Download Dent Power Meter

Transcript
USER’S MANUAL
™
PowerScout
™
ViewPoint
September 29, 2008
© 2008 DENT Instruments, Inc.
DENT Instruments | 64 NW Franklin Avenue | Bend, Oregon 97701-2906 USA
Phone 541.388.4774 | Fax 541.385.9333 | www.DENTinstruments.com
PowerScout™
SAFETY SUMMARY and SPECIFICATIONS
This general safety information is to be used by
both the Logger operator and servicing
personnel. DENT Instruments, Inc. assumes no
liability for user’s failure to comply with these
safety guidelines.
Conforms to UL Std 61010-1
Certified to CSA Std C22.2 No. 61010-1
The PowerScout™ is an Over-Voltage Category III device.
CAUTION: This METER may contain life threatening voltages. QUALIFIED PERSONNEL MUST Disconnect all
high voltage wiring before USING or servicing the METER.
Warning: Use of this device in a manner for which it is not intended may impair its means of
protection.
SYMBOLS ON EQUIPMENT
Denotes caution. See manual for a description of the meanings.
When connecting the PowerScout™ to an AC load, follow these steps in sequence to prevent a shock
hazard.
1. De-energize the circuit to be monitored.
2. Connect the CTs to the phases being monitored.
3. Connect the voltage leads to the different phases. Use proper safety equipment (gloves and protective
clothing) as required for the voltages monitored.
Denotes high voltage. risk of electric shock. Life threatening voltages may be present. Qualified
personnel only.
DO NOT EXCEED 600V. This meter is equipped to monitor loads up to 600V. Exceeding this voltage
will cause damage to the meter and danger to the user. Always use a Potential Transformer (PT) for loads in
excess of 600V. The PowerScout is a 600 Volt Over Voltage Category III device.
USE ONLY CURRENT TRANSFORMERS (CTs) SUPPLIED.
Do not use other CTs. A serious shock hazard and meter damage can occur if other CTs are used.
Equipment protected throughout by double insulation (IEC 536 Class II)
No accessories are approved for use with the PowerScout™ other than those specified in the DENT Instruments
product literature and price sheets.
If the Meter appears damaged or defective, first disconnect all power to the meter. Then please call
541.388.4774, or email tech support ([email protected]), for assistance.
2
PowerScout™
RÉSUMÉ DE SÉCURITÉ ET SPÉCIFICATIONS
Cette information de sécurité est destinée à être
utilisée à la fois par l'opérateur de l'enregistreur et le
personnel de service. DENT Instruments, Inc
n'assume aucune responsabilité pour l'utilisateur qui
ne respecte pas les directives en matière de sécurité.
Conforme à UL Std 61010-1
Certifié CSA Std C22.2 No. 61010-1
Le PowerScout ™ est un appareil de surtension de catégorie III.
ATTENTION: Ce METER peut contenir de hautes tensions qui peuvent être dangereuses. UN PERSONNEL QUALIFIÉ DOIT
débrancher tous les câbles à haute tension avant d’utiliser ou de réparer du METER.
Attention: L'utilisation de cet appareil d'une manière pour laquelle il n'est pas destiné peut annuler ses moyens
de protection.
SYMBOLES DES EQUIPEMENTS
Signifie prudence. Voir le manuel pour une description de la signification.
En faisant la connexion du PowerScout ™ à une prise de courant alternatif, suivez ces étapes en ordre pour
empêcher un risque de choc.
1. Décharger le circuit à contrôler.
2. Connectez le TC aux phases à surveiller.
3. Connectez les fils de tension à des phases différentes. Utiliser des équipements de sécurité (gants et des vêtements de
protection) qui sont nécessaires pour les tensions surveillées.
Indique haute tension. Risque de choc électrique. Hautes tensions peuvent être présentes qui mettent la vie en
danger. Personnel qualifié uniquement.
NE PAS DEPASSER 600V. Ce compteur peut contrôler les charges jusqu'à 600V. Le dépassement de cette tension
peut causer des dommages à l'appareil et du danger pour l'utilisateur. Utiliser toujours le potentiel transformateur (PT)
pour des charges de plus de 600V. Le PowerScout est un appareil à 600 V de surtension de catégorie III.
UTILISEZ SEULEMENT TRANSFORMATEURS DE COURANT (TC) FOURNIS.
