rev. 0—1
boards)
10006024-04
System Controller:
Console Serial Port
Pin:
Direction:
Description: (continued)
30
–
unused
31
input
MVL_PCI0_HS signal, ejector handle status; 1=latch closed, 0=latch
open
(For rev. 0 boards, software must debounce switch input.)
CONSOLE SERIAL PORT
The processor complex on the Katana®752i has an asynchronous console serial port on the
front panel. This port operates at EIA-232 signal levels, but does not provide any handshaking functionality. The connector for the front panel console port is a mini-DB9 connector,
with the following pin assignments.
Table 5-4: Serial Console Port Pin Assignments, (P2)
Pin:
Signal:
Pin:
Signal:
1
no connection
6
no connection
2
RXD (Data Out)
7
no connection
3
TXD (Data In)
8
no connection
4
no connection
9
no connection
5
ground
10-11
CHS_GND
The standard Emerson console cable (#10007665-00) is cross-pinned, as shown in the figure below. A straight-through connector (#10007664-00) also is available.
Figure 5-3: Standard Console Cable Wiring, #10007665-00
DB9 Connector
9
8
7
6
5
4
3
2
1
Mini DB9 Connector
Twisted Pairs
GND (Green)
CONSOLE Rx (Red)
CONSOLE Tx (Black)
CONSOLE Rx (Red)
CONSOLE Tx (Black)
o
Shield (Braid to shell 360 connection)
SHELL
9
8
7
6
5
4
3
2
1
SHELL
Note: Cable part numbers are subject to change. Please check with Emerson before ordering replacement cables.
The Katana®752i also provides serial console port access via the J5 CompactPCI connector
at pins E15 and D15 (refer to page 14-3 for pinouts).
10006024-04
Katana®752i User’s Manual
5-11
(blank page)
5-12
Katana®752i User’s Manual
10006024-04
Section 6
Device Bus PLD
The processor complex on the Katana®752i has a programmable logic device (PLD) that
provides control logic for the 750GL device bus. This PLD implements various registers
relating to reset control, interrupt handling, product identification, PCI enumeration, and
board configuration. This chapter describes the registers in the device bus PLD, which is
also known as the MVC PLD.
RESET REGISTERS
The device bus PLD routes and distributes the reset signals. Two registers support this functionality. The read-only Reset Event register at hex location F820,000016 indicates the reason for the last reset as follows.
Register 6-1: Reset Event
7
6
5
4
3
2
1
0
InitAct
Reserved
WD
COPS
COPH
PMCR
CPCI
FP
InitAct: Initialization Active:
Set to 1 when the MV64460 InitAct pin does not go inactive after reset
WD: Watchdog:
Set to 1 when a reset was caused by the expiration of the MV64460 watchdog timer
COPS: Soft Reset:
Set to 1 when a COP header soft reset (SRESET) has occurred
COPH: Hard Reset:
Set to 1 when a COP header hard reset (HRESET) has occurred
PMCR: PMC Reset:
Set to 1 when a PPMC issues a PMC Reset Out
CPCI: CPCI:
Set to 1 when a cPCI reset (RST* signal) has occurred
FP: Front Panel:
Set to 1 when the front panel switch caused a reset
The Reset Command register at hex location F820,100016 forces one of several types of
resets, as shown below. After a reset sequence is initiated by writing a one to a valid bit, the
bit is automatically cleared.
Note: When writing to this register, only set one bit at a time.
10006024-04
Katana®752i User’s Manual
6-1
Device Bus PLD:
Interrupt Registers
Register 6-2: Reset Command
7
6
5
4
3
SCL
SDA
PCI0
Reserved
FR
2
1
Reserved
0
HR
SCL: Direct control for I2C clock signal:
1=Tri-states the PLD
0=Drives logic low
SDA: Direct control for I2C data signal:
1=Tri-states the PLD
0=Drives logic low
PCI0 : PCI0 reset status, as set by JP1, pins 7-8;
software should not overwrite this value:
1=cPCI functionality is disabled
(MV64460 PCI0 interface held in reset)
0=cPCI functionality is enabled
(MV64460 PCI0 interface reset deasserted)
FR: Flash Reset command:
1=Causes Flash to be reset, clears automatically
0=No Flash reset (default)
HR: Hard Reset command:
1=Causes a hard reset on board, clears automatically
0=No hard reset (default)
INTERRUPT REGISTERS
The system error and parity error interrupts from the PCI bus route to the device bus PLD.
Sampling for these signals occurs on the rising edge of the PCI clock, according to the PCI
specification. The software should hold these signals low for a clock cycle, otherwise they
will be ignored. PERR and SERR have two loads, which are combined in the PLD to a single
interrupt and route to the MPP12 pin on the MV64460.
The Interrupt Enable register at hex location F820,200016 contains two enable bits, as follows.
Register 6-3: Interrupt Enable
7
6
5
4
Reserved
6-2
Katana®752i User’s Manual
10006024-04
3
2
1
0
SREN
PREN
Device Bus PLD:
Product Identification
SREN: PCI SERR Enable interrupt routed from PCI SERR to MV64460:
1=Enabled to generate an interrupt
0=Disabled (default)
PREN: PCI PERR Enable interrupt routed from PCI PERR to MV64460:
1=Enabled to generate an interrupt
0=Disabled (default)
The Interrupt Pending register at hex location F820,300016 allows software to determine
which source has caused an interrupt, as follows.
Register 6-4: Interrupt Pending
7
6
5
4
3
2
Reserved
1
0
SERR
PERR
SERR: PCI SERR Enable
1=SERR has occurred and is enabled (IER SR1EN=1)
0=No SERR (default).
PERR: PCI PERR Enable
1=PERR has occurred and is enabled (IER PR1EN=1)
0=No PERR (default).
PRODUCT IDENTIFICATION
The read-only Product ID register at hex location F820,400016 identifies the Katana®752i.
Register 6-5: Product ID
7
6
5
4
3
2
1
0
PIR
PIR: Product Identification register:
0416=Katana®752i
PCI ENUMERATION
The Katana®752i provides a register for status and control of enumeration. In a Monarch
system, the EReady register at hex location F820,500016 is readable to indicate that other
boards in the system are ready for enumeration. In a non-Monarch system, the register is
writeable to indicate the Katana®752i is ready for enumeration.
10006024-04
Katana®752i User’s Manual
6-3
Device Bus PLD:
Revision Registers
Register 6-6: EReady
7
6
5
4
3
2
1
Reserved
0
ERdy
ERdy: Monarch (read):
1=PCI devices are ready to be enumerated
0=PCI devices not ready to be enumerated
Non-Monarch (write):
1=PMC is ready to be enumerated
0=PMC is not ready to be enumerated
REVISION REGISTERS
The Katana®752i device bus PLD provides two read only registers to track hardware and
PLD revisions. The Hardware Version register at hex location F820,700016 provides a hardcoded tracking number for the hardware.
Register 6-7: Hardware Version
7
6
5
4
3
2
1
0
HVR
HVR: Hardware version number:
This is hard coded in the PLD and changed with every major PCB version. Version starts at
0016.
The PLD Version register at hex location F820,800016 provides a hard-coded tracking number for the PLD code.
Register 6-8: PLD Version
7
6
5
4
3
2
1
0
PVR
PVR: Code version number:
This is hard coded in the PLD and changed with every major code change. Version starts at
0016.
BOARD CONFIGURATION REGISTERS
Three byte-wide, read-only Board Configuration registers allow the monitor software to
easily determine specific hardware configurations. The Board Configuration 3 register at
hex location F820,C00016 indicates if the Katana®752i is a Monarch.
6-4
Katana®752i User’s Manual
10006024-04
Device Bus PLD:
Board Configuration Registers
Note: Board Configuration 2 register is not implemented in the Katana®752i.
Register 6-9: Board Configuration 3.
7
6
5
4
Reserved
3
2
cPCI
Mon
1
0
Reserved
cPCI: cPCI bus status indication:
1=cPCI bus is disabled (held in reset) (default)
0=cPCI bus is enabled
Mon: Monarch indication:
1=Katana®752i is Monarch
0=PMC is Monarch
The Board Configuration 1 register at hex location F820,A00016 provides status information about the Flash memory, as follows.
Register 6-10: Board Configuration 1
7
6
5
4
Reserved
3
2
Boot
Socket
1
0
Reserved
Boot Socket: Boot from socketed Flash or from soldered Flash:
1=Boot from socketed Flash
0=Boot from soldered Flash
The Board Configuration 0 register at hex location F820,900016 indicates the system clock
speed and the H.110 option status, as follows.
Register 6-11: Board Configuration 0
7
6
SysCLK
5
4
H110
3
2
1
0
Reserved
SysCLK: System clock speed:
11=133MHz
10=166MHz
01=100MHz
00=200MHz
H110: H.110 option installed:
1=yes
0=no (default)
10006024-04
Katana®752i User’s Manual
6-5
Device Bus PLD:
Other Registers
OTHER REGISTERS
The IPMI Port Select register at hex location F820,E00016 allows access to the IPMI interface, as follows.
Register 6-12: IPMI Port Select
7
6
5
4
PORT_SEL
3
2
1
0
Reserved
PORT_SEL: IPMI Port Selection:
Allow processor access to the IPMI controller and temperature sensors
1=Disabled (default)
0=Enabled
The LED register at hex location F820,D00016 allows software to access the programmable
LEDs (on the Katana®752i front panel), as follows.
Register 6-13: Programmable LED
7
6
5
4
Reserved
LED1—LED4: Programmable LEDs:
Illuminate the corresponding LED
1=on
0=off (default)
6-6
Katana®752i User’s Manual
10006024-04
3
2
1
0
LED4
LED3
LED2
LED1
Section 7
Real-Time Clock
The processor complex on the Katana®752i has a standard real-time clock (RTC), consisting
of an M41T00 device from STMicroelectronics. The M41T00 has an integrated year-2000compatible RTC, power sense circuitry, and uses eight bytes of non-volatile RAM for the
clock/calendar function. It is powered from the
+3.3 volt rail during normal operation. The M41T00 device connects to an I2C bus (see
page 5-8). The M41T00 device is backed up by power from a single, super capacitor, which
will hold a charge for at least two hours.
BLOCK DIAGRAM
The following block diagram shows the basic structure of the M41T00 device.
Figure 7-1: M41T00 Real-Time Clock Block Diagram
OSC1
OSC0
Oscillator
32.768 KHz
Divider
VBAT
Seconds
Minutes
FT/OUT
VCC
VSS
1Hz
Voltage
Sense and
Switch
Circuitry
Century/Hours
Control
Logic
Day
Date
Month
SCL
SDA
Serial
Bus
Interface
Year
Address
Register
Control
OPERATION
The M41T00 clock operates as a slave device on the serial bus. To obtain access, the RTC
implements a start condition followed by the correct slave address (D016). Access the eight
bytes in the following order:
10006024-04
Katana®752i User’s Manual
7-1
Real-Time Clock:
Clock Operation
1 Seconds register
2 Minutes register
3 Century/Hours register
4 Day register
5 Date register
6 Month register
7 Years register
8 Control register
The M41T00 clock continually monitors the supply voltage (Vcc) for an out of tolerance
condition. If Vcc falls below switch-over voltage (Vso), the M41T00:
• Terminates an access in progress
• Resets the device address counter
• Does not recognize inputs (prevents erroneous data from being written)
At power-up, the M41T00 uses Vcc at Vso and recognizes inputs.
CLOCK OPERATION
Read the seven Clock registers one byte at a time or in a sequential block. Access the Control register (address location 7) independently. An update to the Clock registers is delayed
for 250 ms to allow the read to be completed before the update occurs. This delay does not
alter the actual clock time. The eight byte clock register sets the clock and reads the date
and time from the clock, as summarized in Table 7-1.
Table 7-1: RTC Register Map
Address:
D7
7-2
D6
Data:
D4
D3
D5
D2
D1
Function/Range:
BCD Format:
D0
00
ST
10 Seconds
Seconds
Seconds
00—59
01
X
10 Minutes
Minutes
Minutes
00—59
02
CEB
CB
10 Hours
Hours
Century/Hours
0-1/00-23
03
X
X
X
X
04
X
X
10 Date
X
X
05
X
06
10 Years
07
OUT
Katana®752i User’s Manual
FT
S
X
Date
10 M
Day
Day
01—07
Date
01—31
Month
Month
01—12
Years
Years
00—99
Control
—
Calibration
10006024-04
Real-Time Clock:
Clock Operation
ST: Stop bit
1=Stops the oscillator
0=Restarts the oscillator within one second
CEB: Century Enable Bit
1=Causes CB to toggle either from 0 to 1 or from 1 to 0 at the turn of the century
0=CB will not toggle
CB: Century Bit
Day: Day of the week
Date: Day of the month
OUT: Output level
1=Default at initial power-up
0=FT/OUT (pin 7) driven low when FT is also zero
FT: Frequency Test bit
1=When oscillator is running at 32,768 Hz, the FT/OUT pin will toggle at
0=The FT/OUT pin is an output driver (default at initial power-up)
512 Hz
S: Sign bit
1=Positive calibration
0=Negative calibration
Calibration: Calibration bits
The calibration circuit adds or subtracts counts from the oscillator divider circuit at the
divide by 256 stage. The number of times pulses are blanked (subtracted, negative calibration) or split (added, positive calibration) depends on this five-bit byte. Adding counts
accelerates the clock, and subtracting counts slows the clock down.
X: Don’t care bit.
10006024-04
Katana®752i User’s Manual
7-3
(blank page)
7-4
Katana®752i User’s Manual
10006024-04
Section 8
Local PCI Bus
The Katana®752i utilizes the Peripheral Component Interconnect (PCI) bus as the interface
between the 750GL processor complex, PCI Telecom Mezzanine Card (PTMC) sites,
optional T8110 time slot interchanger (TSI), and 82544 Ethernet media access controller
(MAC). The Katana®752i complies with the PCI bus interface standard and the associated
PMC mechanical interface standard. The Marvell MV64460 device functions as the PCI
bridge and always performs local PCI bus arbitration.
The following devices are on the PCI bus:
• IBM 750GL processor complex (host controller by default)
• Two PCI expansion sites (Monarch or non-Monarch)
• Optional Ambassador T8110 TSI (PCI target only)
• Intel 82544 Ethernet MAC
Note: When the optional T8110 time slot interchanger is installed, the PCI bus speed is limited to 33MHz.
PCI ENUMERATION
By default, the 750GL processor complex functions as a Monarch. In this mode, the
MV64460 serves as a PCI system controller. It provides PCI arbitration and PCI bus enumeration. The Katana®752i also has configuration jumpers at JP2 (see Fig. 2-4) which can set
either PTMC site as the Monarch.
The PCI standard allows for environments where the number and types of devices on the
PCI bus varies. Therefore, the Katana®752i does not support a fixed memory map. The PCI
system controller dynamically defines the memory map using a process called enumeration. In this process, the PCI system controller probes the PCI bus to discover what devices
are installed and how much memory space each device is requesting. The system controller
then allocates the available PCI memory, defines the base address of each device, and configures the PCI base address registers for each device accordingly.
PCI device software should assign physical addresses dynamically, in the format of “base
address + offset”. The enumeration routine can retrieve the base address. The offset is
device-dependent and fixed. The monitor software performs enumeration routines at
power-up and PCI reset. The operating system also performs enumeration upon booting.
The monitor and operating system both have built-in hooks for retrieving the base
addresses.
PCI ID SELECT AND INTERRUPTS
The Katana®752i follows the typical PCI convention for assigning ID Select signals, as
shown in the following table.
10006024-04
Katana®752i User’s Manual
8-1
Local PCI Bus:
Geographical Addressing
Table 8-1: ID Select Connections
Katana®752i PCI Device
IDSEL Address
PTMC Site 1 (at J12)
AD20
PTMC Site 2 (at J22)
AD21
T8110 Time Slot Interchanger (TSI)
AD22
MV64460 System Controller
AD23
82544 Ethernet MAC
AD24
The T8110 TSI connects to INTD. The MV64460 system controller connects to INTA. The
Ethernet MAC connects to INTD. The PCI devices on the PTMC module(s) use the following
connections.
Table 8-2: Interrupt Connections for Katana®752i
MV64460:
PTMC #1:
PTMC #2:
82544EI:
T8110:
INTA
INTD
INTC
–
–
INTB
INTA
INTD
–
–
INTC
INTB
INTA
–
–
INTD
INTC
INTB
INT
INT
GEOGRAPHICAL ADDRESSING
The Katana®752i has three read-only registers that allow the software to read Geographical
Addresses from the CompactPCI backplane connectors. The following table describes
these registers.
Table 8-3: Geographical Address Registers
Register
Address (Hex)
Description
J4SGA
F821,0000
Read the Shelf Enumeration Bus pins from cPCI J4 connector.
J4GA
F821,0001
Read the Geographical Address from cPCI J4 connector.
J2GA
F821,0002
Read the Geographical Address from the cPCI J2 connector.
PCI BUS CONTROL SIGNALS
This section lists signals for the PCI interface which are available on PMC connectors J11,
J12, J21, and J22 (see also pinout tables beginning on page 9-3). Please refer to the PCI
specification for details on using these signals. All signals are bi-directional unless otherwise
stated.
Note: A sustained three-state line is driven high for one clock cycle before float.
8-2
Katana®752i User’s Manual
10006024-04
Local PCI Bus:
PCI Bus Control Signals
ACK64*, REQ64*: These sustained three-state output signals tell a 64-bit PCI device whether to use the 64-bit
or the 32-bit data width. Since the Katana®752i is a 32-bit board, these signals are tied off
to indicate the 32-bit data width.
AD00-AD31: ADDRESS and DATA bus (bits 0-31). These three-state lines are used for both address and
data handling. A bus transaction consists of an address phase followed by one or more data
phases.
C/BE0*-C/BE3*: BUS COMMAND and BYTE ENABLES. These three-state lines have different functions
depending on the phase of a transaction. During the address phase of a transaction these
lines define the bus command. During a data phase the lines are used as byte enables.
CLK: CLOCK. This is an input signal that provides timing for PCI transactions. (This is unused,
since the Katana®752i generates its own PCI clock signal.)
DEVSEL*: DEVICE SELECT. This sustained three-state signal indicates when a device on the bus has
been selected as the target of the current access.
EREADY: READY. This signal is an input for Monarch devices and an output for non-Monarch devices.
It indicates that all modules are initialized and the PCI bus is ready to be enumerated.
FRAME*: CYCLE FRAME. This sustained three-state line is driven by the current master to indicate the
beginning of an access, and continues to be asserted until transaction reaches its final data
phase.
GNT*: GRANT. This input signal indicates that access to the bus has been granted to a particular
master. Each master has its own GNT*.
IDSEL: INITIALIZATION DEVICE SELECT. This input signal acts as a chip select during configuration
read and write transactions.
INTA*, INTB*, INTC*, INTD*:
PMC INTERRUPTS A, B, C, D. These interrupt lines are used by PCI devices to interrupt the
host processor.
IRDY*: INITIATOR READY. This sustained three-state signal indicates that the bus master is ready
to complete the data phase of the transaction.
M66EN: ENABLE 66 MHZ. When grounded, this signal prevents 66 MHz operation of the PCI bus.
MONARCH*: MONARCH. When this signal is grounded, it indicates that the Katana®752i baseboard is a
Monarch and must provide PCI bus enumeration and interrupt handling.
LOCK*: LOCK. This sustained three-state signal indicates that an automatic operation may require
multiple transactions to complete. (The Katana®752i does not support this signal.)
10006024-04
Katana®752i User’s Manual
8-3
Local PCI Bus:
PCI Bus Control Signals
PAR: PARITY. This is even parity across AD00-AD31 and C/BE0-C/BE3*. Parity generation is
required by all PCI agents. This three-state signal is stable and valid one clock after the
address phase, and one clock after the bus master indicates that it is ready to complete the
data phase (either IRDY* or TRDY* is asserted). Once PAR is asserted, it remains valid until
one clock after the completion of the current data phase.
PERR*: PARITY ERROR. This sustained three-state line is used to report parity errors during all PCI
transactions.
PME*: POWER MANAGEMENT EVENT. This optional open-drain signal (pull-up resistor required)
allows a device to request a change in the power state. Devices must be enabled by software before asserting this signal. (The Katana®752i does not support this signal.)
PRESENT*: PRESENT. When grounded, this signal indicates to a carrier that a PMC module is installed.
(The Katana®752i does not support this signal.)
RESET_OUT*: RESET OUTPUT. This optional output signal may be used to support another source. To
avoid reset loops, do not use RST* to generate RESET_OUT*.
REQ*: REQUEST. This output pin indicates to the arbiter that a particular master wants to use the
bus.
RST*: RESET. The assertion of this input line brings PCI registers, sequencers, and signals to a consistent state.
SERR*: SYSTEMS ERROR. This open-collector output signal is used to report any system error with
catastrophic results.
STOP*: STOP. This is a sustained three-state signal used by the current target to request that the
bus master stop the current transaction.
TRDY*: TARGET READY. This is a sustained three-state signal that indicates the target’s ability to
complete the current data phase of the transaction.