Ne pas utiliser d'autres TC. Un sérieux risque de choc et de dommages au compteur peut se produire si d'autres TC sont
utilisés.
L'équipement protégé en double isolation (IEC 536 Classe II)
Pas d'accessoires approuvés pour une utilisation avec le PowerScout ™ sauf ceux spécifiés par DENT Instruments dans ses
documentations sur les produits et également sur les prix.
Si le compteur semble endommagé ou défectueux, tout d'abord déconnecter le pouvoir de l'appareil. Alors s'il vous plaît
appelez 541.388.4774 ou contacter par courriel l'assistance technique ([email protected]), pour obtenir de
l'aide.
3
SECTION I: INTRODUCTION
Using this Manual
This manual contains information about the PowerScout™ 3, PowerScout™ 18, ViewPoint Software and the RS422/485 to Serial Adapter. For ease of use, this manual has been divided into five sections. The list of sections
and their contents follows:
Section I
Section II
Section III
Section IV
Section V
Introduction
The PowerScout™
ViewPoint™ Software
Configuring the RS-422/485 Adapter
Appendix
PowerScout Overview
The PowerScout™ watt-transducers are made for the non-revenue submetering market. Each meter is made to
monitor the voltage, current, power and energy of a single three phase system. The PowerScout™ meter uses
direct connections to each phase of the voltage, and uses current transformers (or Rogowski coils) to monitor
each phase of the current. Energy, demand, power factor, line frequency, etc. are derived from the voltage
and current inputs.
The communication interface to the unit is through an RS-422/485 serial connection that uses the Modbus
protocol for sending commands and retrieving data. A separate remote terminal unit (RTU), Data Logger, or
Building Management and Control System is usually connected to the PowerScout to provide for data
recording and trend logging and any human interface or display.
Up to 41 PowerScout™ 18 meters (249 PowerScout™ 3 meters) may be connected to a single RTU for
monitoring and recording power usage at multiple locations within a single site.
The PowerScout™ 18 (PS18) consists of six independent three phase metering elements labeled “A” through
“F” in the drawing below. Each metering element has provision for three current transformers (CTs), one for
each phase. In this way, the PowerScout™ 18 can measure six independent three-phase loads.
The voltage reference is made on the power supply board as shown below. The single connection point for the
voltages is common to all six of the watt metering elements. Therefore, though six independent three phase
loads can be monitored by a single PowerScout™ 18 all six loads must have the same voltage source, e.g., be in
the same panel. To monitor multiple voltage sources, for example, 480/277V and 208/120V loads across a
transformer, two PowerScout™ 18’s will be needed, one for each voltage source.
4
SECTION II: THE POWERSCOUT™
PowerScout Technical Specifications
Service Type
3 Voltage Channels
Current Channels
PS3
PS18
Measurement Type
Line Frequency
Waveform Sampling
Measurements
Accuracy
Resolution
Indicators
Three Phase, Four Wire (WYE)
CATIII 80-346 Volts AC Line-to-Neutral, 600V Line-to-Line
3 channels 0-5,000+ Amps depending on current transformer
18 channels 0-5,000+ Amps depending on current transformer
True RMS using high-speed digital signal processing (DSP)
50/60Hz, DC
13 kHz
Volts, Amps, kW, kWh, kVAR, kVARh, kVA, kVAh, Apparent Power Factor (aPF),
Displacement Power Factor (dPF). All parameters for each phase and for
system total.
Better Than 1% (<0.5% typical) for V, A, kW, kVAR, kVA, PF
1 Amp, 1 Volt, 1 watt, 1 VAR, 1 VA, 0.01 Power Factor Depending on scaling
setting
24 bi-color LEDs (red and green): 4 LEDs per each watt metering
element. Each element has 1 LED to indicate communication and 3 LEDs
for correct phasing (Green when voltage and current on the on the same
phase; Red when incorrectly wired. Patent pending.)