8-4
Katana®752i User’s Manual
10006024-04
Section 9
PTMC Interface
The Katana®752i Peripheral Component Interconnect (PCI) interface supports two PCI
Telecom Mezzanine Card (PTMC) expansion sites. This chapter describes how to install
PTMC modules and provides additional information about the PTMC signals. Each PTMC
site can connect to two optional KS8721CL RMII PHY devices that route to the CompactPCI
backplane connector J5 (see page 10-3). The Katana®752i complies with Configuration 2 of
the PCI Telecom Mezzanine/Carrier Card Specification, PICMG 2.15 (see also “Timing Considerations” on page 12-5).
PTMC INSTALLATION
The Katana®752i baseboard has two sets of four connectors (J11—J14 and J21—J24), as
defined by the PMC specification. Fig. 9-1 shows the location of these connectors on the
Katana®752i. (Connectors J13 and J23 are only present in the optional CT bus configuration.)
Figure 9-1: PTMC Module Location on Baseboard
J5
J4
J3
J2
J22
J22
J24
J24
J24
J12
J12
J14
J14
J21
J21
J23
J23
J11
J11
J13
J13
J22
J23
J21
PTMC Module
PTMC Module
PTMC2
PTMC1
(bottom side)
J1
(bottom side)
P1
10006024-04
P2
Katana®752i User’s Manual
9-1
PTMC Interface:
PTMC Installation
The following procedure describes how to attach a PTMC module to the Katana®752i baseboard:
1 Remove the screws from the standoffs on the PTMC module.
2 Hold the module at an angle and gently slide the faceplate into the opening on the
baseboard.
3 Align the P11, P12, P13, and P14 connectors and gently press the module into place until
firmly mated.
Caution: To avoid damaging the module and/or baseboard, do not force the module onto the
baseboard.
!
P13
P14
P12
P11
PTMC Module
J14
J13
J12
J11 PTMC1
J22 1
J2
J24 3
J2
PTMC2
Tighten these two screws first.
4 Using four M2.5x6mm flathead screws, secure the PTMC module from the bottom of the
baseboard. First, insert and tighten the screws closest to the P11, P12, P13, and P14
connectors. Next, insert and tighten the screws nearest to the front panel.
9-2
Katana®752i User’s Manual
10006024-04
PTMC Interface:
PTMC Connector Pinouts
PTMC CONNECTOR PINOUTS
PCI expansion site #1 has four 64-pin connectors, J11—J14 (see Fig. 2-2 on page 2-3 for connector locations). Table 9-1 shows the pin assignments.
Table 9-1: J1x PTMC Connector Pin Assignments
Pin
J11
J12
J13
J14
1
TCK
POS_12V
MDIO
J3_E13
2
NEG_12V
PMC1_TRST*
GND
J3_D13
3
GND
PMC1_TMS
GND
J3_C13
4
INTA*
PMC1_TDO
STX
J3_B13
5
INTB*
PMC1_TDI
MDC
J3_A13
6
INTC*
GND
SRX
J3_E12
7
PRESENT*
GND
RXER
J3_D12
8
+5V
no connection
GND
J3_C12
9
INTD*
no connection
PTID2
J3_B12
10
no connection
no connection
TXD0
J3_A12
11
GND
PUP0
GND
J3_E11
12
+3.3V
+3.3V
TXD1
J3_D11
13
PCICLK
RST*
REFCLK
J3_C11
14
GND
PDN0
GND
J3_B11
15
GND
+3.3V
GND
J3_A11
16
GNT*
PDN1
RXD0
J3_E10
17
REQ*
PME*
CT_FA
J3_D10
18
+5V
GND
RXD1
J3_C10
19
+3.3V
AD30
CT_FB
J3_B10
20
AD31
AD29
GND
J3_A10
21
AD28
GND
PTID0
J3_E9
22
AD27
AD26
TXEN
J3_D9
23
AD25
AD24
GND
J3_C9
24
GND
+3.3V
CAS_DV
J3_B9
25
GND
IDSEL
CT_C8A
J3_A9
26
CBE3*
AD23
GND
J3_E8
27
AD22
+3.3V
GND
J3_D8
28
AD21
AD20
CT_D19
J3_C8
29
AD19
AD18
CT_D18
J3_B8
30
+5V
GND
CT_D17
J3_A8
31
+3.3V
AD16
CT_D16
J3_E7
32
AD17
CBE2*
GND
J3_D7
33
FRAME*
GND
GND
J3_C7
34
GND
IDSELB
NETREF2
J3_B7
10006024-04
Katana®752i User’s Manual
9-3
PTMC Interface:
9-4
Katana®752i User’s Manual
PTMC Connector Pinouts
Pin
J11
J12
J13
J14
35
GND
TRDY*
CT_D14
J3_A7
36
IRDY*
+3.3V
no connection
J3_E6
37
DEVSEL*
GND
CT_D12
J3_D6
38
+5V
STOP*
GND
J3_C6
39
GND
PERR*
PTENB*
J3_B6
40
LOCK*
GND
no connection
J3_A6
41
SDONE*
+3.3V
GND
J3_E5
42
SBO*
SERR*
NETREF1
J3_D5
43
PAR
CBE1*
CT_C8B
J3_C5
44
GND
GND
GND
J3_B5
45
+3.3V
AD14
GND
J3_A5
46
AD15
AD13
CT_D15
J3_E4
47
AD12
M66EN
CT_D10
J3_D4
48
AD11
AD10
CT_D13
J3_C4
49
AD9
AD8
CT_D8
J3_B4
50
+5V
+3.3V
CT_D11
J3_A4
51
GND
AD7
GND
J3_E3
52
CBE0*
REQB*
CT_D9
J3_D3
53
AD6
+3.3V
CT_D6
J3_C3
54
AD5
GNTB*
CT_D7
J3_B3
55
AD4
no connection
CT_D4
J3_A3
56
GND
GND
GND
J3_E2
57
+3.3V
no connection
PTID1
J3_D2
58
AD3
EREADY
CT_D5
J3_C2
59
AD2
GND
CT_D2
J3_B2
60
AD1
RESETOUT*
CT_D3
J3_A2
61
AD0
ACK64*
CT_D0
J3_E1
62
+5V
+3.3V
GND
J3_D1
63
GND
GND
GND
J3_C1
64
REQ64*
MONARCH*
CT_D1
J3_B1
10006024-04
PTMC Interface:
PTMC Connector Pinouts
PCI expansion site #2 has four 64-pin connectors, J21—J24 (see Fig. 2-2 on page 2-3 for connector locations). Table 9-2 shows the pin assignments.
Table 9-2: J2x PTMC Connector Pin Assignments
Pin
J21
J22
J23
J24
1
TCK
POS_12V
MDIO
J5_E13
2
NEG_12V
PMC2_TRST*
GND
J5_D13
3
GND
PMC2_TMS
GND
J5_C13
4
INTA*
PMC2_TDO
STX
J5_B13
5
INTB*
PMC2_TDI
MDC
J5_A13
6
INTC*
GND
SRX
J5_E12
7
PRESENT*
GND
RXER
J5_D12
8
+5V
no connection
GND
J5_C12
9
INTD*
no connection
PTID2
J5_B12
10
no connection
no connection
TXD0
J5_A12
11
GND
PUP0
GND
J5_E11
12
+3.3V
+3.3V
TXD1
J5_D11
13
PCICLK
RST*
REFCLK
J5_C11
14
GND
PDN0
GND
J5_B11
15
GND
+3.3V
GND
J5_A11
16
GNT*
PDN1
RXD0
J5_E10
17
REQ*
PME*
CT_FA
J5_D10
18
+5V
GND
RXD1
J5_C10
19
+3.3V
AD30
CT_FB
J5_B10
20
AD31
AD29
GND
J5_A10
21
AD28
GND
PTID0
J5_E9
22
AD27
AD26
TXEN
J5_D9
23
AD25
AD24
GND
J5_C9
24
GND
+3.3V
CAS_DV
J5_B9
25
GND
AD21
CT_C8A
J5_A9
26
CBE3*
AD23
GND
J5_E8
27
AD22
+3.3V
GND
J5_D8
28
AD21
AD20
CT_D19
J5_C8
29
AD19
AD18
CT_D18
J5_B8
30
+5V
GND
CT_D17
J5_A8
31
+3.3V
AD16
CT_D16
J5_E7
32
AD17
CBE2*
GND
J5_D7
33
FRAME*
GND
GND
J5_C7
34
GND
IDSELB
NETREF2
J5_B7
35
GND
TRDY*
CT_D14
J5_A7
36
IRDY*
+3.3V
no connection
J5_E6
10006024-04
Katana®752i User’s Manual
9-5
PTMC Interface:
9-6
Katana®752i User’s Manual
PTMC Connector Pinouts
Pin
J21
J22
J23
J24
37
DEVSEL*
GND
CT_D12
J5_D6
38
+5V
STOP*
GND
J5_C6
39
GND
PERR*
PTENB*
J5_B6
40
LOCK*
GND
no connection
J5_A6
41
SDONE*
+3.3V
GND
J5_E5
42
SBO*
SERR*
NETREF1
J5_D5
43
PAR
CBE1*
CT_C8B
J5_C5
44
GND
GND
GND
J5_B5
45
+3.3V
AD14
GND
J5_A5
46
AD15
AD13
CT_D15
J5_E4
47
AD12
M66EN
CT_D10
J5_D4
48
AD11
AD10
CT_D13
J5_C4
49
AD9
AD8
CT_D8
J5_B4
50
+5V
+3.3V
CT_D11
J5_A4
51
GND
AD7
GND
J5_E3
52
CBE0*
REQB*
CT_D9
J5_D3
53
AD6
+3.3V
CT_D6
J5_C3
54
AD5
GNTB*
CT_D7
J5_B3
55
AD4
no connection
CT_D4
J5_A3
56
GND
GND
GND
J5_E2
57
+3.3V
no connection
PTID1
J5_D2
58
AD3
EREADY
CT_D5
J5_C2
59
AD2
GND
CT_D2
J5_B2
60
AD1
RESETOUT*
CT_D3
J5_A2
61
AD0
ACK64*
CT_D0
J5_E1
62
+5V
+3.3V
GND
J5_D1
63
GND
GND
GND
J5_C1
64
REQ64*
MONARCH*
CT_D1
J5_B1
10006024-04
Section 10
Ethernet Interfaces
The Katana®752i supports four 10/100/1000BaseT Ethernet ports. The MV64460 system
controller provides three Ethernet Media Access Control (MAC) units, and an Intel 82544EI
Ethernet controller device provides direct access from the local PCI bus. Three Broadcom
BCM5461S transceivers and an integrated PHY in the 82544EI provide interfaces for the
10/100/1000BaseT Ethernet ports. Two of these ports route to the Katana®752i front
panel, and two route to the J3 CompactPCI packet-switched backplane (cPSB) connector.
The Katana®752i also provides optional Ethernet connectivity for each PTMC site, using
two RMII PHY devices that route to the J5 CompactPCI (cPCI) backplane connector.
ETHERNET ADDRESS
The Ethernet address for your board is a unique identifier on a network and must not be
altered. The address consists of 48 bits (Medium Access Control—MAC[47:0]) divided into
two equal parts. The upper 24 bits define a unique identifier that has been assigned to
Emerson Network Power, Embedded Computing by IEEE. The lower 24 bits are defined by
Emerson for identification of each of our products.
The Ethernet address for the Katana®752i is a binary number referenced as 12 hexadecimal
digits separated into pairs, with each pair representing eight bits. The address assigned to
the Katana®752i has the following form:
00 80 F9 6x yy zz
00 80 F9 is Emerson’s identifier. The last three bytes of the Ethernet address comprise the
data for the Ethernet addresses in non-volatile memory. 6 is defined by Emerson and is specific to the Katana®752i. x, yy, and zz are calculated.
For the purpose of this calculation, the entire MAC address can be thought of as a 48-bit
register, as shown in Register Map 10-1.
Register 10-1: MAC Calculation
MAC[47:0]
00
0000
80
0000
1000
F9
0000
1111
6x
1001
47:24
Fixed
0110
yy
110x
yyyy
23:17
Fixed
zz
yyyy
zzzz
zzzz
16:3
Calculated
2:0
List
To determine the last 17 bits of the MAC address (x, yy, and zz):
1 Subtract 1000 from the decimal serial number, convert it to hex, and place the 14-bit result
in MAC[16:3].
2 Set the remaining three bits, MAC[2:0], according to the following list:
000 = CPSB_1 (MAC address #1)
10006024-04
Katana®752i User’s Manual
10-1
Ethernet Interfaces:
Ethernet Ports
001 = CPSB_1 (MAC address #2)
010 = CPSB_2
011 = FRNT_1 (ETH3)
100 = FRNT_2 (ETH4)
101 = reserved
110 = reserved
111 = reserved
So for example, if the Katana®752i serial number is 1234, the CPSB_2 MAC address is:
00:80:F9:6C:07:52.
ETHERNET PORTS
The MV64460 system controller (see Chapter ) provides three 10/100/1000BaseT gigabit
Ethernet (GbE) ports. Also, the Katana®752i provides direct access to a fourth GbE port
from the local PCI bus via an Intel 82544EI Ethernet controller device. Two ports connect to
the front panel (see Section for pinouts), and two connect to the J3 cPSB connector (see
Table 14-3 for pinouts).
•
If the Katana®752i is installed in a system that supports a cPSB backplane, the two ports at
J3 allow for cPSB functionality. If the Katana®752i is installed in a system that does not
support a cPSB backplane, the J3 ports can be routed via a rear transition module to provide
two GbE input/output ports.
Four Broadcom BCM5461S transceivers provide the physical interface for these ports.
There are eight LEDs associated with the GbE ports (see the component map on page 2-6
for LED locations).
Table 10-1: GbE Port LEDs
GbE Port 1
GbE Port 2
CR34=ACT
CR20=ACT
CR32=LINK
CR21=LINK
CR33=LINK2
CR22=LINK2
CR35=LINK1
CR23=LINK1
FRONT PANEL ETHERNET CONNECTOR PINOUTS
The Katana®752i has a dual-RJ45 connector, P1, for the two front panel Ethernet ports.
(Refer to the front panel drawing on page 2-2.) The ETH4 port connects to the 82544EI
Ethernet controller. The ETH3 port connects to the MV64460 system controller. The dualRJ45 connector has integrated speed (SP) and activity (ACT) LEDs to show the status of each
port. The pin assignments are as follows.
10-2
Katana®752i User’s Manual
10006024-04
Ethernet Interfaces:
Optional RMII PHY Devices
Table 10-2: 82544EI Ethernet Port Pin Assignments, ETH4
Pin
Signal
Pin
Signal
1
TRD0+
5
TRD2+
2
TRD0—
6
TRD2—
3
TRD1+
7
TRD3+
4
TRD1—
8
TRD3—
Table 10-3: MV64460 Ethernet Port Pin Assignments, ETH3
Pin
Signal
Pin
Signal
1
TRD0+
5
TRD2+
2
TRD0—
6
TRD2—
3
TRD1+
7
TRD3+
4
TRD1—
8
TRD3—
OPTIONAL RMII PHY DEVICES
In addition to the four GbE ports, the Katana®752i supports an option for two RMII PHY
devices on the Katana®752i (one for each PTMC site). These route to the CompactPCI backplane connector, J5. Each PTMC site has its own PHY address and LEDs, as shown in Table 104 and Fig. 10-1. See Fig. 2-3 for LED locations.
Table 10-4: PTMC PHY Address
PTMC Site:
PHY Address:
LEDs:
1
0x5
CR43=ACT
CR44=LINK
2
0x6
CR45=ACT
CR46=LINK
Note: The Katana®752i may drive the RMII REFCLK to the PTMC connectors and the PHYs. Setting bit 19 at the
MV64460 MPP port enables this functionality. However, before setting the bit, ensure that the RMII PHYs are
installed and the PT2MC card supports an RMII interface. By default, REFCLK is enabled (bit is high). Clearing
this bit causes the Katana®752i to stop driving REFCLK so that a PTMC module can drive it instead.
Caution: To ensure proper signal integrity, the RTM magnetics must have a +2.5-volt offset on the
center taps for both the TX and RX differential pairs.
!
10006024-04
Katana®752i User’s Manual
10-3
Ethernet Interfaces:
Optional RMII PHY Devices
Figure 10-1: RMII PHY to Transition Module
PTMC
Site 1
PTMC
Site 2
Katana752i
P13
P23
RMII
RMII
CR43
CR44
PHY
0x5
CR45
CR46
PHY
0x6
J5
Backplane
J5
+2.5V
Optional Rear Transition Module
(i.e. TM/cSPAN-P8E)
RJ45
10-4
Katana®752i User’s Manual
RJ45
10006024-04
+2.5V
Magnetics
Magnetics
Section 11
IPMI Controller
The Katana®752i implements a System Management Bus (SMB), as defined in the CompactPCI System Management Specification (see Table 1-2). It also supports the Intelligent
Platform Management Interface (IPMI) Version 1.5 and Intelligent Platform Management
Bus (IPMB) Version 1.0 specifications. At the core of SMB/IPMI interface is a Zircon PM
device from QLogic Corporation. This device is a microprocessor-based Intelligent Platform
Management Controller that implements all the standard IPMI commands and provides
hardware interfaces for other system management features.
SMB/IPMI OVERVIEW
The basic features for the Katana®752i SMB/IPMI implementation include:
• conformance to IPMI version 1.5 and IPMB version 1.0
• geographical addressing according to PICMG 2.9
• ability to read and write Field Replaceable Unit (FRU) data
• ability to reset from SMB or local processor
• ability to read two airflow temperature sensors
• ability to read six board voltage sensors
• ability to read a watchdog sensor for the 750GL processor
• ability to send event messages to a specified receiver
• all sensors generate assertion and/or de-assertion event messages
• ability to control GPIO to assert resets to various sections of the board
• ability to broadcast a heartbeat message to a specified receiver
• support for field updates of firmware via SMB or local processor
10006024-04
Katana®752i User’s Manual
11-1
IPMI Controller:
SMB/IPMI Overview
The Katana®752i system management interface uses the Zircon PM device’s general-purpose input/output (GPIO) pins for the following functions:
• watchdog sensor input (from 750GL processor)
• GPIO (to 750GL processor)
• reset outputs (to 750GL processor)
• IPMI reset control
• cPCI Geographical Addressing inputs
The Zircon PM controller also has input pins to sense all on-board voltage supplies. Fig. 11-1
on the following page shows a block diagram of the Intelligent Platform Management Bus
(IPMB) connections for the Katana®752i.
The Katana®752i system management features include two inter-integrated circuit (I2C)
interfaces, as follows:
• master/slave interface for 750GL communications
• master-only interface for accessing the temperature sensor readings and the two IPMI
read-only memory (ROM) devices
11-2
Katana®752i User’s Manual
10006024-04
IPMI Controller:
SMB/IPMI Overview
Figure 11-1: IPMB Connections Block Diagram
Katana752i
IPMI_OUT
MV64460
Timer Out
MV1_port_sel
ipmi_rst*
Temp
Sensor
IPMI
Bootloader
and FRU
ROM
I2C #1
Temp
Sensor
IPMI
Bootcode
ROM
I2C #2
GPIO[0:23]
A-to-D 6
IPMI Microcontroller
IPMI Power
3
Voltage
Monitor
Reset
A-to-D 5
A-to-D 4
A-to-D 3
A-to-D 2
A-to-D 1
5V
3.3 V
2.5 V
1.8 V (optional)
CPU Core
1.25V
IPMB (SCL, SDA, PWR)
10006024-04
Katana®752i User’s Manual
11-3
IPMI Controller:
I/O Interface
I/O INTERFACE
The Zircon PM provides 24 user-definable input/output (I/O) pins. The following table
shows how the Katana®752i implements these pins.
Table 11-1: Zircon PM General Purpose I/O Pin Functions
11-4
Katana®752i User’s Manual
Zircon PM Pin:
Signal Name:
Function:
GPIO0
TEMP1_OS
unused
GPIO1
TEMP2_OS
unused
GPIO[2:3]
–
unused
GPIO4
750GL1_IPMI_RST_R*
active low IPMI reset input from 750GL
processor
GPIO5
–
unused
GPIO6
IPMI_TIMEROUT_D
unused
GPIO7
–
unused
GPIO8
POST_FAULT
active high input that signals a system
firmware error
GPIO9
–
unused
GPIO10
I2C_holdoff
active high input that signals Zircon PM off
the #1 I2C bus
GPIO11
750GL1_WD_LATCH
active high input that signals a watchdog
expiration event on 750GL processor
GPIO12
–
unused
GPIO13
HS_FAULT_R*
active low output that shuts power down
to the board via the Hot Swap controller
GPIO14
–
unused
GPIO[15:19]
GA[4:0]
Geographical Address inputs from J2
connector
GPIO20
–
unused
GPIO[21:23]
750GL_TEMP_INT*
unused
10006024-04
IPMI Controller:
I2C Interfaces
In addition to the General Purpose I/O, there are six analog-to-digital (A2D) input pins that
are used for sensing the various power supplies on the board. The following table describes
the Katana®752i implementation of these pins.
Table 11-2: Zircon PM Analog-to-Digital Input Pin Functions
Zircon PM
Pin:
Signal Name:
Nominal
Voltage:
Function:
A2D1
MON_PMC_3_3V
2.0V
connects to the 3.3V PTMC power supply
A2D2
MON_CPU_CORE
1.5V
connects directly to the 750GL core power
supply
A2D3
1_8V
1.8V
connects directly to the 1.8V power supply
A2D4
MON_2_5V
1.95V
connects to the 2.5V power supply via a
resistor divider network1
A2D5
MON_3_3V
2.0
connects to the 3.3V power supply via a
resistor divider network1
A2D6
MON_5V
1.88V
connects to the 5V power supply via a
resistor divider network1
1. The A2D inputs on the Zircon PM have a maximum input voltage rating of 2.5V, which is the A2D power
supply voltage. Therefore, any sensed voltage that has a value greater than 2.5V must be divided down.
I2C INTERFACES
The Zircon PM controller supports three I2C interfaces. Port 0 is a master/slave interface
which connects to the public IPMB. Port 1 is a master/slave interface which connects to the
I2C bus for the MV64460. Port 2 is a master-only interface for accessing the inlet/outlet
temperature sensors and the two IPMI bootloader and boot code ROM devices.
Note: The Zircon PM device must be held in reset when the I2C Port 2 master-only interface is being used by the
750GL processor to access the serial EEPROM devices.
The MV64460 system controller can master Port 2 while the Zircon PM is in reset. This
allows for access to the IPMI serial EEPROMs, which is useful for programming the Zircon
PM application code. An alternate method for accessing the IPMI serial EEPROMs from the
MV64460 is to use IPMI commands on I2C Port 1.
The MV64460 can master Port 1 to send IPMI requests and receive responses from the Zircon PM. All IPMI commands supported on the public IPMB are also supported on the private
IPMB.
According to the IPMB specification, IPMI devices must use I2C Master Write cycles on the
IPMB. All IPMI messages overlay the I2C Master Write data, including the I2C command
byte. Using this format, the first byte of an IPMI message transmitted on the bus is also the
I2C command byte.
10006024-04
Katana®752i User’s Manual
11-5
IPMI Controller:
IPMI Message Protocol
The PICMG 2.9 specification defines addressing on the public and private IPMBs. It defines
the slave addresses assigned to the chassis, power supplies, and peripheral boards based on
geographical addressing. Table 11-3 lists the slave address of each peripheral board, based
on its geographical address.
Table 11-3: IPMB Slave Addresses
Geographical
Address [0:4]
IPMB Address
(Hex)
Geographical
Address [0:4]
IPMB Address
(Hex)
0
disabled
16
D0
1
B0
17
D2
2
B2
18
D4
3
B4
19
D6
4
B6
20
D8
5
B8
21
DA
6
BA
22
DC
7
BC
23
DE
8
BE
24
E0
9
C0
25
E2
10
C4
26
E4
11
C6
27
E6
12
C8
28
E8
13
CA
28
EA
14
CC
30
EC
15
CE
31
disabled
IPMI MESSAGE PROTOCOL
The IPMI message protocol is designed to be robust and support many different physical
interfaces. The Zircon PM supports IPMI messages over the IPMB interface. Messages are
defined as either a request or a response, as indicated by the least significant bit in the Network Function Code of the message. Table 11-4 shows the format of an IPMI request message.
Table 11-4: Format for IPMI Request Message
Byte:
Bits:
7:
1
2
3
4
5
11-6
Katana®752i User’s Manual
6:
5:
4:
3:
2:
1:
0:
rsSA
netFn
rsLUN
Checksum
rqSA
rqSeq
10006024-04
rqLUN
IPMI Controller:
IPMI Message Protocol
Byte:
Bits:
7:
6:
5:
4:
6
7:N
N+1
3:
2:
1:
0:
Command
Data
Checksum
The first byte contains the responder’s Slave Address, rsSA. The second byte contains the
Network Function Code, netFn, and the responder’s Logical Unit Number, rsLUN. The third
byte contains the two’s-complement checksum for the first two bytes. The fourth byte contains the requester’s Slave Address, rqSA. The fifth byte contains the requester’s Sequence
Number, rqSeq, and requester’s Logical Unit Number, rqLUN. The Sequence number may
be used to associate a specific response to a specific request. The sixth byte contains the
Command Number. The seventh byte and beyond contain parameters for specific commands (if required). The final byte is the two’s-complement checksum of all of the message
data after the first checksum.
An IPMI response message (see Table 11-5) is similar to a IPMI request message. The main
difference is that the seventh byte contains the Completion Code, and the eighth byte and
beyond hold data received from the controller (rather than data to send to the controller).
Also, the Slave Address and Logical Unit Number for the requester and responder are
swapped.
Table 11-5: Format for IPMI Response Message
Byte:
Bits:
7:
1
2
3
4
5
6
7
8:N
N+1
6:
5:
4:
3:
2:
1:
0:
rqSA
netFn
rqLUN
Checksum
rsSA
rsSeq
rsLUN
Command
Completion Code
Data
Checksum
10006024-04
Katana®752i User’s Manual
11-7
IPMI Controller:
IPMI Message Protocol
IPMI Network Function Codes
All IPMI messages contain a Network Function Code field, which defines the category for a
particular command. Each category has two codes assigned to it–one for requests and one
for responses. The code for a request has the least significant bit of the field set to zero,
while the code for a response has the least significant bit of the field set to one. Table 11-6
lists the network function codes (as defined in the IPMI specification) used by the Zircon
PM.
Table 11-6: Network Function Codes
11-8
Katana®752i User’s Manual
Hex Code
Value(s):
Name:
Type:
Description:
00, 01
Chassis
chassis device
requests/responses
00 = command/request, 01 = response:
common chassis control and status
functions
02, 03
Bridge
bridge
requests/responses
02 = request, 03 = response:
message contains data for bridging to the
next bus. Typically, the data is another
message, which also may be a bridging
message. This function is only present on
bridge nodes.
04, 05
Sensor/
Event
sensor and event
requests/responses
04 = command/request, 05 = response:
for configuration and transmission of Event
Messages and system Sensors. This
function may be present on any node.
06, 07
App
application
requests/responses
06 = command/request, 07 = response:
message is implementation-specific for a
particular device, as defined by the IPMI
specification
08, 09
Firmware
firmware transfer
requests/responses
firmware transfer messages match the
format of application messages, as
determined by the particular device
0A, 0B
Storage
non-volatile storage
requests/responses
may be present on any node that provides
nonvolatile storage and retrieval services
0C-2F
Reserved
–
reserved: 36 network functions (18 pairs)
30-3F
OEM
–
vendor specific: 16 network functions (8
pairs). The vendor defines functional
semantics for cmd and data fields. The cmd
field must hold the same value in requests
and responses for a given operation to
support IPMI message handling and
transport mechanisms. The controller’s
Manufacturer ID value identifies the vendor
or group.
10006024-04
IPMI Controller:
IPMI Message Protocol
IPMI Completion Codes
All IPMI response messages contain a hexadecimal Completion Code field that indicates the
status of the operation. Table 11-7 lists the Completion Codes (as defined in the IPMI specification) used by the Zircon PM.
Table 11-7: Completion Codes
Code:
Description:
Generic Completion Codes 00, C0-FF
00
Command completed normally
C0
Node busy–command could not be processed because command-processing
resources are temporarily unavailable
C1
Invalid command–indicates an unrecognized or unsupported command
C2
Command invalid for given LUN
C3
Time-out while processing command, response unavailable
C4
Out of space–command could not be completed because of a lack of storage
space required to execute the given command operation
C5
Reservation canceled or invalid Reservation ID
C6
Request data truncated
C7
Request data length invalid
C8
Request data field length limit exceeded
C9
Parameter out of range–one or more parameters in the data field of the Request
are out of range. This is different from Invalid data field code (CC) because it
indicates that the erroneous field(s) has a contiguous range of possible values.
CA
Cannot return number of requested data bytes
CB
Requested sensor, data, or record not present
CC
Invalid data field in Request
CD
Command illegal for specified sensor or record type
CE
Command response could not be provided
CF
Cannot execute duplicated request–for devices that cannot return the response
returned for the original instance of the request. These devices should provide
separate commands that allow the completion status of the original request to be
determined. An Event Receiver does not use this completion code, but returns the
00 completion code in the response to (valid) duplicated requests.
D0
Command response could not be provided, SDR Repository in update mode
D1
Command response could not be provided, device in firmware update mode
D2
Command response could not be provided, BMC initialization or initialization
agent in progress
D3
Destination unavailable–cannot deliver request to selected destination. (This
code can be returned if a request message is targeted to SMS, but receive
message queue reception is disabled for the particular channel.)
D4
Cannot execute command, insufficient privilege level
D5
Cannot execute command, parameter(s) not supported in present state
FF
Unspecified error
10006024-04
Katana®752i User’s Manual
11-9
IPMI Controller:
IPMI Message Protocol
Code:
Description: (continued)
Device-Specific (OEM) Codes 01-7E
01-7E
Device specific (OEM) completion codes–command-specific codes (also specific
for a particular device and version). Interpretation of these codes requires prior
knowledge of the device command set.
Command-Specific Codes 80-BE
80-BE
Standard command-specific codes–reserved for command-specific completion
codes (described in this chapter)
Zircon PM IPMI Commands
The Zircon PM peripheral management controller supports IPMI commands to query board
information and to control the behavior of the board. These commands provide a means
to:
• identify the controller
• reset the controller
• return the controller’s self-test results
• read and write the controller’s SROMs
• read the temperature, voltage, and watchdog sensors
• get specific information, such as thresholds, for each sensor
• read and write the Field Replaceable Unit (FRU) data
• reserve and read the Sensor Data Record (SDR) repository
• configure event broadcasts
• bridge an IPMI request to the public IPMB and return the response
• read and write the controller’s general-purpose I/O (GPIO)
• configure heartbeat broadcasts
Table 11-8 lists the IPMI commands supported by the Zircon PM along with the hexadecimal
values for each command’s Network Function Code (netFn), Logical Unit Number (LUN),
and Command Code (Cmd).
Table 11-8: Zircon PM IPMI Commands
Command:
11-10
Katana®752i User’s Manual
LUN:
Cmd:
Set Event Receiver
Sensor/Event
netFn:
04, 05
00
00
Get Event Receiver
Sensor/Event
04, 05
00
01
Platform Event (Transmit Only)
Sensor/Event
04, 05
00
02
Get Device SDR Information
Sensor/Event
04, 05
00
20
10006024-04
IPMI Controller:
IPMI Message Protocol
Command: (continued)
netFn:
LUN:
Cmd:
00
21
Get Device SDR
Sensor/Event
04, 05
Reserve Device SDR Repository
Sensor/Event
04, 05
00
22
Get Sensor Reading Factors
Sensor/Event
04, 05
00
23
Set Sensor Thresholds
Sensor/Event
04, 05
00
26
Get Sensor Thresholds
Sensor/Event
04, 05
00
27
Get Sensor Reading
Sensor/Event
04, 05
00
2D
Set Sensor Type
Sensor/Event
04, 05
00
2E
Get Sensor Type
Sensor/Event
04, 05
00
2F
Get Device ID
Application
06, 07
00
01
Broadcast 'Get Device ID'
Application
06, 07
00
01
Cold Restart
Application
06, 07
00
02
Warm Restart
Application
06, 07
00
03
Get Self Test Results
Application
06, 07
00
04
Send Message (private IPMB only)
Application
06,07
00
34
Master Write-Read I2C
Application
06, 07
00
52
Get FRU Inventory Area Info
Storage
0A, 0B
00
10
Read FRU Inventory Data
Storage
0A, 0B
00
11
Write FRU Inventory Data
Storage
0A, 0B
00
12
Enter SDR Repository Update Mode
Storage
0A, 0B
00
2A
Exit SDR Repository Update Mode
Storage
0A, 0B
00
2B
Write Setting
OEM
30, 31
00
00
Read Setting
OEM
30, 31
00
01
Set Heartbeat
OEM
30, 31
00
02
Get Heartbeat
OEM
30, 31
00
03
The Zircon PM implements many standard IPMI commands. Please refer to the IPMI specification (listed in Table 1-2) for details about each command’s request and response data. The
remainder of this section describes standard commands that have Zircon PM-specific
request/response data.
Get Sensor Reading (Sensor/Event)
The Get Sensor Reading command provides access to the Zircon PM’s internal or external
sensors. The Zircon PM has six analog-to-digital (A/D) converters, two temperature sensors, and three processor watchdog sensors. All of the A/D converters connect to the
board’s power supplies, allowing the Zircon PM to monitor board voltages. Two on-board
temperature sensors monitor the front-side airflow temperature. A watchdog sensor monitors the operations on the 750GL processor. Table 11-9 shows the request/response data
parameters for the Get Sensor Reading command.
10006024-04
Katana®752i User’s Manual
11-11
IPMI Controller:
IPMI Message Protocol
Table 11-9: Get Sensor Reading Parameters
Type:
Byte:
Data Field:
Request
Data
1
Sensor Number (hex)
Response
Data
1
Completion Code
2
Sensor Reading
41=PMC 3.3V Voltage Monitor
42=CPU_CORE Voltage Monitor
43=1.8V Voltage Monitor
44=2.5V Voltage Monitor
45=3.3V Voltage Monitor
46=5.0V Voltage Monitor
50=750GL Watchdog
60=Outflow Temperature Sensor
61=Inflow Temperature Sensor
70=750GL System Firmware Error
Bits[0:7], byte of reading. Ignore on read if sensor does not return
a numeric (analog) reading.
3
Bit[7], 0=All event messages disabled from this sensor
Bit[6], 0=Sensor scanning disabled
Bit[5], 1=Initial update in progress. When set, this bit indicates
that a rearm or Set Event Receiver command has requested an
update (which has not yet occurred) of the sensor status.
Software should use this bit to avoid getting an incorrect status
while the first sensor update is in progress. This bit is only
necessary if the controller can receive and process a Get Sensor
Reading or Get Sensor Event Status command for the sensor
before the update has completed. For example, a fan RPM sensor
may require seconds to accumulate the first reading after a rearm.
Bits[4:0], Reserved. Ignore on read.
11-12
Katana®752i User’s Manual
10006024-04
IPMI Controller:
IPMI Message Protocol
Type:
Byte:
Data Field: (continued)
Response
Data
4
Present Threshold Comparison Status
For threshold-based sensors:
Bits[7:6], Reserved. Returned as 1 (binary). Ignore on read.
Bit[5], 1=at or above (ε) upper non-recoverable threshold
Bit[4], 1=at or above (ε) upper critical threshold
Bit[3], 1=at or above (ε) upper non-critical threshold
Bit[2], 1=at or below (δ) lower non-recoverable threshold
Bit[1], 1=at or below (δ) lower critical threshold
Bit[0], 1=at or below (δ) lower non-critical threshold
(continued)
For discrete reading sensors:
Bit[7], 1=state 7 asserted
Bit[6], 1=state 6 asserted
Bit[5], 1=state 5 asserted
Bit[4], 1=state 4 asserted
Bit[3], 1=state 3 asserted
Bit[2], 1=state 2 asserted
Bit[1], 1=state 1 asserted
Bit[0], 1=state 0 asserted
5
For Discrete Reading Sensors Only (optional, otherwise 0x00)
Bit[7], Reserved. Returned as 1 (binary). Ignore on read.
Bit[6], 1=state 14 asserted
Bit[5], 1=state 13 asserted
Bit[4], 1=state 12 asserted
Bit[3], 1=state 11 asserted
Bit[2], 1=state 10 asserted
Bit[1], 1=state 9 asserted
Bit[0], 1=state 8 asserted
10006024-04
Katana®752i User’s Manual
11-13
IPMI Controller:
IPMI Message Protocol
Master Write-Read I2C (Application)
The Master Write-Read I2C command allows for direct accesses to I2C devices. This command can read from or write to any of the Zircon PM’s private I2C devices, such as SROMs or
temperature sensors. Typically, you would use it to update the Zircon PM’s firmware from
the management controller. Table 11-10 shows the request/response data parameters for
this command.
Table 11-10: Master Write-Read I2C Parameters
Type:
Byte:
Data Field:
Request
Data
1
Bus ID
Bits[7:4], Channel Number. Write as 0000 (binary).
Bits[3:1], Bus ID, zero-based
000=Public IPMB
001=Private IIC Bus #1, Private IPMB
111=Private IIC Bus #2
Bit[0], Bus Type
0=Public (IPMB)
1=Private Bus
Response
Data
2
Bits[7:1], Slave Address of Recipient
Bit[0], Reserved. Write as zero.
3
Read Count. Number of bytes to read, one-based.
0=No bytes to read.
4:M
Data to Write
1
Completion Code
A management controller shall return an error Completion Code
if an attempt is made to access an unsupported bus.
Generic, plus following command-specific codes (hex):
81=Lost Arbitration
82=Bus Error
83=NAK on Write
84=Truncated Read
2:N
11-14
Katana®752i User’s Manual
Bytes read from specified slave address. This field will be absent if
the read count is 0. The controller terminates the I2C transaction
with a STOP condition after reading the requested number of
bytes.
10006024-04
IPMI Controller:
IPMI Message Protocol
Write Setting (OEM)
The Write Setting command provides the ability to write a value to a general-purpose
input/output (GPIO) pin on the Zircon PM. By toggling certain GPIO pins, software can reset
or power-down the board. Table 11-11 shows the request/response data parameters for the
Write Setting command.
Table 11-11: Write Setting Parameters
Type:
Byte:
Data Field:
Request
Data
1
Bits[7:1], Device Slave Address
Bit[0], Reserved. Write as zero.
2
Zircon Port Number
3
Device Type
4
Device Type Modifier
Currently defined to be zero.
4=GPIO
192=Zircon
5=Inverted Output
6=Normal Output
5
Sub-Device
GPIO2=Input from PLD (spare, reserved for future use)
GPIO4=Reset to 750GL, Active Low
GPIO13=Hot-Swap Fault (Board Power), Active Low
6
Action Setting
0=De-assert output
1=Assert output
7
Base Units
1
Completion Code
66=Bit setting
Response
Data
10006024-04
Katana®752i User’s Manual
11-15
IPMI Controller:
IPMI Message Protocol
Read Setting (OEM)
The Read Setting command provides the ability to read the value of a general-purpose
input/output (GPIO) pin on the Zircon PM. Software can read certain GPIO pins to determine if the board is in reset or powered-down. Table 11-12 shows the request/response data
parameters for the Read Setting command.
Table 11-12: Read Setting Parameters
Type:
Byte:
Data Field:
Request
Data
1
Bits[7:1], Device Slave Address
Bit[0], Reserved. Write as zero.
2
Zircon Port Number
3
Device Type
4
Device Type Modifier
Currently defined to be zero.
4=GPIO
192=Zircon
3=Inverted Input
4=Normal Input
5
Sub-Device
GPIO8=750GL System Firmware Error, Active High
GPIO11=750GL Watchdog Time-out, Active High
GPIO12=Input from 750GL
GPIO13=Hot-Swap Fault (Board Power), Active Low
GPIO15:19=Geographical Address 4 to 0, Active High
Response
Data
1
Completion Code
2
Action Setting
0=Input is de-asserted
1=Input is asserted
3
Base Units
66=Bit setting
11-16
Katana®752i User’s Manual
10006024-04
IPMI Controller:
IPMI Message Protocol
Set Heartbeat (OEM)
The Set Heartbeat command configures the Zircon PM to send a heartbeat message to a
receiver on the IPMB or private I2C bus at a specific interval. The interval can range between
100 milliseconds and 25.6 seconds. The heartbeat message data may be a string of bytes or
a command that gets processed at each interval. Table 11-13 shows the request/response
data parameters for the Set Heartbeat command.
Table 11-13: Set Heartbeat Parameters
Type:
Byte:
Data Field:
Request
Data
1
Bus ID
Bits[7:4, Reserved
Bits[3:1], Bus ID, zero-based
000=Public IPMB
001=Private IIC Bus #1, Private IPMB
111=Private IIC Bus #2
Bit[0], Bus Type
0=Public (IPMB)
1=Private Bus
2
Bits[7:1], Slave Address of Recipient
Bit[0], Reserved. Write as zero.
3
Send Interval
The interval in 100-millisecond counts between heartbeat
transmissions. Writing zero disables the heartbeat.
4
Command/Data
0=Following is a command to be processed. Its reply data is to be
sent for the heartbeat data.
1=Following is constant data to be sent for the heartbeat data.
5:N
Command or Constant Data
If the data is a command to be processed, this field must contain a
properly formatted IPMB message, minus the first byte
containing the slave address.
Response
Data
1
Completion Code
10006024-04
Katana®752i User’s Manual
11-17
IPMI Controller:
IPMI Message Protocol
Get Heartbeat (OEM)
The Get Heartbeat command returns the current configuration of the heartbeat function
for a specified interface. The response data has the same definition as the Set Heartbeat
request data (see Section ). Table 11-14 shows the request/response data parameters for the
Get Heartbeat command.
Table 11-14: Get Heartbeat Parameters
Type:
Byte:
Data Field:
Request
Data
1
Bus ID
Bits[7:4], Reserved
Bits[3:1], Bus ID, zero-based
000=Public IPMB
001=Private IIC Bus #1, Private IPMB
111=Private IIC Bus #2
Bit[0], Bus Type
0=Public (IPMB)
1=Private Bus
Response
Data
1
Completion Code
2
Bits[7:1], Slave Address of recipient
Bit[0], Reserved. Returned as zero. Ignore on read.
3
Send Interval.
The interval in 100-millisecond counts between heartbeat
transmissions. Zero indicates that the heartbeat is disabled.
4
Command/Data
0=Following is a command to be processed. Its reply data is to be
sent for the heartbeat data.
1=Following is constant data to be sent for the heartbeat data.