Communication
Direct
Modbus Framing
Communication Rate
Data Bits
Parity
Stop Bit
Data Formats
Power
Modbus over RS-485
RTU (binary)
9600 baud
8
None
1
Modbus Protocol
From L1 Phase to L2 Phase. PS 18: 5 Watts typ. @ 600VAC, 2.5W typ. @
80VAC; non-user replaceable .5 Amp Internal fuse protection
Mechanical
Operating Temperature
Humidity
Enclosure
Weight
Dimensions
-7 to + 60 oC (20 to 140 oF)
5% to 95% non-condensing
Optional NEMA 4 rated, ABS plastic, 94-V0 Flammability Rating
0.4 kg (11 ounces) Exclusive of CTs
Approx. 6” X 10” (15 X 25 cm) Circuit Board Only, PowerScout 18
ViewPoint™ Minimum System Requirements
Operating System
Windows® 7 (32 or 64 bit), Vista (32 or 64 bit), XP or 2000
Communications Port
One USB Port or Serial Port
Hard Drive
50 MB minimum available
Processor
Pentium Class 1 GHz or more recommended
5
Connections To The PowerScout
The PowerScout™ has a connector for four voltage wire leads for making connections to voltage sources (L1, L2,
L3, Neutral). The PowerScout™ 18 also has connectors for up to 18 current transducers (CTs) (PowerScout™ 3
has 3 CTs). The PowerScout™ also has a three wire connector for the RS-485 Modbus link.
™
CAUTION: THE POWERSCOUT SHOULD ONLY BE WIRED BY QUALIFIED PERSONNEL. HAZARDOUS VOLTAGES EXIST.
ATTENTION: LE POWERSCOUT ™ NE DOIT ÊTRE BRANCHÉ QUE PAR UN PERSONNEL QUALIFIÉ. TENSIONS DANGEREUSES
SONT PRÉSENTES.
DANGER! THE UNENCLOSED POWERSCOUT BOARD REQUIRES EXTRA CAUTION WHEN CONNECTING. LIFE THREATENING
VOLTAGES EXCEEDING 600 VOLTS MAY EXIST ON THE BOARD. THE RISK OF SERIOUS INJURY OR DEATH SHOULD NOT BE
UNDERESTIMATED.
DANGER! LA PLAQUETTE DE CIRCUITS IMPRIMÉS SANS COUVERCLE EXIGE UN REDOUBLEMENT DE PRUDENCE QUAND ON
FAIT LA CONNEXION. LES TENSIONS DÉPASSANT 600 VOLTS PEUVENT EXISTER SUR LA PLAQUETTE ET PEUVENT METTRE
LA VIE EN DANGER. LE RISQUE DE BLESSURES GRAVES OU DE MORT NE DOIT PAS ÊTRE SOUS-ESTIMÉ.
Connecting the PowerScout™ 3
6
PowerScout™ 18
Layout and Watt-Transducer Naming Convention
7
WARNING! REMOVE THE METER FROM ALL SOURCES OF VOLTAGE BEFORE MOUNTING!
Mounting the PowerScout 3
The PowerScout™ 3 must be installed in an approved electrical panel or enclosure using proper installation
practices according to the local electrical codes. For convenience of mounting, two mounting tabs are
provided on the PowerScout™ 3.
Mounting the PowerScout 18
Open the top cover of the case to expose four (.275”/ 7mm) mounting holes, one at each corner. Using the
appropriate screw for the material that the PowerScout™ will be mounted to, screw the case to the mounting
surface. The location you mount the case must be able to support at least 3 lbs.
Wiring the Modbus
For the PowerScout™ 18 only, open the top cover of the case (if so equipped) by turning the two corner screws
counter-clockwise until loose. Set two rotary switches (on the circuit board near to the Modbus/RS-485
connector) to the Modbus address desired. These switches (on both the PowerScout™ 3 and PowerScout™ 18)
set the address for metering element “A.” Metering elements “B” through “F” will always have a Modbus
address that is one higher than the element before. For example, if the rotary address switches are set to 01
then metering element “A” register values will be accessed at Modbus address 01, metering element “B”
registers will be accessed at Modbus address 02, “C” at address 03, and so on.
On the PowerScout™ 3 and PowerScout™ 18, the rotary switches are 16 position hexadecimal switches. The
default factory setting is hex 01 (Modbus Address Decimal 01). 254 different Modbus addresses are allowed
from 01 (hex 01) to decimal 254 (hex FE). Addresses hex 00 (Decimal 00) and hex FB through hex FF (Decimal
251 through 255) are reserved for factory use. (See Appendix A for a decimal to hex conversion, if your
equipment is decimal based.) Each PowerScout™ 18 uses 6 Modbus address.
Next connect the Modbus wires to the connector in the meter. Use Diagram below.
Wiring of the CT’s:
For each of the six 3-phase metering elements A through F, connect the current transformers as shown in the
diagram below.
Note: The CTs are insensitive to orientation and may be placed on the wires to be monitored with the CT faces
in either direction. The CTs are connected on the PowerScout™ board in positions labeled L1, L2, L3 and must
be placed on the phase wires of the load to be monitored corresponding to the phase of the voltage leads. i.e.,
The CT labeled L1 must be placed on L1 phase voltage wire, the L2 CT must be on the L2 voltage, and the L3 CT
on the L3 voltage.
Wiring of the Voltage Input:
Last, connect 14 AWG THHN (or equivalent) wires to the PowerScout™ CAT III voltage terminals as shown in the
diagram above after a building installed dedicated circuit disconnect breaker while being as close as possible to
it (following the local electrical codes). Mark the breaker as the disconnect for the PowerScout™. Note that
the PowerScout™ has an internal non-user replaceable .5 Amp Internal fuse protection.
Warning: DO NOT EXCEED 600Vac PHASE TO PHASE CAT III. When complete, close the enclosure cover, if
equipped.
Attention: NE PAS DÉPASSER UNE PHASE À 600VAC CAT III. Une fois terminé, fermer le covercle, s’il y en a un.
9
Powering the PowerScout™ 3 and 18
The PowerScout™ instruments are self-powered from the L1 and L2 lines. When 80 – 340VAC or DC are put
across the L1 and L2 wires the three phasing LEDs will begin to flash in sequence. If the LEDs are all green then
the system power factor is greater than 0.55 and the CTs are properly placed on the corresponding voltage
phases.
If two or three of the LEDs are red then there is a phasing connection error. If two LEDs are red and one is
green. Switch the positions of the two CTs that are red. That should make all three LEDs green.
Using PhaseChek™
PhaseChek™ (patent pending) is a unique feature of the PowerScout™ and greatly simplifies installation and, at
a glance, verifies correct CT orientation during installation. The PowerScout automatically adjusts for CT
orientation—greatly reducing set-up time and all but eliminating installation errors.
If two or three of the PhaseChek™ LEDs are red, then there is a phasing connection error. If two LEDs are red
and one is green, switch the positions of the two CTs that are red. That should make all three LEDs green.
If all three PhaseChek™ LEDs are red, probably the CTs are connected in the correct order but off by one
position. For example, the L1 CT is on the L2 phase, the L2 CT is on the L3 phase and the L3 CT is on the L1
phase. Rotate the CTs until all of the LEDs are green thus ensuring a correct metering condition.
You can also verify that your PowerScout™ is set up correctly by using ViewPoint™. The ViewPoint™ program is
designed to let you easily configure the PowerScout™ for the current transformers connected to it and to check
readings. More information about ViewPoint™ can be found in Section III of this manual.
Note: If the total system power factor is less than 0.55 the LEDs will be red even if connected properly. This
situation is rare but could occur if the load to be monitored is a lightly loaded electric motor, for example.
10
PowerScout Modbus Commands
The Modbus commands that are used by the PowerScout meter are the Read Holding Register command, the
Write (Preset) Single Register command and the Return Slave ID command. The Read Holding Register
command is the most often used, as this is the command that retrieves the actual voltage, power and energy
values from the meter. Typically, the RTU continually reads the values from the registers containing the
desired information. The following is a quick-reference to three common Modbus commands:
Read Holding Register (Command #03; each item below is 8 bits) is as follows:
Meter Address
Command (03h) FIRST MSB FIRST LSB
Number to read MSB Number to Read LSB
Meter Address = which meter to read, FIRST = First point to read, Number to read = Number of points to read
CRC LSB
CRC MSB
Write (Preset) Single Register (Command #06; each item below is 8 bits) is as follows:
Meter Address Command (06h) REG MSB
LEG LSB
Meter Address = which meter to write, DATA = value to store
DATA MSB
DATA LSB
CRC LSB
Write Return Slave ID Command (Command #17; each item below is 8 bits) is as follows:
Meter Address Command 17h CRC LSB
Meter Address = which meter to respond
CRC MSB
11
CRC MSB
PowerScout Modbus Register Assignments
Table 1 is a listing of all of the data registers available on the PowerScout™. Note that following the Modbus
protocol, the actual register address requested is offset from the base Modbus register by 40001.