5:N
11-18
Katana®752i User’s Manual
Command or Constant Data
10006024-04
IPMI Controller:
IPMI Message Protocol
IPMI FRU Information
The Zircon PM stores Field Replaceable Unit (FRU) information in its boot memory (SROM).
The data structure contains information such as the product name, part number, serial
number, and manufacturing date. Please refer to the IPMI specification for complete details
on the FRU data structure. Table 11-15 lists the general contents of the Katana®752i’s FRU
information.
Table 11-15: FRU Definition
Item:
Description:
Board Information Area
Manufacturing Date/Time
Variable, expressed as the number of minutes since 12:00 AM
on January 1, 1996
Board Manufacturer
“Emerson Network Power, Embedded Computing”
Board Product Name
“Katana®752i”
Board Serial Number
Variable, formatted as “P683-XXXX”
Board Part Number
Variable, formatted as “10XXXXXX-YY-Z”
FRU File ID
Variable, for example: “smbFruInit.c” if the VxWorks tools
were used to program the FRU information
Manufacturing Locale
“Rosario, Cavite, Philippines”
Product Information Area
Manufacturer Name
“Emerson Network Power, Embedded Computing”
Product Name
“Katana®752i”
Product Part/Model Number
Variable, formatted as “10XXXXXX-YY-Z”
Product Version
Not used, same information is provided by the part number
Product Serial Number
Variable, formatted as “P683-XXXX”
Asset Tag
Not Used
FRU File ID
Variable, for example: “smbFruInit.c” if the VxWorks tools
were used to program the FRU information
10006024-04
Katana®752i User’s Manual
11-19
IPMI Controller:
IPMI Message Protocol
IPMI Device SDR Repository
The Zircon PM implements a Device SDR Repository that contains Sensor Data Records for
the Zircon PM, the FRU device, and each sensor. A system management controller may use
the Get Device SDR command to read the repository and dynamically discover the capabilities of the board. Please refer to the IPMI specification (listed in Table 1-2) for more information on using Sensor Data Records and the Device SDR Repository.
IPMI Event Messages
Under certain circumstances, some sensors connected to the Zircon PM can generate Event
Messages for the system management controller, as described below in Table 11-16.
Table 11-16: IPMI Event Messages Generating Sensors
Sensor Name:
Sensor
Type:
Event/Reading
Type:
Sensor
Number:
Event
Generator:
ProcProgress
0x0F
0x6F
0x70
Yes
ProcWatchdog
0x23
0x6F
0x50
Yes
OutflowTemp
0x01
0x01
0x60
Yes
InflowTemp
0x01
0x01
0x61
Yes
+5.0V
0x02
0x01
0x46
Yes
+3.3V
0x02
0x01
0x45
Yes
+2.5V
0x02
0x01
0x44
No
+1.8V
0x02
0x01
0x43
No
PPC750GL
0x02
0x01
0x42
No
PMC+3.3V
0x02
0x01
0x41
No
To enable these messages, the system management controller must send a Set Event
Receiver command to the Zircon PM, along with the address of the Event Receiver. Table 1117 shows the format of an Event Message.
Table 11-17: Event Message Format
11-20
Katana®752i User’s Manual
Byte:1
Field:
Description:
0
RsSA
Responder’s Slave Address (Address of Event Receiver)
1
NetFn/RsLUN
Net Function Code (0x04) in upper 6 bits; Responder’s LUN in lower
2 bits
2
Chk1
Checksum #1
3
RqSA
Requester’s Slave Address (Address of our board on IPMB)
4
RqSeq/RqLUN
Request Sequence number in upper 6 bits; Requester’s LUN in low
2 bits
5
Cmd
Command (Always 0x02 for event message)
6
EvMRev
Event Message Revision (0x04 for IPMI 1.5)
10006024-04
IPMI Controller:
IPMI Message Protocol
Byte:1
Field:
Description: (continued)
7
Sensor Type
Indicates event class or type of sensor that generated the
message
8
Sensor Number
A unique number indicating the sensor that generated the
message
9
Event Dir /
Event Type
Upper bit indicates direction (0 = Assert, 1 = Deassert); Lower 7 bits
indicate type of threshold crossing or state transition
10
Event Data 0
Data for sensor and event type
11
Event Data 1
(Optional) Data for sensor and event type
12
Event Data 2
(Optional) Data for sensor and event type
13
Chk2
Checksum #2
1. Each byte has eight bits.
Event-generating sensors with a Threshold Event/Reading Type (0x01) initiate an event
message when a sensor reading crosses the defined threshold. The default thresholds for a
particular sensor are retrieved by sending the Zircon PM a Get Sensor Thresholds command. The system management controller must send the Zircon PM a Get Sensor Reading
command to retrieve the current sensor reading. (See the IPMI specification listed in
Table 1-2 for further details regarding these commands.)
ProcWatchdog is a Watchdog 2 Type (0x23) sensor. It generates an event when the
750GL1_WD_LATCH signal (see Table 11-1) for a particular sensor is asserted. A timeout in
the watchdog mechanism of the Marvell system controller asserts this signal. An associated
de-assertion event occurs when the system software on the Katana®752i has recovered
and the 750GL1_WD_LATCH signal has been cleared.
On the Katana®752i, sensor number 0x70 is a System Firmware Progress sensor. This type
of sensor (0x0F) generates events to communicate Power On Self-Test (POST) and boot
failures. Table 11-18 shows the OEM values defined for the data associated with this type of
sensor.
Table 11-18: System Firmware Progress OEM Event Data
Event Data 0
(Byte 10):
Event Data 1
(Byte 11):
Event Data 2
(Byte 12):
Memory POST failed
0xA0
(101000002)
0x01
(000000012)
0xFF
(111111112)
I2C POST failed
0xA0
(101000002)
0x40
(010000002)
0xF0
(111100002)
Flash POST failed
0xA0
(101000002)
0x50
(010100002)
0xF0
(111100002)
PCI Enumerated w/o EREADY
0xA0
(101000002)
0xFE
(111111102)
0x01
(000000012)
Description:
10006024-04
Katana®752i User’s Manual
11-21
IPMI Controller:
IPMI Message Protocol
The Event Data 0 byte has three fields: Bits 7:6 describe the contents of Event Data 1 (set to
102 when an OEM code is present in Event Data 1). Bits 5:4 describe the contents of Event
Data 2 (also set to 102 when an OEM code is present). Bits 3:0 store the Sensor-specific Offset value for the System Firmware Progress sensor (zero indicates a POST Error). Please see
the IPMI specification for further information on these fields.
11-22
Katana®752i User’s Manual
10006024-04
Section 12
Hot Swap
The Katana®752i baseboard incorporates a Linear Technologies LTC1643L Hot Swap™ controller device and is fully compliant with the CompactPCI (cPCI) Hot Swap Specification (see
references in Table 1-2). Katana®752i circuit boards allow for High Availability Hot Swap systems, including cPCI/PSB systems (without a cPCI interface). Some basic Hot Swap features
include:
• Ejector switch indication and Hot Swap LED control
• Back-end voltage isolation using the BD_SEL* signal and power supply health indication
using the CPCI_HEALTHY* signal
• Minimal capacitive loading on power supplies and I/O pins, according to the Hot Swap
Specification
• In-rush current limiting
HOT SWAP LOGIC (HSL) PLD
The Katana®752i utilizes a programmable logic device, called the Hot Swap Logic (HSL)
PLD to store various registers that provide status and affect the operation of the board.
These registers are listed below.
Table 12-1: HSL PLD Register Summary
Address (Hex):
Name:
F821,0000
J4SGA
Shelf Enumeration Bus pin status from J4 conn. (read only)
F821,0001
J4GA
Geographical Address from J4 connector (read only)
F821,0002
J2GA
Geographical Address from J2 connector (read only)
F821,0003
CT Clk Control
CT clock control registers (see page 13-3)
F821,0004
cPCI Status
Bit 0, CT_EN signal: 0 = present, 1 = not present
Bit 1, cPCI present on backplane: 1 = yes, 0 = no
Bit 2, HSL_CPCI_N signal: 0 = cPCI, 1 = no cPCI
(remaining bits are zero, only used when cPCI is enabled)
F821,0005
–
reserved
F821,0006
HS LED
Bit 0, Hot Swap LED control: 1 = LED on; 0 = LED off
(only used when cPCI is disabled)
F821,0007
–
reserved for HSL PLD version
10006024-04
Description:
Katana®752i User’s Manual
12-1
Hot Swap:
cPCI Functionality
CPCI FUNCTIONALITY
The Katana®752i implements an optional jumper, JP1 (see Fig. 2-4), which can enable or disable the board’s cPCI functionality. By default, cPCI is enabled (jumpers placed on JP1, pins
1—2 and pins 7—8).
The jumper settings also can prevent the cPCI_RST signal from resetting the board. This
allows system designers the flexibility to choose whether or not the Katana®752i uses the
cPCI reset signal (from the backplane). When pins 1 and 2 of JP1 are jumpered (default), the
cPCI_RST signal is enabled. With no jumper installed, the Katana®752i ignores the
cPCI_RST signal.
HOT SWAP LED AND EJECTOR SWITCH CONTROL
The specific operation of the Hot Swap LED and Ejector Switch is determined by whether or
not the Katana®752i’s cPCI functionality is enabled (see previous section).
cPCI Hot Swap
When cPCI functionality is enabled (this is the default condition, where jumpers are placed
on JP1, pins 1—2 and pins 7—8), the Katana®752i uses Hot Swap logic internal to the
MV64460 system controller.
The Hot Swap logic functions as follows when a board is inserted into a slot:
1 The inserted board gets power from Early Power, and its reset is asserted from Local PCI
PCI0__RSTn. The hardware turns on the Hot Swap LED.
2 The local PCI PCI0_RSTn signal is de-asserted, causing the Hot Swap LED to turn off,
indicating that the operator may lock the ejector handle.
3 After the operator locks the handle, the PCI0_HS signal goes high, indicating that the board
is inserted and locked.
4 INS bit is set and PCI0_ENUMn is asserted, notifying the Hot Swap software that a board has
been inserted.
5 System Hot Swap software detects PCI0_ENUMn assertion and checks the INS bits in all Hot
Swap-compliant boards. It identifies the inserted board and clears the INS bit (by writing a
value of one).
6 The MV64460 system controller acknowledges the system software by stopping the
assertion of the PCI0_ENUMn pin. Now, software may reconfigure all the boards.
12-2
Katana®752i User’s Manual
10006024-04
Hot Swap:
Hot Swap LED and Ejector Switch Control
The Hot Swap logic functions as follows when a board is removed from a slot:
1 The operator opens the board’s ejector handles and the PCI0_HS signals goes low to
indicate that the board is about to be extracted.
2 The REM bit is set, and the PCI0_ENUMn pin is asserted, if not masked by the EIM bit.
3 System Hot Swap software detects PCI0_ENUMn assertion and checks the REM bits in all
Hot Swap-compliant boards. It identifies the board to be extracted and clears the REM bit
(by writing a value of one).
4 The MV64460 system controller acknowledges the system software by stopping the
assertion of the PCI0_ENUMn pin.
5 The Hot Swap software may reconfigure the rest of the boards. When ready, it sets the LOO
bit to indicate that the board can be removed.
6 The MV64460 system controller drives PCI0_LED pin to one, and the Hot Swap LED turns on
to indicate to the operator that the board can be removed.
10006024-04
Katana®752i User’s Manual
12-3
Hot Swap:
Hot Swap LED and Ejector Switch Control
Non-cPCI Hot Swap
When the cPCI functionality is disabled, the LED/ejector switch control mechanism works in
conjunction with the Power Good indication from the Hot Swap controller circuit, as shown
in Fig. 12-1.
Figure 12-1: Hot Swap Controller Circuit
3.3_EARLY
3.3_EARLY
Healthy*
BDSEL*
to backplane
Blue Hot
Swap LED
PWRGD*
HS Controller
NOTE: Discrete logic
contained inside HSL PLD
Marvell
MV64460
3_3V
PCI0_HS
Ejector Switch
Note: The status of the ejector handle latch can be determined by reading the PCI0_HS bit in the MV64460 HS_CTL
register (PCI0_HS bit high = locked, PCI_HS bit low = unlocked). The status also can be read via MV644460
MPP/GPIO pin #31. It is an interruptable pin that can detect a change in the Hot Swap status, eliminating the
need for polling at the MPP pin or PCI0_HS bit.
The Hot Swap logic functions as follows when a board is inserted into a slot:
1 The Hot Swap LED illuminates immediately when the board is inserted. This is enabled
when the power good indicator, PWRGD*, from the Hot Swap controller is not being driven
12-4
Katana®752i User’s Manual
10006024-04
Hot Swap:
Timing Considerations
low (active). This occurs when power supply voltages are not within the proper tolerance or
when the BDSEL* signal is not driven low (active) to the Hot Swap controller. The LED
remains illuminated until software clears bit 0 at address F821,000616 in the HSL PLD.
2 When the operator locks the ejector handle, the MV64460 bridge chip senses the event
and notifies the software that a board has been inserted. It also drives ENUM on the cPCI
backplane when the switch is closed (until cleared by software).
The Hot Swap logic functions as follows when a board is removed from a slot:
1 The operator opens the ejector handle (but does not yet remove the board from the slot),
and the MV64460 bridge chip senses the event.
2 The REM bit in the Hot Swap Status and Control register (HS_CSR) is set and the
PCI0_ENUMn pin on the MV64460 is asserted.
3 The software identifies the board to be extracted and clears the REM bit by writing a one to
it.
4 The MV64460 deasserts the PCI0_ENUMn pin and the processor (750GL) performs board
quiescence tasks.
5 Once the board is properly shut down, the processor illuminates the Hot Swap LED by
writing a one to bit 0 at address F821,000616 in the HSL PLD. This indicates that the board
can be removed safely from the system.
TIMING CONSIDERATIONS
The Katana®752i complies with Configuration 2 of the PCI Telecom Mezzanine/Carrier Card
Specification, PICMG 2.15. It is an initially-retrying board, which means that from the time of
insertion and/or cPCI RST negation, the Katana®752i will assert ENUM and retry all incoming cPCI configuration cycles until the board is minimally initialized. The time delay associated with this functionality is approximately 300 milliseconds. Once this time has expired,
the Katana®752i will respond to cPCI configuration cycles.
In addition to this retry delay, the Katana®752i requires approximately another five seconds to initialize all on-card DRAM before it can support cPCI memory cycles. Accessing the
Katana®752i on-card DRAM memory within five seconds may result in ECC errors or incorrect data. Please refer to “Power-Up Timing” on page 15-5 for more details.
10006024-04
Katana®752i User’s Manual
12-5
Hot Swap:
HEALTHY* Signal
HEALTHY* SIGNAL
The Katana®752i logic asserts the HEALTHY* signal whenever the Hot Swap controller indicates that all power supplies provided by the backplane are within the appropriate range.
This signal passes through the Hot Swap Logic (HSL) programmable logic device (PLD) and
goes to the backplane. Other logic, including board reset signals, does not affect the
HEALTHY* signal, except for the front panel reset switch, which deasserts HEALTHY* when
pressed.
12-6
Katana®752i User’s Manual
10006024-04
Section 13
CT Bus Interface
The Katana®752i supports an optional computer telephony (CT) bus interface that routes
various signals from the CompactPCI J4 backplane connector to the PCI Telecom Mezzanine Card (PTMC) expansion sites. The Katana®752i complies with Configuration 2 of the
PCI Telecom Mezzanine/Carrier Card Specification, PICMG 2.15.
Note: The standard Katana®752i configuration does not support any of the CT bus interface options.
PICMG 2.15 CONFIGURATION 2
PTMC mezzanine and carrier cards supporting PICMG 2.15 Configuration 2 are identified as
PT2MC and PT2CC. This configuration includes a Time Division Multiplexed (TDM) interface, a Reduced Media Independent Interface (RMII), and a TTL serial port.
There are several compatibility types between combinations of a carrier card and a mezzanine card. Although PTMC and PTCC are mechanically compatible with each other, the PMC
mezzanine or carrier cards electrical compatibility is partially determined via PCI Telecom
Identifiers (PTIDs) and enable (PTENB*) signals. The Katana®752i compares the PTID to
configurations that it supports and activates PTENB* after determining compatibility is
acceptable. At power-up, PTENB* is inactive and will activate once electrical compatibility
is determined via the PTIDs.
Another method to determine compatibility is interoperabilty. There are three interoperabilty categories for combining mezzanine and carrier cards, per PICMG 2.15:
•
Fully Interoperable Combination (FIC)
FIC indicates combinations that do not limit functionality and are never a destructive combination. The Emerson Katana®752i (PT2CC) and
PM/3Gv (or other PT2MCs) are a fully interoperable combination.
•
Non-Destructive Combination (NDC)
NDC indicates combinations that are not intended to interoperate, but will not cause damage to either the carrier or mezzanine card. For example, combining a PT2MC and a PT4CC
is an NDC.
10006024-04
Katana®752i User’s Manual
13-1
CT Bus Interface:
•
Katana®752i CT Bus Options
User Managed Combination (UMC)
UMC indicates combinations that are not to be made casually, since they may not be compatible. Potential device destruction must be assumed for these combinations. For example, a PMC64 combined with a PT3CC is subject to damage from incompatible signal
mapping on Pn3/Jn3.
Caution: Do not install 64-bit PMC cards on the Katana®752i since this is an invalid configuration
and would cause possible damage.
!
For a list of these combinations, refer to the compatibility matrix in the PCI Telecom Mezzanine/Carrier Card Specification, PICMG 2.15.
KATANA®752I CT BUS OPTIONS
Two Katana®752i CT bus options are available:
•
Option 1
(See page 13-4)
This option supports only CT clocks—C8A, C8B, FRAMEA, FRAMEB, NETREF1, and NETREF2
between the J4 connector and PTMC sites. There is no data path between the J4 and PTMC
sites. There is an 8-bit data path between the two PTMC sites with this option, see Fig. 13-2.
•
Option 2
(See page 13-6)
This option supports CT bus clocking plus CT data traffic via an Agere Systems T8110 Time
Slot Interchanger (TSI). See Fig. 13-3 for data connectivity between J4 and the two PTMC
sites.
CLOCKING
In a typical system clocking model, the designated primary clock master drives the A clock
and frame signals and the designated secondary master drives the B clock and frame signals. In Fig. 13-1, initially the B clocks are locked to the A clocks. After fallback, the roles of
the A and B clocks are reversed. For example, the board driving the B clocks becomes the
primary master after the A clock source fails. The NETFREF signals are generated to the primary master to provide a network reference that the primary master will use to synchronize
clock A with the network reference.
13-2
Katana®752i User’s Manual
10006024-04
CT Bus Interface:
Signal Control
Figure 13-1: Typical System Clocking Model
CT_C8_A/CT_FRAME_A
CT_C8_B/CT_FRAME_B
CT_NETREF_1
CT_NETREF_2
Primary
Master
Bits
Derived
Source
Secondary
Master
Slave
Digital
Trunk
Card
Slave
Digital
Trunk
Card
SIGNAL CONTROL
The Katana®752i supports control signals that allow a PTMC site to master the CT clocks
and/or data. The control registers are located in the Hot Swap Logic (HSL) programmable
logic device (PLD) at hex address F821,000316. The 750GL processor can access these registers. The following table summarizes the direction control registers:
Table 13-1: CT Clock Control Registers
Register:
Bit:
Reset
Value:
T8110 Not Installed
(option 1):
T8110 Installed
(option 2):
NETREF1_DIR
0
1
1
1
Controls direction of NETREF (on J4):
1=Katana®752i is NETREFx slave
(input)
0=Katana®752i is NETREFx master
(output)
These bits are not used.
NETREF2_DIR
C8_FRAME_A_TERM
2
1
C8_FRAME_B_TERM
3
1
Controls termination of FRAME and C8 data signals (on J4):
1=Katana®752i is not clock master (33 ohm series
termination)
0=Katana®752i is clock master (no series termination)
Controls termination on clock signals:
1=33-ohm series termination present
0=no termination
10006024-04
Katana®752i User’s Manual
13-3
CT Bus Interface:
CT Bus Routing Without the T8110 (option 1)
CT BUS ROUTING WITHOUT THE T8110 (OPTION 1)
The Katana®752i option 1 routes the NETREF1 and NETREF2 clock signals; as well as the FA,
C8A, FB, and C8B data signals between the J4 backplane connector and the two PTMC site
connectors (see Fig. 13-2).
Note: There is no data path between J4 and the PTMC sites. See Table 13-1 for buffer control settings.
For the J4 connector pinouts, please refer to Table 14-1. For the PTMC site connector
pinouts, see Table 9-1 and Table 9-2.
13-4
Katana®752i User’s Manual
10006024-04
CT Bus Interface:
CT Bus Routing Without the T8110 (option 1)
Figure 13-2: CT Signal Routing Diagram —T8110 Not Installed (option 1)
PM/3Gv
PM/3Gv
MPC8264
MPC8264
T8105
T8105
Termination Logic
Termination Logic
J13
J23
P13
P23
CT Data (8)
Katana750i
CT_NETREF1
CT_NETREF2
CT_C8A
CT_C8B
CT_FRAMEA
CT_FRAMEB
NETREF1_DIR
NETREF2_DIR
C8_FRAME_A_DIR
C8_FRAME_B_DIR
Local CT Bus
10006024-04
C8_B
FRAME_B
FRAME_A
C8_A
NETREF2
NETREF1
J4/P4
Katana®752i User’s Manual
13-5
CT Bus Interface:
CT Bus Routing With the T8110 Installed (option 2)
CT BUS ROUTING WITH THE T8110 INSTALLED (OPTION 2)
The T8110 Time Slot Interchanger (TSI) is a PCI device that serves as a bridge between the
H.110 and local CT bus on the Katana®752i. It must be properly configured before local and
H.110 CT traffic can occur. There are several architectural restrictions with the local CT bus
implementation on the Katana®752i as noted below.