Table 1. Modbus Register Assignments. Offset refers to a base of 40001
Register
kWh System LSW
kWh System MSW
kW System
kW Demand System Max
kW Demand System Now
Offset
4000
4001
4002
4003
4004
Modbus
44001
44002
44003
44004
44005
kW System Max
4005
44006
kW System Min
kVARh System LSW
kVARh System MSW
kVAR System
kVAh System LSW
kVAh System MSW
kVA System
Displacement PF System
Apparent PF System
Amps System Avg
Volts Line to Line Avg
Volts Line to Neutral Avg
Volts L1 to L2
Volts L2 to L3
Volts L1 to L3
Line Frequency
kWh L1 LSW
kWh L1 MSW
kWh L2 LSW
kWh L2 MSW
kWh L3 LSW
kWh L3 MSW
kW L1
kW L2
kW L3
kVARh L1 LSW
kVARh L1 MSW
kVARh L2 LSW
kVARh L2 MSW
kVARh L3 LSW
kVARh L3 MSW
kVAR L1
kVAR L2
kVAR L3
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
Detailed Description
System Total Net True Energy LSW (kWh)
System Total Net True Energy MSW (kWh)
System Total True Power (kW)
Max Average power window (KW)
Average power (KW) (most recent window)
System Maximum Instantaneous kW
(Highest 500mS kW)
System Minimum Instantaneous kW
(Lowest 500mS kW)
System Total Net Reactive Energy LSW (kVARh)
System Total Net Reactive Energy MSW (kVARh)
System Total Reactive Power (kVAR)
System Total Apparent Energy LSW (kVAh)
System Total Apparent Energy MSW (kVAh)
System Total Apparent Power (kVA)
System Total Power Factor (PF)
System Total Power Factor (PF)
Total current in all phases.
Voltage Line to line (Volts) Average.
Voltage Line to neutral (volts) Average.
Individual Phase to Phase Voltages
Line Frequency (Hz)
Individual Phase True Energy LSW (kWh)
Individual Phase True Energy MSW (kWh)
Individual Phase True Powers (kW)
Individual Phase Reactive Energy LSW (kVARh)
Individual Phase Reactive Energy MSW (kVARh)
Individual Phase Reactive Powers (kVAR)
12
Register (Con’t)
kVAh L1 LSW
kVAh L1 MSW
kVAh L2 LSW
kVAh L2 MSW
kVAh L3 LSW
kVAh L3 MSW
kVA L1
kVA L2
kVA L3
Displacement PF L1
Displacement PF L2
Displacement PF L3
Apparent PF L1
Apparent PF L2
Apparent PF L3
Amps L1
Amps L2
Amps L3
Volts L1 to Neutral
Volts L2 to Neutral
Volts L3 to Neutral
Time Since Reset LSW
Time Since Reset HSW
Volts Scalar (not implemented)
Amps Scalar (not implemented)
Firmware Major Revision
Firmware Minor Revision
CT Value (x2)
Data Scalar
Demand Window Size
Offset
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4064
4065
4068
4069
4300
4301
4302
Modbus
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44065
44066
44069
44070
44301
44302
44303
Detailed Description
Individual Phase Apparent Energy LSW (kVAh)
Individual Phase Apparent Energy MSW (kVAh)
Offset
128
Modbus
40129
Detailed Description
The multiple meters synchronization register
Modbus
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
Detailed Description
Model Name 10 bytes (ASCII Alpha-Numeric)
“
“
“
“
Serial Number 10 bytes (ASCII Alpha-Numeric)
“
“
“
“
Individual Phase Apparent Powers (kVA)
Individual Phase displacement Power Factor (PF)
Individual Phase apparent Power Factors (PF)
Individual Phase Currents (A)
Individual Phase to Neutral Voltages (V)
Seconds since KWH register was reset. LSW
Seconds since KWH register was reset. MSW
For use with step-down transformer
For use with primary CTs
In Amps (CT value x2)
See Table 2
In Minutes (1 to 60); Default = 15 minutes
Other, Misc. Registers Settable
Register
Synchronize Register
Other, Misc. Registers Not Settable
Register
Model Number 1st 2 bytes
Model 2
Model 3
Model 4
Model Number last 2 bytes
Serial Number 1st 2 bytes
Serial 2
Serial 3
Serial 4
Serial Number last 2 bytes
Offset
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
13
Interpreting the PowerScout Registers – Data Scaling
The use of Modbus protocols limits the data registers to a maximum of 2 bytes (16 bits) or a maximum decimal
value of 65535. Modbus also requires that the values be integer values. To overcome these limitations some