Note: There is local CT data line swapping on PTMC site 2, see Table 13-2.
Table 13-2: Local CT Bus Bit Map
13-6
Katana®752i User’s Manual
T8110:
PTMC Site 1:
PTMC Site 2:
LCT_D31
—
CT_D0
LCT_D30
—
CT_D1
LCT_D29
—
CT_D2
LCT_D28
—
CT_D3
LCT_D27
—
CT_D4
LCT_D26
—
CT_D5
LCT_D25
—
CT_D6
LCT_D24
—
CT_D7
LCT_D23
—
CT_D8
LCT_D22
—
CT_D9
LCT_D21
—
CT_D10
LCT_D20
—
CT_D11
LCT_D19
CT_D19
CT_D12
LCT_D18
CT_D18
CT_D13
LCT_D17
CT_D17
CT_D14
LCT_D16
CT_D16
CT_D15
LCT_D15
CT_D15
CT_D16
LCT_D14
CT_D14
CT_D17
LCT_D13
CT_D13
CT_D18
LCT_D12
CT_D12
CT_D19
LCT_D11
CT_D11
—
LCT_D10
CT_D10
—
LCT_D9
CT_D9
—
LCT_D8
CT_D8
—
LCT_D7
CT_D7
—
LCT_D6
CT_D6
—
LCT_D5
CT_D5
—
LCT_D4
CT_D4
—
LCT_D3
CT_D3
—
LCT_D2
CT_D2
—
LCT_D1
CT_D1
—
10006024-04
CT Bus Interface:
CT Bus Routing With the T8110 Installed (option 2)
T8110:
PTMC Site 1:
PTMC Site 2:
LCT_D0
CT_D0
—
Local CT Bus Operation
On the Katana®752i, option 2, the local CT clock master must always be the T8110. The
two PTMC sites cannot be local CT bus masters (primary or secondary). They can only be CT
slaves.
• PTMCx local CT clocks CT_C8A/B must be sourced from the T8110 L_SCx pins, see
Fig. 13-3.
• PTMCx local CT frames CT_FA/B must be sourced from T8110 FGx pins.
• TSIs NETREFx signals may come from PTMC sites via the TSI LREFx pins or from H.110
bus (J4) via the TSI NETREFx pins, see Fig. 13-3.
• PTMC site 1 routes data lines CD_D19:0 to TSI LCT_D19:0.
• PTMC site 2 routes data lines CT_D19:0 to TSI LCT_D12:31 (NOTE: data line swapping as
shown in Table 13-2).
• PTMC site 2 CT_D12:19 also routes eight data bits directly to PTMC site 1 CT_D19:12
(NOTE: data line swapping as shown in Table 13-2).
The local CT bus signals are separated into clock and data/control groups. Clock signals
include CT_C8A (operates at 8 MHz), CT_C8B, CT_FRAMEA, CT_FRAMEB, NETREF1, and
NETREF2, see Fig. 13-3. All other signals are data or control.
10006024-04
Katana®752i User’s Manual
13-7
CT Bus Interface:
CT Bus Routing With the T8110 Installed (option 2)
Figure 13-3: CT Signal Routing Diagram —T8110 Installed (option 2)
From HSL PLD (bits 2:3)
EN*
C8A
C8B
QuickSwitch
C8A
L_SC0
C8A
C8B
L_SC1
C8B
FA
FA
FG0
FA
FB
FB
FG1
FB
PTMC 1
NETREF1
NETREF1
LREF0
NETREF1
NETREF2
NETREF2
LREF1
NETREF2
CT_D31:0 LCT_D19:0
CT_D19:0
D31:0
T8110
J4
(H.110)
Data lines swapped here
L_SC2
C8A
L_SC3
C8B
FG2
FA
FG3
FB
LREF2
NETREF1
LREF3
NETREF2
LCT_D20:31
H.110 CT Bus
PTMC 2
NOTE: Data line
swapping
Local CT Bus
CT_D19:12
CT_D11:0
H.110 CT Bus Operation
For H.110 CT operation, the signals C8_FRAME_A_TERM and C8_FRAME_B_TERM in the
HSL PLD (address F821,000316, bits 2:3) must be cleared to enable the QuickSwitch; see
Fig. 13-3 and Fig. 13-1.
13-8
Katana®752i User’s Manual
10006024-04
Section 14
Backplane Signals
This chapter describes the Katana®752i board’s backplane signals. It lists the pinouts for
connectors J1, J2, J3, J4, and J5 on the CompactPCI backplane.
OVERVIEW
The Katana®752i backplane connectors provide the following connections:
• Connector J1 carries power supply source signals, various CompactPCI (cPCI) utility
signals and Intelligent Platform Management Interface (IPMI) control signals to/from
the cPCI backplane.
• Connector J2 carries Geographical Address (GA) signals and power supply source signals
from the cPCI backplane to the Katana®752i circuit board.
• Connector J3 carries gigabit Ethernet signals to/from the packet-switched CompactPCI
backplane (cPSB). J3 also routes user input/output (I/O) signals from PTMC expansion
site #1.
• Connector J4 (optional) routes H.110 computer telephony (CT) bus signals to the cPCI
backplane.
• Connector J5 routes user I/O signals from PTMC expansion site #2.
10006024-04
Katana®752i User’s Manual
14-1
Backplane Signals:
Pinouts
PINOUTS
J1 is a 110-pin female connector (Emerson #01899062-00) that routes power supply source
signals from the CompactPCI backplane, and cPCI and IPMI signals to the CompactPCI
backplane, as listed in the following table.
Table 14-1: cPCI Connector Pin Assignments, J1
Pin:
14-2
Row A:
Row B:
Row C:
Row D:
EP_3_3V
Row E:
25
EP_5V
CPCI_REQ64_J1*
CPCI_ENUM_J1*
EP_5V
24
23
CPCI_AD1_J1
EP_5V
LJ1_EPVIO
CPCI_AD0_J1
CPCI_ACK64_J1*
EP_3_3V
CPCI_AD4_J1
CPCI_AD3_J1
LJ1_EP5V
CPCI_AD2_J1
22
CPCI_AD7_J1
21
EP_3_3V
ground
LJ1_EP3_3V
CPCI_AD6_J1
CPCI_AD5_J1
CPCI_AD9_J1
CPCI_AD8_J1
CPCI_66EN_J1
20
CPCI_AD12_J1
ground
CPCI_CBE0_J1*
EP_VIO
CPCI_AD11_J1
CPCI_AD10_J1
19
EP_3_3V
CPCI_AD15_J1
18
CPCI_SERR_J1*
ground
CPCI_AD14_J1
ground
CPCI_AD13_J1
EP_3_3V
CPCI_PAR_J1
17
EP_3_3V
IPMB_SCL
IPMB_SDA
ground
CPCI_CBE1_J1*
CPCI_PERR_J1*
16
CPCI_DEVSEL_J1*
CPCI_PCIXCAP_J1
EP_VIO
CPCI_STOP_J1
no connection
15
EP_3_3V
CPCI_FRAME_J1*
CPCI_IRDY_J1*
CONN_CPCI_BD_SEL*
CPCI_TRDY_J1*
14—12
keying
keying
keying
keying
keying
11
CPCI_AD18_J1
CPCI_AD17_J1
CPCI_AD16_J1
ground
CPCI_CBE2_J1*
10
CPCI_AD21_J1
ground
EP_3_3V
CPCI_AD20_J1
CPCI_AD19_J1
9
CPCI_CBE3_J1*
CPCI_IDSEL_J1*
CPCI_AD23_J1
ground
CPCI_AD22_J1
8
CPCI_AD26_J1
ground
EP_VIO
CPCI_AD25_J1
CPCI_AD24_J1
7
CPCI_AD30_J1
CPCI_AD29_J1
CPCI_AD28_J1
ground
CPCI_AD27_J1
6
CPCI_REQ0_J1*
CPCI_PRESENT_J1*
LJ1_EP3_3V
CPCI_CLK_J1
CPCI_AD31_J1
5
no connection
no connection
CPCI_RST_J1*
ground
CPCI_GNT0_J1*
4
IPMB_PWR
CONN_HEALTHY*
LJ1_EPVIO
no connection
no connection
3
CPCI_INTA_J1*
no connection
no connection
LJ1_EP5V
no connection
2
no connection
EP_5V
no connection
no connection
no connection
1
EP_5V
EP_NEG12V
no connection
EP_POS12V
EP_5V
Katana®752i User’s Manual
10006024-04
Backplane Signals:
Pinouts
J2 is a 110-pin female connector (Emerson #01899063-00) that routes cPCI, Geographical
Address, and power signals from the CompactPCI backplane, as listed in the table below.
Table 14-2: cPCI Connector Pin Assignments, J2
Pin:
Row A:
Row B:
Row C:
Row D:
Row E:
22
GA4 (pulled up)
GA3 (pulled up)
GA2 (pulled up)
GA1 (pulled up)
GA0 (pulled up)
21
no connection
ground
no connection
no connection
no connection
20
no connection
ground
no connection
ground
no connection
19
ground
ground
no connection
no connection
no connection
18
no connection
no connection
no connection
ground
no connection
17
no connection
ground
CPCI_PRST_J2*
no connection
no connection
16
no connection
no connection
no connection
ground
no connection
15
no connection
ground
no connection
no connection
no connection
14
CPCI_AD35_J2
CPCI_AD34_J2
CPCI_AD33_J2
ground
CPCI_AD32_J2
13
CPCI_AD38_J2
ground
EP_VIO
CPCI_AD37_J2
CPCI_AD36_J2
12
CPCI_AD42_J2
CPCI_AD41_J2
CPCI_AD40_J2
ground
CPCI_AD39_J2
11
CPCI_AD45_J2
ground
EP_VIO
CPCI_AD44_J2
CPCI_AD43_J2
10
CPCI_AD49_J2
CPCI_AD48_J2
CPCI_AD47_J2
ground
CPCI_AD46_J2
9
CPCI_AD52_J2
ground
EP_VIO
CPCI_AD51_J2
CPCI_AD50_J2
8
CPCI_AD56_J2
CPCI_AD55_J2
CPCI_AD54_J2
ground
CPCI_AD53_J2
7
CPCI_AD59_J2
ground
EP_VIO
CPCI_AD58_J2
CPCI_AD57_J2
6
CPCI_AD63_J2
CPCI_AD62_J2
CPCI_AD61_J2
ground
CPCI_AD60_J2
5
CPCI_CBE5_J2*
CPCI_64EN_J2*
EP_VIO
CPCI_CBE4_J2*
CPCI_PAR64_J2
4
EP_VIO
no connection
CPCI_CBE7_J2*
ground
CPCI_CBE6_J2*
3
no connection
ground
no connection
no connection
no connection
2
no connection
no connection
no connection
no connection
no connection
1
no connection
ground
no connection
no connection
no connection
10006024-04
Katana®752i User’s Manual
14-3
Backplane Signals:
Pinouts
J3 is a 95-pin female connector (Emerson #01899064-00) that routes cPSB Ethernet differential signals and PTMC site #1 user I/O signals to the cPCI backplane, as listed in the table
below.
Table 14-3: cPSB Connector Pin Assignments, J3
Pin:
14-4
Row A:
Row B:
Row C:
Row D:
Row E:
Row F:
19
ground
ground
ground
ground
ground
ground
18
CPSB1_TRD0P
CPSB1_TRD0N
ground
CPSB1_TRD2P
CPSB1_TRD2N
ground
17
CPSB1_TRD1P
CPSB1_TRD1N
ground
CPSB1_TRD3P
CPSB1_TRD3N
ground
16
CPSB2_TRD0P
CPSB2_TRD0N
ground
CPSB2_TRD2P
CPSB2_TRD2N
ground
15
CPSB2_TRD1P
CPSB2_TRD1N
ground
CPSB2_TRD3P
CPSB2_TRD3N
ground
14
no connection
no connection
no connection
no connection
no connection
ground
13
PMC1_PIN5
PMC1_PIN4
PMC1_PIN3
PMC1_PIN2
PMC1_PIN1
ground
12
PMC1_PIN10
PMC1_PIN9
PMC1_PIN8
PMC1_PIN7
PMC1_PIN6
ground
11
PMC1_PIN15
PMC1_PIN14
PMC1_PIN13
PMC1_PIN12
PMC1_PIN11
ground
10
PMC1_PIN20
PMC1_PIN19
PMC1_PIN18
PMC1_PIN17
PMC1_PIN16
ground
9
PMC1_PIN25
PMC1_PIN24
PMC1_PIN23
PMC1_PIN22
PMC1_PIN21
ground
8
PMC1_PIN30
PMC1_PIN29
PMC1_PIN28
PMC1_PIN27
PMC1_PIN26
ground
7
PMC1_PIN35
PMC1_PIN34
PMC1_PIN33
PMC1_PIN32
PMC1_PIN31
ground
6
PMC1_PIN40
PMC1_PIN39
PMC1_PIN38
PMC1_PIN37
PMC1_PIN36
ground
5
PMC1_PIN45
PMC1_PIN44
PMC1_PIN43
PMC1_PIN42
PMC1_PIN41
ground
4
PMC1_PIN50
PMC1_PIN49
PMC1_PIN48
PMC1_PIN47
PMC1_PIN46
ground
3
PMC1_PIN55
PMC1_PIN54
PMC1_PIN53
PMC1_PIN52
PMC1_PIN51
ground
2
PMC1_PIN60
PMC1_PIN59
PMC1_PIN58
PMC1_PIN57
PMC1_PIN56
ground
1
no connection
PMC1_PIN64
PMC1_PIN63
PMC1_PIN62
PMC1_PIN61
ground
Katana®752i User’s Manual
10006024-04
Backplane Signals:
Pinouts
J4 is an optional 90-pin female connector (Emerson #01899070-00) that routes CT signals
between the PTMC sites and the cPCI backplane, as listed in the table below.
Table 14-4: cPSB Connector Pin Assignments, J4
Pin:
Row A:
Row B:
SGA3
Row C:
SGA2
Row D:
SGA1
Row E:
SGA 0
Row F:
25
SGA4
FRAME_GND5
24
J4_GA4
J4_GA3
J4_GA2
J4_GA1
J4_GA0
FRAME_GND4
23
EP_POS12
no connection
CT_EN*
EP_NEG12
no connection
FRAME_GND3
22
PSF0*
no connection
no connection
no connection
no connection
FRAME_GND2
21
no connection
PSF1*
no connection
no connection
no connection
FRAME_GND1
20—15
no connection
no connection
no connection
no connection
no connection
no connection
14—12
keying
keying
keying
keying
keying
keying
11
CT_D29
CT_D30
CT_D31
LJ4_EPVIO
CT_FA_R*
ground
10
CT_D27
EP_3_3V
CT_D28
LJ4_EP5V
CT_FB_R*
ground
9
CT_D24
CT_D25
CT_D26
ground
FR_COMP*
ground
8
CT_D21
CT_D22
CT_D23
LJ4_EP5V
CT_C8A_R
ground
7
CT_D19
EP_5V
CT_D20
ground
CT_C8B_R
ground
6
CT_D16
CT_D17
CT_D18
ground
CT_NETREF1
ground
5
CT_D13
CT_D14
CT_D15
LJ4_EP3_3V
CT_NETREF2
ground
ground
4
CT_D11
EP_5V
CT_D12
LJ4_EP3_3V
CT_SCLK
3
CT_D8
CT_D9
CT_D10
ground
CT_SCLKx2*
ground
2
CT_D4
CT_D5
CT_D6
CT_D7
ground
ground
1
CT_D0
EP_3_3V
CT_D1
CT_D2
CT_D3
ground
10006024-04
Katana®752i User’s Manual
14-5
Backplane Signals:
Pinouts
J5 is a 110-pin female connector (Emerson #01899063-00) that routes PTMC site user I/O
and Ethernet signals to the cPCI backplane, as listed in the table below.
Figure 14-1: cPCI Connector Pin Assignments, J5
Pin:
14-6
Row A:
Row B:
22
PMC1_ENET_TXP
3.3V (fused)
21
PMC1_ENET_TXN
20
PMC2_ENET_TXP
19
PMC2_ENET_TXN
Row C:
Row D:
Row E:
—12V (fused)
PMC1_ENET_RXP
5V (2.5A fused)
3.3V (fused)
no connection
PMC1_ENET_RXN
5V (2.5A fused)
no connection
no connection
PMC2_ENET_RXP
no connection
no connection
no connection
PMC2_ENET_RXN
no connection
18
PMC1_STX
no connection
no connection
PMC2_STX
no connection
17
PMC1_SRX
no connection
no connection
PMC2_SRX
no connection
16
CPSB2_LINK_ACT
CPSB2_SPEED1
CPSB2_SPEED
2
CPSB2_SPEED2
no connection
15
no connection
+12V (fused)
no connection
RTM_RS232_RX
RTM_RS232_TXD
14
CPSB1_LINK_ACT
CPSB1_SPEED1
CPSB1_SPEED
2
no connection
no connection
PMC2_PIN1
13
PMC2_PIN5
PMC2_PIN4
PMC2_PIN3
PMC2_PIN2
12
PMC2_PIN10
PMC2_PIN9
PMC2_PIN8
PMC2_PIN7
PMC2_PIN6
11
PMC2_PIN15
PMC2_PIN14
PMC2_PIN13
PMC2_PIN12
PMC2_PIN11
10
PMC2_PIN20
PMC2_PIN19
PMC2_PIN18
PMC2_PIN17
PMC2_PIN16
9
PMC2_PIN25
PMC2_PIN24
PMC2_PIN23
PMC2_PIN22
PMC2_PIN21
8
PMC2_PIN30
PMC2_PIN29
PMC2_PIN28
PMC2_PIN27
PMC2_PIN26
7
PMC2_PIN35
PMC2_PIN34
PMC2_PIN33
PMC2_PIN32
PMC2_PIN31
6
PMC2_PIN40
PMC2_PIN39
PMC2_PIN38
PMC2_PIN37
PMC2_PIN36
5
PMC2_PIN45
PMC2_PIN44
PMC2_PIN43
PMC2_PIN42
PMC2_PIN41
4
PMC2_PIN50
PMC2_PIN49
PMC2_PIN48
PMC2_PIN47
PMC2_PIN46
3
PMC2_PIN55
PMC2_PIN54
PMC2_PIN53
PMC2_PIN52
PMC2_PIN51
2
PMC2_PIN60
PMC2_PIN59
PMC2_PIN58
PMC2_PIN57
PMC2_PIN56
1
no connection
PMC2_PIN64
PMC2_PIN63
PMC2_PIN62
PMC2_PIN61
Katana®752i User’s Manual
10006024-04
Section 15
Monitor
The Katana®752i monitor is based on the Embedded PowerPC Linux Boot Project (PPCBoot) boot program, available under the GNU General Public License (GPL). For instructions
on how to obtain the source code for this GPL program, please visit http://www.emersonembeddedcomputing.com, send an e-mail to [email protected], or call Emerson at
1-800-327-1251. This chapter describes the monitor’s basic features, operation, and configuration sequences. This chapter also serves as a reference for the monitor commands
and functions.
COMMAND-LINE FEATURES
The Katana®752i monitor uses a command-line interface with the following features:
Auto-Repeat: After entering a command, you can re-execute it simply by pressing the ENTER or RETURN
key.
TFTP Boot : You can use the TFTP protocol to load application images via Ethernet into the
Katana®752i’s memory.
Auto-Boot : You can store specific boot commands in the environment to be executed automatically
after reset.
Flash Programming: You can write application images into Flash via the PPCBoot command line.
At power-up or after a reset, the monitor runs diagnostics and reports the results in the
start-up display, see Fig. 15-1. During the power-up sequence, the monitor configures the
board according to the environment variables (see page 15-27) and settings in the Board
Configuration registers (see page 6-4). If the configuration indicates that autoboot is
enabled, the monitor attempts to load the application from the specified device. If the
monitor is not configured for autoboot or a failure occurs during power-up, the monitor
enters normal command-line mode.
10006024-04
Katana®752i User’s Manual
15-1
Monitor:
Command-Line Features
Figure 15-1: Example Monitor Start-up Display
Hardware
Initialization
PPCBoot 1.2.0 (Oct 31 2007 - 12:52:52)1.7s
CPU:
Board:
BusHz:
I2C:
DRAM:
750GX v1.2 @ 900 MHz
Katana752i
200000000
ready
512MB DDR SDRAM in slot 0 VM485L6523C-CC Early setup ECC (Clearing..)
512 MB Reserving 32MB for EDNR at 0x1e000000
FLASH: [512kB@f8000000] [32MB@e8000000] [32MB@ea000000] 64.5 MB
cPCI: Enabled Remap Addr: 0x80000000 Window: 0x1000000
PCI: Bus Host
Waiting For EREADY ('q' to exit w/o enum).
00 06 11c1 8110 0280 00
00 08 8086 1008 0200 1d
Ser#:
Diags
Diags
Diags
Diags
Monitor
Command
Prompt
15-2
1340
Mem:
I2C:
Flash:
PCI:
PASSED
PASSED
PASSED
PASSED
EDNR: Resides 0x1fffffff - 0x1e000000
Mon: Resides 0x1dffffff - 0x1deff9c0
BtDev: Soldered Flash
SltAd: 4
DCach: on (WriteThrough)
ICach: on
L2Che: on (WriteThrough)
Net: eth3, eth4, cpsba, cpsbb
K752i(1.7s)=>
Katana®752i User’s Manual
10006024-04
Monitor:
Basic Operation
BASIC OPERATION
The Katana®752i monitor performs various configuration tasks upon power-up or reset.
This section describes the monitor operation during initialization of the Katana®752i
board. The flowchart (see Fig. 15-2) illustrates the power-up and reset sequence (bold text
indicates environment variables).
Power-Up/Reset Sequence
At power-up or board reset, the monitor performs hardware initialization, diagnostic routines, autoboot procedures, free memory initialization, and if necessary, invokes the command-line.
Prior to the console port being available, the monitor will display a four-bit binary value
(1=on, 0=off) on front panel LEDs 1 through 4 to indicate the power-up status. In the event
of a specific initialization error, the LED pattern will Flash and the board initialization will
halt. Refer to Fig. 15-2 for the LED values at the various initialization steps.
10006024-04
Katana®752i User’s Manual
15-3
Monitor:
Basic Operation
Figure 15-2: Power-up/Reset Sequence Flowchart
RESET
Initialize HID0
Initialize MSR
Initialize
flash
Enable icache
Initialize malloc
area
Relocate the base
of the MV64460
internal registers
Is cPCI
enabled?
Yes
Early I2C Init.
LED 0010
Early mem. Init.
(no ECC)
LED 0011
750GX floating
point register
initialization
Early PCI &
cPCI Init
No
Final Initialization
PCI &
cPCI (optional)
Is module a
Monarch
Yes
Enumerate PCI
per enumerate
environment
variable
No
750GX BAT and
segment register
initialization
Invalidate the
cache
LED 0001
Invalidate and
enable the cache
Setup initial stack
and data region in
cache
Stop Retries
Check IPMI
controller per
ipmipresent
environment var.
Display LED 0100
Final I2C Init
Initialize the
PPCBoot
environment
Final mem. Init.
Clear per
clearmem & cfg.
per ecc env. vars.
LED 0111
Init. serial port per
baudrate
environment var.
LED 0101
Mini memory test
Perform board
diagnostics per
powerondiags
environment var.
Display board
serial number
Configure L2
cache per l2cache
and l2mode
environment vars.
Display LED 1001
Enable MV64460
interrupts
Initialize Ethernet
ports
15-4
Katana®752i User’s Manual
Configure the
MV64460 device
chip selects for
flash and CPLD
Display version
string
Init. final stack
Initialize the
MV64460 CPU
interface settings
Display CPU,
board, and bus
speed
LED 0110
Re-locate
PPCBoot to RAM
LED 1000
10006024-04
Configure dcache
per cachemode
and dcache
environment vars.
Configure icache
per icache
environment
variable
Turn off debug
LEDs and blink
front panel red
LED per blinked
environment var.
Main Loop
Monitor:
Basic Operation
Power-Up Timing
Upon power-up, the Katana®752i initially retries cPCI cycles for a specific period of time
(see “cPCI/PCI Stop Retries, Memory Read Access Only” monitor state in the tables below).
After that time, it stops retrying cycles on the cPCI bus.
Caution: Any read access between the “cPCI/PCI Stop Retries, Memory Read Access Only” and “Final
Memory Initialization” monitor states (see Table 15-1 and Table 15-2) may result in an ECC
!
exception on the Katana®752i.
The following tables show the monitor power-up timing for booting from both socked and
soldered flash memory.
Note: The resolution for the measured times in Table 15-1 and Table 15-2 is ±10 milliseconds. The measurements
were performed from a front panel reset. The Katana®752i used in these tests had 512 megabytes of RAM
with ECC and Clear Memory On. CompactPCI mode was also enabled.
Table 15-1: Power-Up Timing for Booting from Soldered Flash
Time
(sec):
Debug LED
State (bits):
0
n/a
System Reset
0.157
0001
CPU and MV64460 Setup
0.200
0010
Early I2C Setup, cPCI mode only
0.216
0011
Early Memory Initialization, ECC Off
0.221
0100
cPCI/PCI Stop Retries, Memory Read Access Only
Monitor State:
0.490
0101
Serial Port Initialized
0.623
0110
Display CPU, Board and Bus Speed Information
2.563
0111
Final Memory Initialization, ECC and Clear
2.857
1000
Monitor code relocated to top of memory
4.627
1001
PCI/cPCI Final Setup. Enumeration. Memory Read/Write Access
available through PCI/cPCI
4.915
0000
Monitor Prompt
Table 15-2: Power-Up Timing for Booting from Socketed Flash
Time
(sec):
Debug LED
State (bits):
0
n/a
System Reset
0.159
0001
CPU and MV64460 Setup
0.250
0010
Early I2C Setup, cPCI mode only
0.282
0011
Early Memory Initialization, ECC Off
0.293
0100
cPCI/PCI Stop Retries, Memory Read Access Only
Monitor State:
0.817
0101
Serial Port Initialized
0.978
0110
Display CPU, Board and Bus Speed Information
4.864
0111
Final Memory Initialization, ECC and Clear
10006024-04
Katana®752i User’s Manual
15-5
Monitor:
Basic Operation
Time
(sec):
Debug LED
State (bits):
Monitor State:
5.344
1000
Monitor code relocated to top of memory
5.978
1001
PCI/cPCI Final Setup. Enumeration. Memory Read/Write Access
6.265
0000
Monitor Prompt
POST Diagnostic Results
The Katana®752i stores Power-On Self-Test (POST) diagnostic results in I2C nonvolatile
random-access memory (NVRAM). This memory is located in the EEPROM at hex address
0x53 on the I2C bus. The POST results are stored as a 32-bit value at the hex offset 0x1DD8
of the EEPROM. Each bit indicates the result of a specific test, therefore this field can store
the results of up to 32 diagnostic tests, as described in the following table.
Note: For configurations where the front Ethernet port, eth4, is disabled, the monitor will indicate SKIPPED for the
PCI diagnostic test. This is because the Ethernet controller for eth4 performs the diagnostic testing in this
case. The POST flag for the PCI test will still be set accordingly.
Table 15-3: POST Diagnostics Results
Bit:
Diagnostic Test:
Value:
0
SDRAM (address and data line integrity)
0=test has passed
1
Flash
I2C access (local I2C devices connected to the I2C bus)
1=failure detected
2
3
Reserved for Emerson use
4
PCI (known devices present)
5
No EREADY
6 - 23
Reserved for Emerson use
24 - 31
Reserved for customer use
Monitor SDRAM Usage
PPCBoot locates its stack, uninitialized data, and code in the top one megabyte of SDRAM.
The exact address varies with the amount of installed memory. PPCBoot uses the area from
0x00000000 to 0x00004000 in SDRAM for the MPC750 exception vector table and PPCBoot internal use.
Caution: Any writes to these areas can cause unpredictable operation of the monitor.
!
15-6
Katana®752i User’s Manual
10006024-04
Monitor:
Monitor Recovery and Updates
MONITOR RECOVERY AND UPDATES
Note: The monitor provides VxWorks 6.0 support for Error Data and Reporting (EDNR). This feature allocates a persistent area of memory that retains its contents after a systerm soft reset. Any information stored in the 32megabyte window starting at 0x1E000000 should stil be available after a soft resset.
This section describes how to recover and/or update the monitor, given one or more of the
following conditions:
• If there is no console output, the monitor may be corrupted and need recovering.
• If the monitor still functions, but is not operating properly, then you may need to reset
the environment variables.
Recovering the Monitor
First, make sure that a monitor ROM device is installed in the PLCC socket. Then, place a
jumper on JP2, across pins 1 and 2 (see Fig. 2-4).
1 Issue the following command, where serial# is the four digit serial number, 683-xxxx:
[Katana 752i (1.0)] => moninit serial#
2 Reset the monitor:
[Katana 752i (1.0)] => reset
3 Reset the environment parameters:
[Katana 752i (1.0)] => envinit serial#
4 Power down the board and remove the jumper from JP2, pins 1 and 2.
Updating the Monitor via TFTP
To update the monitor, follow the steps below and insert the appropriate data in the italicized fields.
1 If necessary, edit your network settings:
[Katana 752i (1.0)] => setenv
[Katana 752i (1.0)] => setenv
[Katana 752i (1.0)] => setenv
[Katana 752i (1.0)] => setenv
ipaddr 192.168.1.100
gatewayip 192.168.1.1
netmask 255.255.255.0
serverip 192.168.1.2
Optionally, save your settings:
[Katana 752i (1.0)] => saveenv
2 TFTP the new monitor (binary) image to memory location 0x100000:
[Katana 752i (1.0)] =>
tftpboot 100000 path/on/tftp/server/to/monitor.bin
10006024-04
Katana®752i User’s Manual
15-7
Monitor:
Monitor Command Reference
3 Update the monitor:
[Katana 752i (1.0)] => moninit serial# 100000
4 Reset the monitor:
[Katana 752i (1.0)] => reset
5 Reset the environment parameters:
[Katana 752i (1.0)] => envinit serial#
If moninit( ) fails, burn the new monitor to a ROM and follow the recovery steps in “Recovering the Monitor” on page 15-7.
Resetting Environment Variables
To reset the monitor’s environment variables, issue the following command, were serial# is
the four digit serial number, 683-xxxx:
[Katana 752i (1.0)] => envinit serial#
MONITOR COMMAND REFERENCE
This section describes the syntax and typographic conventions for the Katana®752i monitor commands. Subsequent sections in this chapter describe individual commands, which
fall into the following categories: boot, memory, Flash, environment variables, test, and
other commands.
Command Syntax
The monitor uses the following basic command syntax:
<Command> <argument 1> <argument 2> <argument 3>
• The command line accepts three different argument formats: string, numeric, and
symbolic. All command arguments must be separated by spaces with the exception of
argument flags, which are described below.
• Monitor commands that expect numeric arguments assume a hexadecimal base.
• All monitor commands are case sensitive.
• Some commands accept flag arguments. A flag argument is a single character that
begins with a period (.). There is no white space between an argument flag and a
command. For example, md.b 80000 is a valid monitor command, while md .b 80000
is not.
• Some commands may be abbreviated by typing only the first few characters that
uniquely identify the command. For example, you can type ver instead of version.
15-8
Katana®752i User’s Manual
10006024-04
Monitor:
Boot Commands
However, commands cannot be abbreviated when accessing on-line help. You must
type help and the full command name.
Command Help
Access the monitor online help for each command by typing help <command>. The full
command name must be entered to access the online help.
Typographic Conventions
In the following command descriptions, Courier New font is used to show the command
format. Square brackets [] enclose optional arguments, and Italic type indicates that you
must substitute your own selection for the italicized text.
BOOT COMMANDS
The boot commands provide facilities for booting application programs and operating systems from various devices.
bootbus
The bootbus command allows you to boot an application program over a bus interface.
Definition:
bootbus
bootbus uses the busmagicaddr field from the NVRAM environment parameters as the base
address of a shared memory region. This region contains two 32-bit (unsigned long) values,
in the form:
struct BusComStruct
{
unsigned long MagicLoc;
unsigned long CallAddress;
}
The first is used for synchronization, and the second is the entry address of the application.
The sequence of events used for loading an application is described below:
1 The host board waits for the target (this board) to write the value 0x496D4F6B (character
string “ImOk”) to MagicLoc to show that the target is initialized and waiting for a download.
During initialization, the target loads the contents of its loadaddr environment parameter
into CallAddress.
2 The host board downloads the application to the target board. The host board can choose
to use the start address specified in CallAddress, or it can download the application to a
new location and write this new start address to CallAddress.
10006024-04
Katana®752i User’s Manual
15-9
Monitor:
Boot Commands
3 The host board finally writes 0x596F4F6B (character string “YoOk”) to MagicLoc to show
that the application is ready for the target.
4 The target writes value 0x42796521 (character string “Bye!”) to MagicLoc to show that the
application was found. If necessary, the target then updates its memory-resident loadaddr
environment parameter with the contents of CallAddress, and the bootbus command is
complete. At this point, the target could perform any number of boot commands,
including bootelf or go.
bootcrc
If the NVRAM parameter trycached (see Table 15-4) is set to true, the bootcrc command creates a CRC16 value for the image found at imageaddr. If the value matches that stored in
imagecrc16, the bootcrc command writes the image to Flash memory and then boots it. If
the values do not match, it calls TFTP to download an image. If the TFTP image is also not
valid, it displays an error message and reboots the board. If trycached is false, the command
skips to the TFTP download. The optional nvonly command line parameter instructs bootcrc
to try only the cached image.
Definition:
bootcrc [nvonly]
bootd
Execute the command stored in the bootcmd environment variable.
Definition:
bootd
bootelf
The bootelf command boots from an ELF image in memory, where address is the load
address of the ELF image.
Definition:
bootelf
[address]
bootm
The bootm command boots an application image stored in memory, passing any entered
arguments to the called application. When booting a Linux kernel, arg can be the address of
an initrd image. If addr is not specified, the environment variable loadaddr is used as the
default.
Definition:
bootm [addr [arg …]]
bootp
The bootp command boots an image via a network connection using the BootP/TFTP protocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr
and bootfile are used as the default.
15-10
Katana®752i User’s Manual
10006024-04
Monitor:
Boot Commands
Definition:
bootp [loadAddress] [bootfilename]
bootv
The bootv command checks the checksum on the primary image (in Flash) and boots it, if
valid. If it is not valid, it checks the checksum on the secondary image (in Flash) and boots it,
if valid. If neither checksum is valid, the command returns back to the monitor prompt.
Definition: Verify bootup.
bootv
Write image to Flash and update NVRAM.
bootv primary|secondary write source dest size
Update NVRAM based on image already in Flash.
bootv primary|secondary update source size
Check validity of images in Flash.
bootv primary|secondary check
bootvx
The bootvx command boots VxWorks from an ELF image, where address is the load address
of the VxWorks ELF image.
Definition:
bootvx
[address]
rarpboot
The rarpboot command boots an image via a network connection using the RARP/TFTP
protocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr
and bootfile are used as the default.
Definition:
rarpboot [loadAddress] [bootfilename]
tftpboot
The tftpboot command loads an image via a network connection using the TFTP protocol.
The environment variable’s ipaddr and serverip are used as additional parameters to this
command. If loadaddress or bootfilename is not specified, the environment variables
loadaddr and bootfile are used as the default.
Definition:
tftpboot [loadAddress] [bootfilename]
10006024-04
Katana®752i User’s Manual
15-11
Monitor:
JFFS2 File Systems
JFFS2 FILE SYSTEMS
This section describes the commands for the read-only JFFS2 file systems. These commands assume a valid JFFS2 file system in Flash with support provided for two partitions:
• Base of partition 0 is 0xE8180000
• Base of partition 1 is 0xE8000000 + (Total_Flash_Size/2) + 0x180000
ls
The ls command lists the files in the directory.
Definition:
ls [directory]
fsinfo
The fsinfo command prints information about file systems.
Definition:
fsinfo
fsload
The fsload command loads the binary file from the Flash bank with offset of ‘off’.
Definition:
fsload [off] [filename]
chpart
The chpart command changes the partitions (partitions 0 and 1 supported).
Definition:
chpart [part]
MEMORY COMMANDS
The memory commands allow you to manipulate specific regions of memory. For some
memory commands, the data size is determined by the following flags:
.b
This is for data in 8-bit bytes.
.w
This is for data in 16-bit words.
.l
This is for data in 32-bit long words.
These flags are optional arguments and describe the objects on which the command operates. If you do not specify a flag, memory commands default to 32-bit long words. Numeric
arguments are in hexadecimal.
15-12
Katana®752i User’s Manual
10006024-04
Monitor:
Memory Commands
cmp
The cmp command compares count objects between addr1 and addr2. Any differences are
displayed on the console display.
Definition:
cmp [.b, .w, .l] addr1 addr2 count
cp
The cp command copies count objects located at the source address to the target address.
Note: If the target address is located in the range of the Flash device, it will program the Flash with count objects
from the source address. The cp command does not erase the Flash region prior to copying the data. The
Flash region must be manually erased using the erase command prior to using the cp command.
Definition:
cp [.b, .w, .l] source target count
Example: In this example, the cp command is used to copy 0x1000, 32-bit values from address
0x100000 to address 0x80000.
=> cp 100000 80000 1000
find
The find command searches from base_addr to top_addr looking for pattern. For the find
command to work properly, the size of pattern must match the size of the object flag. The a option searches for the absence of the specified pattern.
Definition:
find [.b, .w, .l] [-a] base_addr top_addr pattern
Example: In this example, the find command is used to search for the 32-bit pattern 0x12345678 in
the address range starting at 0x40000, and ending at 0x80000.
=> find.1 40000 80000 12345678
Searching from 0x00040000 to 0x00080000
Match found: data = 0x12345678 Adrs = 0x00050a6c
=>
md
The command md displays the contents of memory starting at address. The number of
objects displayed can be defined by an optional third argument, # of objects. The memory’s
numerical value and its ASCII equivalent is displayed.
Definition:
md [.b, .w, .l] address [# of objects]
Example: In this example, the md command is used to display thirty-two 16-bit words starting at the
physical address 0x80000.
=> md.w 80000 20
00080000: ffff ffff ffff ffff ffff ffff ffff ffff
00080010: ffff ffff ffff ffff ffff ffff ffff ffff
10006024-04
................
................
Katana®752i User’s Manual
15-13
Monitor:
Memory Commands
00080020: ffff ffff ffff ffff ffff ffff ffff ffff
00080030: ffff ffff ffff ffff ffff ffff ffff ffff
................
................
mm
The mm command modifies memory one object at a time. Once started, the command line
prompts for a new value at the starting address. After a new value is entered, pressing
ENTER auto-increments the address to the next location. Pressing ENTER without entering
a new value leaves the original value for that address unchanged. To exit the mm command, enter a non-valid hexadecimal value (such as x) followed by ENTER.
Definition:
mm [.b, .w, .l] address
Example: In this example, the mm command is used to write random 8-bit data starting at the physical address 0x80000.
=> mm.b 80000
00080000: ff ? 12
00080001: ff ? 23
00080002: ff ? 34
00080003: ff ? 45
00080004: ff ?
00080005: ff ? x
=> md.b 80000 6
00080000: 12 23 34 45 ff ff
=>
.#4E
nm
The nm command modifies a single object repeatedly. Once started, the command line
prompts for a new value at the selected address. After a new value is entered, pressing
ENTER modifies the value in memory and then the new value is displayed. The command
line then prompts for a new value to be written at the same address. Pressing ENTER without entering a new value leaves the original value unchanged. To exit the nm command,
enter a non-valid hexadecimal value (such as x) followed by ENTER.
Definition:
nm [.b, .w, .l] address
mw
The command mw writes value to memory starting at address. The number of objects modified can be defined by an optional fourth argument, count.
Definition:
mw [.b, .w, .l] address value [count]
Example: In this example, the mw command is used to write the value 0xabba three times starting at
the physical address 0x80000.
=> mw.w 80000 abba 3
=> md 80000
00080000: abbaabba abbaffff ffffffff ffffffff
00080010: ffffffff ffffffff ffffffff ffffffff
15-14
Katana®752i User’s Manual
10006024-04
................
................
Monitor:
Flash Commands
00080020:
00080030:
00080040:
00080050:
00080060:
00080070:
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
ffffffff
................
................
................
................
................
................
FLASH COMMANDS
The Flash commands affect the StrataFlash devices on the Katana®752i circuit board.
There is a maximum of two Flash banks on the Katana®752i board. The following Flash
commands access the individual Flash banks as Flash bank 1 or Flash bank 2. To access the
individual sectors within each Flash bank, the sector numbers start at 0 and end at one less
than the total number of sectors in the bank. For a Flash bank with 128 sectors, the following Flash commands access the individual sectors as 0 through 127.
cp
The cp command can be used to copy data into the Flash device. For the cp command syntax, refer to Section .
erase
The erase command erases the specified area of Flash memory.
Definition: Erase all of the sectors in the address range from start to end.
erase start end
Erase all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.
erase N:SF[-SL]
Erase all of the sectors in Flash bank # N.
erase bank N
Erase all of the sectors in all of the Flash banks.
erase all
flinfo
The flinfo command prints out the Flash device’s manufacturer, part number, size, number
of sectors, and starting address of each sector.
Definition: Print information for all Flash memory banks.
flinfo
Print information for the Flash memory in bank # N.
flinfo N
10006024-04
Katana®752i User’s Manual
15-15
Monitor:
EEPROM / I2C Commands
protect
The protect command enables or disables the Flash sector protection for the specified Flash
sector. Protection is implemented using software only. The protection mechanism inside
the physical Flash part is not being used.
Definition: Protect all of the Flash sectors in the address range from start to end.
protect on start end
Protect all of the sectors SF (first sector) to SL (last sector) in FLASH bank # N.
protect on N:SF[-SL]
Protect all of the sectors in Flash bank # N.
protect on bank N
Protect all of the sectors in all of the Flash banks
protect on all
Remove protection on all of the Flash sectors in the address range from start to end.
protect off start end
Remove protection on all of the sectors SF (first sector) to SL (last sector) in FLASH bank # N.
protect off N:SF[-SL]
Remove protection on all of the sectors in Flash bank # N.
protect off bank N
Remove protection on all of the sectors in all of the Flash banks.
protect off all
EEPROM / I2C COMMANDS
This section describes commands that allow you to read and write memory on the serial
EEPROMs and I2C devices.
eeprom
The eeprom command reads and writes from the EEPROM. For example:
eeprom read 53 100000 1800 100
reads 100 bytes from offset 0x1800 in serial EEPROM 0x53 (right-shifted 7-bit address) and
places it in memory at address 0x100000.
Definition: Read/write cnt bytes from devaddr EEPROM at offset off.
eeprom read devaddr addr off cnt
eeprom write devaddr addr off cnt
15-16
Katana®752i User’s Manual
10006024-04
Monitor:
EEPROM / I2C Commands
icrc32
The icrc32 computes a CRC32 checksum.
Definition:
icrc32 chip_address[.0, .1, .2] count
iloop
The iloop command reads in an infinite loop on the specified address range.
Definition:
iloop chip_address[.0, .1, .2] [# of objects]
imd
The imd command displays I2C memory. For example:
imd 53 1800.2 100
displays 100 bytes from offset 0x1800 of I2C device 0x53 (right-shifted 7-bit address). The
.2 at the end of the offset is the length, in bytes, of the offset information sent to the
device. The serial EEPROMs all have two-byte offset lengths. The RTC has a one-byte offset
length. The temperature sensors have zero-byte offset lengths.
Definition:
imd chip_address[.0, .1, .2] [# of objects]
ipmifirmload
The ipmifirmload command reloads the IPMI controller firmware from an image held in the
monitor image. The optional boot and run arguments specify to reload the firmware from
an image held in memory.
Definition:
ipmifirmload [boot boot_image_addr] [run runtime_image_addr]
imm
The imm command modifies I2C memory and automatically increments the address.
Definition:
imm chip_address[.0, .1, .2]
imw
The imw command writes (fills) memory.
Definition:
imw chip_address[.0, .1, .2] value [count]
inm
The inm command modifies I2C memory, reads it, and keeps the address.
Definition:
inm chip_address[.0, .1, .2]
10006024-04
Katana®752i User’s Manual
15-17
Monitor:
Ethernet Controller EEPROM Commands
iprobe
The iprobe command probes to discover valid I2C chip addresses.
Definition:
iprobe
ETHERNET CONTROLLER EEPROM COMMANDS
This section describes the commands that provide access to the EEPROM for the Intel
82544EI Ethernet Controller.
initeth4rom
The initeth4rom command sets the 82544EI controller’s EEPROM to the default values.
These values include the ETH4 port Ethernet address, port settings, and ROM checksum.
Definition:
initeth4rom
filleth4rom
The filleth4rom command fills the first 64 words of the 82544EI controller’s EEPROM to the
value specified by fill_value (for test purposes only). For example:
filleth4rom ffff
puts 0xFFFF in the first 64 words.
Definition:
filleth4rom fill_value
showeth4rom
The showeth4rom command displays the contents of the 82544EI controller’s EEPROM on
the console.
Definition:
showeth4rom
ENVIRONMENT PARAMETER COMMANDS
The monitor uses on-board, non-volatile memory for the storage of environment parameters. Environment parameters are stored as ASCII strings with the following format.
<Parameter Name>=<Parameter Value>
Some environment variables are used for board configuration and identification by the
monitor. The environment parameter commands deal with the reading and writing of
these parameters. Refer to Section for a list of monitor environment variables.
15-18
Katana®752i User’s Manual
10006024-04
Monitor:
Environment Parameter Commands
envinit
The envinit command resets the NVRAM and serial number. Optional parameters allow you
to:
• specify the processor number
• specify the serial number
• retrieve the serial number from the FRU device
• specify parameters not in the default list
Definition:
envinit [p1, p2, p3] [serial#, ‘fru’, ‘old’] [env: ...]
printenv
The printenv command displays all of the environment variables and their current values to
the display.
Definition: Print the values of all environment variables.
printenv
Print the values of all environment variable (exact match) ‘name’.
printenv name …
saveenv
The saveenv command writes the environment variables to non-volatile memory.
Definition:
saveenv
setenv
The setenv command adds new environment variables, sets the values of existing environment variables, and deletes unwanted environment variables.
Definition: Set the environment variable name to value or adds the new variable name and value to the
environment.
setenv name value
Removes the environment variable name from the environment.
setenv name
10006024-04
Katana®752i User’s Manual
15-19
Monitor:
Test Commands
TEST COMMANDS
The commands described in this section perform diagnostic and memory tests.
diags
The diags command runs the power-on self test (POST).
Definition:
diags
mtest
The mtest command performs a simple SDRAM read/write test.
Definition:
mtest [start [end [pattern]]]
um
The um command is a destructive memory test.
Definition:
um [.b, .w, .l] base_addr [top_addr]
OTHER COMMANDS
This section describes all the remaining commands supported by the Katana®752i monitor.
autoscr
The autoscr command runs a script, starting at address addr, from memory.
A valid autoscr header must be present.
Definition:
autoscr [addr]
base
The base command prints or sets the address offset for memory commands.
Definition: Displays the address offset for the memory commands.
base
Sets the address offset for the memory commands to off.
base off
bdinfo
The bdinfo command displays the Board Information Structure.
Definition:
15-20
Katana®752i User’s Manual
bdinfo
10006024-04
Monitor:
Other Commands
coninfo
The coninfo command displays the information for all available console devices.
Definition:
coninfo
crc16
The crc16 command computes a CRC16 checksum on size bytes starting at buff. Optionally,
it stores the result at addr.
Definition:
crc16 address count
crc32
The crc32 command computes a CRC32 checksum on count bytes starting at address.
Definition:
crc32 address count
echo
The echo command echoes args to console.
Definition:
echo [args..]
enumpci
The enumpci command enumerates the PCI bus.
Definition:
enumpci
fpledoff
The fpledoff command turns off the red front panel LED.
Definition:
fpledoff
fruget
The fruget command displays all of the FRU fields.
Definition:
fruget
frugetuser
The frugetuser command retrieves count bytes from offset in the FRU user area and copies
the bytes to storage.
Definition:
frugetuser offset count storage
10006024-04
Katana®752i User’s Manual
15-21
Monitor:
Other Commands
frusetuser
The frusetuser command writes count bytes to offset in the FRU user area and copies the
bytes to storage.
Definition:
frusetuser offset count storage
gethvr
The gethvr command returns the contents of the Hardware Version Register (see Register
Map 6-7 on page 6-4).
Definition:
gethvr
getmonver
The getmonver command prints the monitor version string of the currently running monitor (default). Specifying the optional socket or soldered parameter prints the version string
for the corresponding device.
Definition:
getmonver
getpcimemsize
The getpcimemsize command shows the maximum memory window size (starting at the
base) that is accessible from a device on PCI/cPCI.
Definition:
Example:
getpcimemsize
=>getpcimemsize
PCI Memory Size Parameters:
--------------------------PCI Memory Size: 0x08000000 (134217728)
CPCI Memory Size: 0x01000000 (16777216)
Current Settings for PCI Memory Size Are:
--------------------------PCI CS0: 0x07FFF000 (134213632)
PCI CS1: 0x00000000 (0)
PCI CS2: 0x00000000 (0)
PCI CS3: 0x00000000 (0)
--------------------------CPCI Enabled
cPCI CS0: 0x00FFF000 (16773120)
cPCI CS1: 0x00000000 (0)
cPCI CS2: 0x00000000 (0)
cPCI CS3: 0x00000000 (0)
---------------------------
15-22
Katana®752i User’s Manual
10006024-04
Monitor:
Other Commands
getpcimode
The getpcimode command shows how many Configuration Space Headers the
Katana®752i is reporting on PCI/cPCI. Single Function means only Function 0 is
available. Multi Function indicates that multiple functions (i.e. Function 0, Function
1, etc.) are available.
Definition:
Example:
getpcimode
=>getpcimode
cPCI/PCI Config Space Function Header Settings:
PCI: Multi Function
cPCI: Single Function
getphysloc
The getphysloc command returns the board’s chassis identification number.
Definition:
getphysloc
getspr
The getspr command returns the contents of the SPR register specified by SPR_ID.
Definition:
getspr
go
The go command runs an application at address addr, passing the optional arguments arg
to the called application.
Definition:
go addr [arg…]
help
The help (or ?) command displays the online help. Without arguments, all commands are
displayed with a short usage message for each. To obtain more detailed information for a
specific command, enter the desired command as an argument.
Definition:
help [command …]
iminfo
The iminfo command displays the header information for an application image that is
loaded into memory at address addr. Verification of the image contents (magic number,
header, and payload checksums) are also performed.
Definition:
iminfo addr [addr …]
10006024-04
Katana®752i User’s Manual
15-23
Monitor:
Other Commands
isdram
The isdram command displays the SDRAM configuration information (valid chip values
range from 50 to 57).
Definition:
isdram
loop
The loop command executes an infinite loop on address range.
Definition:
loop [.b, .w, .l] address number_of_objects
memmap
The memmap command displays the board’s memory map layout.
Definition:
memmap
moninit
Note: If you have a socketed PLCC flash device installed and you use the moninit command with the serial# parameter, it copies the socketed flash image to the soldered flash device.
The moninit command resets the NVRAM and serial number, and it writes the monitor to
Flash. Optional parameters allow you to:
• specify the serial number
• retrieve the serial number from the FRU device
• specify the source address of a monitor image to copy from
• specify parameters not in the default list
Definition:
moninit [serial#, ‘fru’, ‘cold’] [src] [env: ...]
pci
The pci command enumerates the PCI bus if the Katana®752i is the monarch board. It displays enumeration information about each detected device. The pci command allows you
to display values for and access the PCI Configuration Space.
Definition: Display a short or long list of PCI devices on the bus specified by bus.
pci [bus] [long]
Show the header of PCI device bus.device.function.
pci header b.d.f
Display the PCI configuration space (CFG).
pci display[.b, .w, .l] b.d.f [address] [# of objects]
15-24
Katana®752i User’s Manual
10006024-04
Monitor:
Other Commands
Modify, read, and keep the CFG address.
pci next[.b, .w, .l] b.d.f address
Modify automatically increment the CFG address.
pci modify[.b, .w, .l] b.d.f address
Write to the CFG address.
pci write[.b, .w, .l] b.d.f address value
reset
The reset command performs a hard reset of the CPU by writing to the reset register on the
board.
Definition:
reset
run
The run command runs the commands in an environment variable var.
Definition:
run var […]
setpcimemsize
The getpcimemsize command stores a user-defined memory window size for PCI/cPCI to
NVRAM. These window sizes define the amount of memory that can be accessed from a
PCI/cPCI device. Parameters can be all, default or a numerical value, num. The default
values are 0x80000000 for cPCI, all for PCI Monarch, and one gigabyte for PCI NonMonarch. These are written into NVRAM as 0xFFFFFFFF for the monitor to set defaults.
Changes take effect on reset.
Definition:
Example:
setpcimemsize cpci_memsize pci_memsize (all,default,num)
=>setpcimemsize 0x80000000 default
Writing NVRAM parameters CPCI:0x80000000, PCI:0xFFFFFFFF
... Success
=>
setpcimode
The setpcimode command stores a user-defined setting for the supported configuration
space headers. You can select single or multiple headers for both PCI and cPCI. The default
settings are cPCI Single Mode and PCI Multi Mode. Changes take effect on
reset.
Definition:
Example:
setpcimode cpci_mode pci_mode (single, multi, default)
=>setpcimode
Setting cPCI Mode to Single ...
10006024-04
Katana®752i User’s Manual
15-25
Monitor:
Other Commands
Setting PCI Mode to Multi ... Complete
=>
setspr
The setspr command sets the contents of the SPR register specified by SPR_ID to
SDR_Value.
Definition:
setspr SPR_ID SPR_Value
script
The script command runs a list of monitor commands out of memory. The list is an ASCII
string of commands separated by the ; character and terminated with the ;; character sequence. <script address> is the starting location of the script.
Definition:
script script_address
showmac
The showmac command displays the Processor MAC addresses.
Definition:
showmac
showpci
The showpci command scans the PCI bus and lists the base address of the devices.
Definition:
showpci
showtemp
The showtemp command continuously displays the junction temperature for the 750GL
CPU. The processor sensors are not calibrated, so some offset error is probable.
Definition:
showtemp
sleep
The sleep command executes a delay of N seconds.
Definition: Delay execution for N seconds (N is a decimal value).
sleep N
vdhcp
The vdhcp command sends out a DHCP request and then waits for the response from a
DHCP server. If available, a vendor-specific module (loaded at 0xFFF6,8000) processes various request/response options.
Definition:
15-26
Katana®752i User’s Manual
vdhcp
10006024-04
Monitor:
Environment Variables
version
The version command displays the monitor’s current version number.
Definition:
version
ENVIRONMENT VARIABLES
The following table lists the monitor’s standard environment variables. Please note that
holding down the s key during powerup forces the monitor to use the default environment
parameters.
Table 15-4: Standard Environment Variables
Variable:
Default Value:
Description:
baudrate
9600
Console baud rate.
Valid rates: 9600, 19200, 38400, 57600, 115200
blinkled
false
Determines if front panel red LED will blink after init
Valid options: true, false
bootcmd
undefined
Command to be executed after boot. Use a backslash and
semicolon to specifiy more than one item. For example:
setenv bootcmd fpledoff\;bootcrc\;
bootdelay
1
Countdown to bootcmd execute (-1 to disable autoboot)
bootfile
""
Path to boot file on server (used with TFTP)
cachedaddr
–
Address of bootcrc cached image, must be set manually
prior to calling bootcrc
Valid options: any address in soldered Flash
cachedcrc16
–
Specifies 16-bit CRC value of bootcrc cached image
Set by bootcrc from newcrc16 (no manual setting required)
Valid options: 16-bit, polynomial 0xA001 crc value
cachedname
–
Specifies name and path of cached image to TFTP
Set by bootcrc from bootfile when a new image is cached
(no manual setting required)
Valid options: name string of cached image
cachedsize
–
Specifies size in bytes of bootcrc cached image
Set by bootcrc from newsize (no manual setting required)
Valid options: any byte size that fits in soldered Flash
cachemode
write
Sets the L1 cache mode to write-through or copy-back.
Valid options: write, copy
chassisid
–
Specifies the board’s chassis ID (set manually or by call to
CLI command getphysic)
Valid options: 1—16
clearmem
on
Determines if all of SDRAM is cleared on power-up. This
option is ignored if ECC is enabled.
Valid options: on, off
cpci
–
Displays status of cPCI bus
(on = accessible, off = held in reset)
10006024-04
Katana®752i User’s Manual
15-27
Monitor:
15-28
Environment Variables
Katana®752i User’s Manual
Variable:
Default Value:
Description: (continued)
cpci_remap
80000000
Base address in cPCI space for memory window specified
by cpci_memsize (i.e. 0xC000,0000 from the Katana®752i
maps to 0x8000,0000 in cPCI space)
dcache
on
Initial data cache state
ecc
on
ECC enable/disable
enumerate
on
PCI enumeration if module is PPMC monarch
(on = enumerate if monarch, off = never enumerate)
eready
on
Wait for EREADY as a monarch? (off = no, on = yes)
ethport
cpsb
Specifies Ethernet port
Valid options:
portdbg, porta, portb, cpsb, all
eth3, cpsba, cpsbb, eth4
gatewayIP
0.0.0.0
Gateway IP address
icache
on
Initial instruction cache state. Valid options: on, off
imageaddr
–
Specifies address of image booted by bootcrc
Set by bootcrc (no manual setting required)
Valid options: any address in soldered Flash
imagecrc16
–
Specifies 16-bit CRC value of image booted by bootcrc
Set by bootcrc from newcrc16 (no manual setting required)
Valid options: 16-bit, polynomial 0xA001 crc value
imagesize
–
Specifies size in bytes of image booted by bootcrc
Set by bootcrc (no manual setting required)
Valid options: any byte size that fits in soldered Flash
initrd_high
20000000
Specifies maximum memory location to map Linux
Ramdisk (PTMC site peripheral)
ipaddr
0.0.0.0
Board IP address
ipmipresent
true
Specifies whether or not to query CMM for chassis ID
If false, board does not access IPMI controller in boot
sequence or with getphysloc command
Valid options: true, false
l2cache
on
Turns the L2 cache on or off. Valid options: on, off
l2mode
write
Sets the L2 cache mode to write-through or copy-back.
Valid options: write, copy
loadadder
100000
Address to which a boot image is loaded
lxbootargs
–
Specifies Linux boot string to be used by bootcrc
Valid options: any Linux boot string
model
Katana®752i
Board model name
netmask
0.0.0.0
Board subnet mask
newcrc16
–
Specifies 16-bit CRC value of bootcrc image to use
Must be set manually, external to bootcrc
Valid options: 16-bit, polynomial 0xA001 crc value
10006024-04
Valid options: on, off
(off = disable, on = enable)
Monitor:
Environment Variables
Variable:
Default Value:
Description: (continued)
newsize
–
Specifies size in bytes of bootcrc image to use
Must be set manually, external to bootcrc
Valid options: byte length of image to boot
powerondiags
on
Turns power-on diagnostics on or off.
Valid options: on, off
rebootdelay
120
Specifies how long in seconds bootcrc command waits to
reboot if cached and downloaded images are invalid (must
be set manually, but if not set value=120 seconds)
Valid options: any decimal number of seconds
serial#
xxxx
Board serial number
serverip
0.0.0.0
Boot server IP address
slotid
–
Specifies the board’s slot ID on power-up/reset (set by init
code)
tftpport
–
Specifies the TFTP server port to non-69 values
Valid options: 00-65535
trycached
–
Specifies if bootcrc tries the cached image in Flash (must
be manually set). If false, bootcrd either returns (if nvonly
parameter is passed in) or immediately try to tftp a valid
image.
Valid options: true, false
vxbootargs
–
Specifies VxWorks boot string to be used by bootcrc
The monitor supports optional environment variables that enable additional functionality.
The moninit command (see Section ) only affects the standard environment variables and
does not set any parameters for these optional variables.
Table 15-5: Optional Environment Variables
Variable:1
Description:
bootargs
Optional boot argument string, used by some boot commands such as bootm
bootverifycmd
Specifies an alternate boot command for bootv. If not defined, bootv uses go. If
defined, you must specify a valid boot command, such as bootm.
geoaddr_ip
Sets the last octet of ipaddr to the cPSB geographical address, plus an offset of
geoaddr_offset. If not defined, this feature is off.
Valid options: on, off
geoaddr_offset
Decimal offset number added to the geographical address to create the last
octet of the IP address. If not defined, the monitor uses a value of 10.
sec_bootargs
Optional secondary boot argument string for the bootv command. If defined,
the secondary bootv image uses sec_bootargs. If not defined, both primary and
secondary bootv images use bootargs.
1. The moninit command does not initialize these variables.
10006024-04
Katana®752i User’s Manual
15-29
Monitor:
Troubleshooting
TROUBLESHOOTING
To bypass the full board initialization sequence, attach a terminal to the console located on
the front of the module. Configure the terminal parameters to be:
9600 bps, no parity, 8 data bits, 1 stop bit
Reset the module while holding down the ‘s’ key. Pressing the ‘s’ key forces a default console configuration and bypasses enabling of caches, ECC, and PCI.
DOWNLOAD FORMATS
The Katana®752i monitor supports binary and Motorola S-Record download formats, as
described in the following sections.
Binary
The binary download format consists of two parts:
• Magic number (which is 0x12345670) + number of sections
• Information for each section including: the load address (unsigned long), the section
size (unsigned long), and a checksum (unsigned long) that is the long-word sum of the
memory bytes of the data section
Motorola S-Record
S-Record download uses the standard Motorola S-Record format. This includes load
address, section size, and checksum all embedded in an ASCII file.
15-30
Katana®752i User’s Manual
10006024-04
Section 16
Acronyms
ASCII
American Standard Code for Information Interchange
BMC
Baseboard Management Controller
Cmd
Command code
COP
Common On Chip
cPSB
CompactPCI Packet-Switched Backplane
CPU
Central Processing Unit
CRT
Cathode Ray Tube
CSA
Canadian Standards Association
DAC
Dual Access Cycles
DDR
Double Data Rate
DMA
Direct Memory Access
DMC
Development Mezzanine Card
EC
European Community
ECC
Error Checking and Correction
EEPROM
Electrically Erasable Programmable Read Only Memory
EIA
Electronics Industries Association
EMC
Electromagnetic Compatibility
ESD
Electrostatic Discharge
ETSI
European Telecommunications Standards Institute
FCC
Federal Communications Commission
FRU
Field Replaceable Unit
GbE
Gigabit Ethernet
GNU
GNU’s Not Unix
GPIO
General Purpose Input/Output
GPL
General Public License
HSL
Hot Swap Logic
HSR
Hot Swap Register
I/O
Input/Output
I2C
Inter-Integrated Circuit
10006024-04
Katana®752i User’s Manual
16-1
Acronyms:
16-2
Katana®752i User’s Manual
IDMA
Internal Direct Memory Access
IEC
International Electrotechnical Commission
IEEE
Institute of Electrical and Electronics Engineers
IP
Internet Protocol
IPMB
Intelligent Platform Management Bus
IPMI
Intelligent Platform Management Interface
ISP
In-System Programmable
ITP
In-Target Probe
JTAG
Joint Test Action Group
LED
Light-Emitting Diode
LUN
Logical Unit Number
MAC
Medium/Media Access Control/Controller
MMC
Module Management Controller
MPSC
Multi-Protocol Serial Controllers
NEBS
Network Equipment-Building System
netFn
Network Function Code
NVRAM
Non-Volatile Random Access Memory
OEM
Original Equipment Manufacturer
PCI
Peripheral Component Interconnect
PHY
Physical Interface
PLD
Programmable Logic Device
PLL
Phase Locked Loop
PMC
PCI Mezzanine Card
POST
Power-On Self Test
RMA
Return Merchandise Authorization
RTC
Real-Time Clock
SDMA
Serial Direct Memory Access
SDR
Sensor Data Record
SDRAM
Synchronous Dynamic Random Access Memory
SEL
System Event Log
10006024-04
Acronyms:
SERDES
Serializer/Deserializer
SGMII
Serial Gigabit Media Independent Interface
SMS
System Management Software
SO-DIMM Small-Outline Dual In-line Memory
SROM
Serial Read Only Memory
TAP
Test Access Port
TFTP
Trivial File Transfer Protocol
UART
Universal Asynchronous Receiver/transmitter
UL
Underwriters Laboratories
VLAN
Virtual Local Area Network
10006024-04
Katana®752i User’s Manual
16-3
(blank page)
16-4
Katana®752i User’s Manual
10006024-04
Index
A
acronyms . . . . . . . . . . . . . . . . . . .16-1
B
binary download format . . . . . . .15-30
block diagram
CPU . . . . . . . . . . . . . . . . . . . . . . . 4-2
CPU reset . . . . . . . . . . . . . . . . . . 3-4
general system . . . . . . . . . . . . . . 1-4
IIC interface . . . . . . . . . . . . . . . . 5-9
IPMB connections . . . . . . . . . . .11-3
monitor power-up . . . . . . . . . .15-4
system controller . . . . . . . . . . . . 5-2
system reset . . . . . . . . . . . . . . . . 3-2
board configuration registers, CPLD 6-4
boot commands, monitor . . . . . .15-9
C
cable, console . . . . . . . . . . . . . . . .5-11
cache, CPU memory . . . . . . . . . . . . 4-9
caution statements
PTMC and PTCC compatibility .13-2
setting the CPU configuration
register . . . . . . . . . . . . . . . . . . . . 5-3
writes to monitor area . . . . . . .15-6
circuit board dimensions . . . . . . . . 2-1
compatibility issues, CT bus . . . . .13-1
compliance . . . . . . . . . . . . . . . . . . . 1-5
component map
bottom . . . . . . . . . . . . . . . . . . . . 2-4
jumpers, fuse, and switch . . . . . . 2-5
top . . . . . . . . . . . . . . . . . . . . . . . 2-3
configuration registers, CPLD . . . . . 6-4
connectors
cPCI . . . . . . 14-2, 14-3, 14-5, 14-6
cPSB . . . . . . . . . . . . . . . . . . . . .14-4
J1 . . . . . . . . . . . . . . . . . . . . . . . .14-2
J2 . . . . . . . . . . . . . . . . . . . . . . . .14-3
J21-J24 . . . . . . . . . . . . . . . . . . . . 9-5
J3 . . . . . . . . . . . . . . . . . . . . . . . .14-4
J4 . . . . . . . . . . . . . . . . . . . . . . . .14-5
J5 . . . . . . . . . . . . . . . . . . . . . . . .14-6
JTAG/COP . . . . . . . . . . . . . . . . .4-13
overview . . . . . . . . . . . . . . . . . . . 2-7
P1 . . . . . . . . . . . . . . . . . . . . . . .10-2
PTMC . . . . . . . . . . . . . . . . . 9-3, 9-5
console serial port . . . . . . . . . . . . .5-11
contents, table of . . . . . . . . . . . . . .ii-iii
CPU
block diagram . . . . . . . . . . . . . . 4-2
cache memory . . . . . . . . . 4-9, 4-11
exceptions . . . . . . . . . . . . . . . . . 4-8
features . . . . . . . . . . . . . . . . . . . 4-1
floating-point exception mode 4-10
initialization . . . . . . . . . . . . . . . . 4-4
memory map . . . . . . . . . . . . . . . 4-2
CT bus interface
clocking model . . . . . . . . . . . . . 13-2
compatibility types. . . . . . . . . . 13-1
direction control registers . . . . 13-3
local CT bus bit swapping . . . . . 13-6
option 1 . . . . . . . . . . . . . . . . . . 13-4
option 2 . . . . . . . . . . . . . . . . . . 13-6
option overview . . . . . . . . . . . . 13-2
PICMG 2.15 Configuration 2. . . 13-1
customer support
technical support . . . . . . . . . . . 2-11
E
environment parameter commands,
monitor. . . . . . . . . . . . . . . . . . . .15-18
environment variables . . . . . . . . . 15-8
equipment for setup . . . . . . . . . . . . 2-9
error, parity. . . . . . . . . . . . . . . . . . . 8-4
ESD prevention . . . . . . . . . . . . . . . . 2-1
Ethernet
address . . . . . . . . . . . . . . . . . . . 10-1
Emerson identifier . . . . . . . . . . 10-1
front panel ports. . . . . . . . . . . . 10-2
interfaces . . . . . . . . . . . . . . . . . 10-1
status LEDs . . . . . . . . . . . . . . . . . 2-4
F
features
CPU . . . . . . . . . . . . . . . . . . . . . . . 4-1
general . . . . . . . . . . . . . . . . . . . . 1-1
Hot Swap . . . . . . . . . . . . . . . . . 12-1
IPMI . . . . . . . . . . . . . . . . . . . . . 11-1
system controller . . . . . . . . . . . . 5-1
figures, list of . . . . . . . . . . . . . . . . iii-vii
Flash commands, monitor . . . . .15-15
front panel . . . . . . . . . . . . . . . . . . . 2-2
fuse locations . . . . . . . . . . . . . . . . . 2-4
G
geographical addressing . . . . . . . . 8-2
GPIO signals . . . . . . . . . . . . . . . . . 5-10
grounding . . . . . . . . . . . . . . . . . . . . 2-1
10006024-04
H
H.110
overview. . . . . . . . . . . . . . . . . . . 1-2
technical reference . . . . . . . . . . 1-9
HID registers. . . . . . . . . . 4-5, 4-6, 4-7
Hot Swap . . . . . . . . . . . . . . . . . . . 12-1
I
ID select, PCI. . . . . . . . . . . . . . . . . . 8-1
IIC interface . . . . . . . . . . . . . . . . . . 5-8
installation of the board . . . . . . . . . 2-9
interrupts
CPLD . . . . . . . . . . . . . . . . . . . . . . 6-2
PCI . . . . . . . . . . . . . . . . . . . . . . . 8-3
interrupts, PCI . . . . . . . . . . . . . . . . 8-1
IPMI interface . . . . . . . . . . . . . . . . 11-1
J
JTAG/COP, pin assignments . . . . . 4-13
jumpers . . . . . . . . . . . . . . . . . . . . . 2-5
L
L2 cache . . . . . . . . . . . . . . . . . . . . 4-11
LEDs . . . . . . . . . . . . . . . . . . . . . . . . 2-8
bottom side locations . . . . . . . . 2-4
RMII PHY devices . . . . . . . . . . . 10-3
M
machine state register (MSR) . . . . . 4-9
mean time between failures (MTBF) 1-5
memory
commands, monitor . . . . . . . 15-12
on-card . . . . . . . . . . . . . . . . . . . . 5-7
memory map . . . . . . . . . . . . . . . . . 4-2
monitor
auto-booting . . . . . . . . . . . . . . 15-1
auto-repeat . . . . . . . . . . . . . . . 15-1
basic operation . . . . . . . . . . . . 15-3
binary download format . . . . 15-30
boot commands. . . . . . . . . . . . 15-9
command reference . . . . . . . . 15-8
command syntax . . . . . . . . . . . 15-8
command-line interface . . . . . 15-1
environment parameter commands
15-18
environment variables . . . . . . 15-27
Flash commands . . . . . . . . . . 15-15
flash programming . . . . . . . . . 15-1
Katana®752i User’s Manual
i-1
Index
(continued)
memory commands . . . . . . . .15-12
Motorola S-record . . . . . . . . .15-30
other commands . . . . . . . . . .15-20
power-up/reset sequence flowchart
15-4
PPCBOOT . . . . . . . . . . . . . . . . .15-1
recovery . . . . . . . . . . . . . . . . . .15-7
start-up display . . . . . . . . . . . . .15-2
test commands . . . . . . . . . . . .15-20
TFTP booting . . . . . . . . . . . . . .15-1
troubleshooting . . . . . . . . . . .15-30
typographic conventions . . . . .15-9
updates . . . . . . . . . . . . . . . . . . .15-7
version number . . . . . . . . . . . . . 2-7
monitor commands
autoscr . . . . . . . . . . . . . . . . . .15-20
base . . . . . . . . . . . . . . . . . . . .15-20
bdinfo . . . . . . . . . . . . . . . . . . .15-20
bootbus . . . . . . . . . . . . . . . . . .15-9
bootcrc . . . . . . . . . . . . . . . . . .15-10
bootd . . . . . . . . . . . . . . . . . . .15-10
bootelf . . . . . . . . . . . . . . . . . .15-10
bootm . . . . . . . . . . . . . . . . . . .15-10
bootp . . . . . . . . . . . . . . . . . . .15-10
bootv . . . . . . . . . . . . . . . . . . .15-11
bootvx. . . . . . . . . . . . . . . . . . .15-11
chpart . . . . . . . . . . . . . . . . . . .15-12
cmp. . . . . . . . . . . . . . . . . . . . .15-13
coninfo . . . . . . . . . . . . . . . . . .15-21
cp . . . . . . . . . . . . . . . 15-13, 15-15
crc16 . . . . . . . . . . . . . . . . . . . .15-21
crc32 . . . . . . . . . . . . . . . . . . . .15-21
diags . . . . . . . . . . . . . . . . . . . .15-20
echo . . . . . . . . . . . . . . . . . . . .15-21
eeprom . . . . . . . . . . . . . . . . . .15-16
enumpci . . . . . . . . . . . . . . . . .15-21
envinit . . . . . . . . . . . . . . . . . . .15-19
erase . . . . . . . . . . . . . . . . . . . .15-15
filleth4rom . . . . . . . . . . . . . . .15-18
find . . . . . . . . . . . . . . . . . . . . .15-13
flinfo . . . . . . . . . . . . . . . . . . . .15-15
fpledoff . . . . . . . . . . . . . . . . . .15-21
fruget . . . . . . . . . . . . . . . . . . .15-21
frugetuser . . . . . . . . . 15-21, 15-22
fsinfo . . . . . . . . . . . . . . . . . . . .15-12
fsload . . . . . . . . . . . . . . . . . . .15-12
gethvr . . . . . . . . . . . . . . . . . . .15-22
getmonver . . . . . . . . . . . . . . .15-22
getpcimemsize . . . . . . . . . . . .15-22
getpcimode . . . . . . . . . . . . . .15-23
getphysloc . . . . . . . . . . . . . . .15-23
getspr . . . . . . . . . . . . . . . . . . .15-23
i-2
Katana®752i User’s Manual
go . . . . . . . . . . . . . . . . . . . . . .15-23
help . . . . . . . . . . . . . . 15-9, 15-23
icrc32 . . . . . . . . . . . . . . . . . . .15-17
iloop . . . . . . . . . . . . . . . . . . . .15-17
imd . . . . . . . . . . . . . . . . . . . . .15-17
iminfo . . . . . . . . . . . . . . . . . . .15-23
imm . . . . . . . . . . . . . . . . . . . .15-17
imw . . . . . . . . . . . . . . . . . . . .15-17
initeth4rom . . . . . . . . . . . . . .15-18
inm . . . . . . . . . . . . . . . . . . . . .15-17
ipmifirmload. . . . . . . . . . . . . .15-17
iprobe . . . . . . . . . . . . . . . . . . .15-18
isdram . . . . . . . . . . . . . . . . . .15-24
loop . . . . . . . . . . . . . . . . . . . .15-24
ls . . . . . . . . . . . . . . . . . . . . . . .15-12
md . . . . . . . . . . . . . . . . . . . . .15-13
memmap . . . . . . . . . . . . . . . .15-24
mm . . . . . . . . . . . . . . . . . . . . .15-14
moninit . . . . . . . . . . . . . . . . . .15-24
mtest . . . . . . . . . . . . . . . . . . .15-20
mw . . . . . . . . . . . . . . . . . . . . .15-14
nm . . . . . . . . . . . . . . . . . . . . .15-14
pci . . . . . . . . . . . . . . . . . . . . . .15-24
printenv . . . . . . . . . . . . . . . . .15-19
protect . . . . . . . . . . . . . . . . . .15-16
rarpboot . . . . . . . . . . . . . . . . .15-11
reset . . . . . . . . . . . . . . . . . . . .15-25
run . . . . . . . . . . . . . . . . . . . . .15-25
saveenv . . . . . . . . . . . . . . . . .15-19
script . . . . . . . . . . . . . . . . . . .15-26
setenv . . . . . . . . . . . . . . . . . . .15-19
setpcimemsize . . . . . . . . . . . .15-25
setpcimode . . . . . . . . . . . . . .15-25
setspr . . . . . . . . . . . . . . . . . . .15-26
showeth4rom . . . . . . . . . . . . .15-18
showmac . . . . . . . . . . . . . . . .15-26
showpci . . . . . . . . . . . . . . . . .15-26
showtemp . . . . . . . . . . . . . . .15-26
sleep . . . . . . . . . . . . . . . . . . . .15-26
tftpboot . . . . . . . . . . . . . . . . .15-11
um . . . . . . . . . . . . . . . . . . . . .15-20
vdhcp . . . . . . . . . . . . . . . . . . .15-26
version . . . . . . . . . . . . . . . . . .15-27
monitor recovery . . . . . . . . . . . . . 15-7
monitor updates . . . . . . . . . . . . . . 15-7
N
notation conventions . . . . . . . . . . . 1-6
O
on-card memory . . . . . . . . . . . . . . . 5-7
10006024-04
overview
backplane signals . . . . . . . . . . . 14-1
IPMI . . . . . . . . . . . . . . . . . . . . . 11-1
processor . . . . . . . . . . . . . . . . . . 4-1
reset . . . . . . . . . . . . . . . . . . . . . . 3-1
system controller . . . . . . . . . . . . 5-1
P
PCI
bus arbitration . . . . . . . . . . . . . . 8-1
enumeration . . . . . . . . . . . 6-3, 8-1
PCI interface . . . . . . . . . . . . . . . . . . 5-4
configuration space . . . . . . . . . . 5-4
device and vendor ID . . . . . . . . . 5-5
interrupts . . . . . . . . . . . . . . . . . . 8-3
signal descriptions . . . . . . . . . . . 8-2
PHY interfaces
CT bus . . . . . . . . . . 9-1, 10-1, 10-3
pin assignments
cPCI connector . . 14-2, 14-3, 14-4,
14-5, 14-6
front panel Ethernet . . . . . . . . . 10-2
GPIO . . . . . . . . . . . . . . . . . . . . . 5-10
PTMC connectors . . . . . . . . 9-3, 9-5
PLD registers . . . . . . . . . . . . . . . . . 6-1
POST diagnostic results . . . . . . . . 15-6
power requirements. . . . . . . . . . . 2-10
processor features . . . . . . . . . . . . . 4-1
product code, Ethernet . . . . . . . . 10-1
product ID register (PIR) . . . . . . . . . 6-3
product repair . . . . . . . . . . . . . . . 2-11
PTMC module installation . . . . . . . 9-1
R
real-time clock . . . . . . . . . . . . . . . . 7-1
block diagram . . . . . . . . . . . . . . 7-1
operation . . . . . . . . . . . . . . . . . . 7-1
references, manuals, and data books . .
1-6
regulatory certifications . . . . . . . . . 1-5
reset
CPU . . . . . . . . . . . . . . . . . . . . . . 3-4
PCI signal . . . . . . . . . . . . . . . . . . 8-4
registers, CPLD . . . . . . . . . . . . . . 6-1
sources . . . . . . . . . . . . . . . . . . . . 3-3
system controller . . . . . . . . . . . . 5-6
reset switch . . . . . . . . . . . . . . . . . . 2-5
returning boards . . . . . . . . . . . . . 2-11
RoHS. . . . . . . . . . . . . . . . . . . . . . . . 1-6
Index
(continued)
S
serial number
location . . . . . . . . . . . . . . . . . . . . 2-7
user ROM . . . . . . . . . . . . . . . . . . 2-7
serial port, console . . . . . . . . . . . .5-11
setup requirements . . . . . . . . . . . . 2-9
signals
66 MHz enable, PCI . . . . . . . . . . . 8-3
ACK64*, PCI . . . . . . . . . . . . . . . . 8-3
ADDRESS and DATA, PCI. . . . . . . 8-3
bus command, PCI . . . . . . . . . . . 8-3
byte enable, PCI . . . . . . . . . . . . . 8-3
clock, PCI . . . . . . . . . . . . . . . . . . 8-3
cycle frame, PCI . . . . . . . . . . . . . 8-3
device select, PCI . . . . . . . . . . . . 8-3
grant, PCI . . . . . . . . . . . . . . . . . . 8-3
initialization device select, PCI . . 8-3
initiator ready, PCI . . . . . . . . . . . 8-3
lock, PCI . . . . . . . . . . . . . . . . . . . 8-3
Monarch, PCI . . . . . . . . . . . . . . . 8-3
parity error, PCI . . . . . . . . . . . . . . 8-4
parity, PCI . . . . . . . . . . . . . . . . . . 8-4
PCI interrupt, PCI . . . . . . . . . . . . 8-3
power management, PCI . . . . . . 8-4
present, PCI . . . . . . . . . . . . . . . . 8-4
ready, PCI . . . . . . . . . . . . . . . . . . 8-3
REQ64*, PCI . . . . . . . . . . . . . . . . 8-3
request, PCI . . . . . . . . . . . . . . . . 8-4
reset output, PCI . . . . . . . . . . . . 8-4
reset, PCI . . . . . . . . . . . . . . . . . . 8-4
stop, PCI . . . . . . . . . . . . . . . . . . . 8-4
systems error, PCI . . . . . . . . . . . . 8-4
target ready, PCI . . . . . . . . . . . . . 8-4
specifications
environmental . . . . . . . . . . . . . 2-10
mechanical . . . . . . . . . . . . . . . . . 2-1
power . . . . . . . . . . . . . . . . . . . . 2-10
static control. . . . . . . . . . . . . . . . . . 2-1
system controller
CPU interface . . . . . . . . . . . . . . . 5-2
device controller . . . . . . . . . . . . 5-3
doorbell registers . . . . . . . . . . . . 5-6
features . . . . . . . . . . . . . . . . . . . 5-1
IDMA controller . . . . . . . . . . . . . 5-4
PCI configuration space . . . . . . . 5-4
PCI device and vendor ID . . . . . . 5-5
PCI interface registers . . . . . . . . 5-5
PCI interfaces . . . . . . . . . . . . . . . 5-4
SDRAM controller . . . . . . . . . . . . 5-3
timer/counters . . . . . . . . . . . . . . 5-4
10006024-04
T
table of contents . . . . . . . . . . . . . . ii-iii
tables, list of . . . . . . . . . . . . . . . . . .iv-ix
technical references . . . . . . . . . . . . 1-6
technical support . . . . . . . . . . . . . 2-11
contacting . . . . . . . . . . . . . . . . . 1-9
terminology . . . . . . . . . . . . . . . . . . 1-6
test commands, monitor . . . . . . 15-20
timer/counters . . . . . . . . . . . . . . . . 5-4
troubleshooting
general . . . . . . . . . . . . . . . . . . . 2-10
monitor . . . . . . . . . . . . . . . . . 15-30
U
UL certifications . . . . . . . . . . . . . . . 1-6
W
watchdog timer . . . . . . . . . . . . . . . 5-6
Z
Zircon PM . . . . . . . . . . . . . . . . . . . 11-1
Katana®752i User’s Manual
i-3
(blank page)
i-4
Katana®752i User’s Manual
10006024-04
Notes
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
10006024-04
Katana®752i User’s Manual
Emerson Network Power
The global leader in enabling
Business-Critical Continuity™
■ AC Power Systems
■ Connectivity
■ DC Power Systems
■ Embedded Computing
■ Embedded Power
■ Integrated Cabinet Solutions
■ Outside Plant
■ Power Switching & Controls
■ Precision Cooling
■ Services
■ Site Monitoring
■ Surge & Signal Protection
Business-Critical Continuity, Emerson Network Power and the
Emerson Network Power, Embedded Computing
Emerson Network Power logo are trademarks and service marks of
8310 Excelsior Drive ■ Madison, WI 53717-1935 USA
Emerson Network Power, Embedded Computing, Inc.
US Toll Free: 1-800-356-9602 ■ Voice: +1-608-831-5500 ■ FAX: 1-608-831-4249
© 2008 Emerson Network Power, Embedded Computing, Inc.
Email: [email protected]
www.emersonembeddedcomputing.com
E M E R S O N.
C O N S I D E R I T S O L V E D.™