measured (and stored) values have to be scaled to fit into the Modbus registers. To convert the raw data read
from the Modbus registers a scalar must be multiplied by the raw value. For this meter the scaling is:
Table 2: Data Scalar and Resolution of Modbus Values for Registers 44001 thru 44061
Register
44302
0
1
2
3
4
5
≥6
kW/kWh Demand
kVAR/kVARh
kVA/kVAh
Power Factor
Amps
Volts
.00001
.001
.01
.1
1
10
100
.00001
.001
.01
.1
1
10
100
.00001
.001
.01
.1
1
10
100
.01
.01
.01
.01
.01
.01
.01
0.01 A
0.1
0.1
0.1
1A
1
1
0.1V
0.1
0.1
0.1
1V
1
1
For example, if the scalar value in register 44302 is set to 3 and the total true power for the system (kW) is
read from Modbus register 44003 (Offset 4002) and a value of 3465 is returned, the true system kW is
3465 X 0.1 = 346.5 kW.
A raw value of Apparent Power Factor from register 44015 might be 87. This would correspond to an actual
power factor of 87 X 0.01 = .87 PF
Additionally, some values (e.g., kilowatt-hours) may cover a dynamic range that is larger than 65535 and
require two Modbus registers. Any parameter in Table 1 that shows two registers (identified by the terms
“MSW” and “LSW”) is such a wide-ranging parameter.
To correctly interpret the values found in these registers note that the number in the MSW (Most Significant
Word) register should be multiplied first by 65536. This number should be added the value found in the
corresponding LSW (Least Significant Word) register and then multiplied by the appropriate value from Table
2.
For example, assume that System Total True Energy (kWh) is desired and the value of 5013 is read from
register 44001 (LSW) and 13 is read from register 44002 (MSW) and that the Register 44064 Scalar is set to 3.
To calculate the total kWh recorded:
Multiply the MSW by 65536 → 13 X 65536 = 851968
Add the LSW → 851968 + 5013 = 856981
Multiply by the Table 2 Scalar of 0.1 → 856981 X 0.1 = 85698.1 kWh
14
Resetting Modbus Registers
Most of the PowerScout™ registers are real-time values such as instantaneous watts or power factor. However,
some registers are accumulated values such as kWh, kVARh, kVAh and various Peak Demand (kW) values. To
reset the accumulating registers use the standard Modbus protocol to write a “0” to register 40001.
Modbus Implementation & Further Information
More information about Modbus can be found from Modicon in the "Modicon Modbus Protocol Reference
Guide", PI-MBUS-300, Rev J. The entire document may be found at:
http://www.modicon.com/techpubs/toc7.html
15
SECTION III: ViewPoint™ Software
The ViewPoint™ program is designed to let you easily configure the PowerScout™ for the current transformers
connected to it and to check readings.
Installing the Software
An RS-485 to USB adapter or RS-422/485 to Serial adapter is required to connect the computer to the
PowerScout™. Remove power from the PowerScout™ before installing the adapter. Refer to Section IV of this
manual for safety precautions and further information regarding the RS-422/485 to Serial Adapter. After the
adapter is installed apply power to the meter and proceed with installing the ViewPoint™ program.
High voltage MAY BE PRESENT. Risk of electric shock. Life threatening voltages may be present.
Qualified personnel only.
Haute tension PEUT ÊTRE PRÉSENTE. Risque de choc électrique. Tensions dangereuses peuvent être
présentes. Personnel qualifié uniquement.
Step 1
If installing ViewPoint™ from the CD, insert the ViewPoint CD into the CD-ROM drive. The installer should start
automatically. If it does not, browse to the CD and run the ViewPointSetup.exe program. If you have
downloaded ViewPointSetup.exe, browse to its location and run it.
Step 2
After installing successfully, the ViewPoint™
program will run and will display a
Communications screen with two values to
fill in.
The Modbus Base Address is a hexadecimal
value that should match the switches on
the PowerScout™. The field is preconfigured with the default value of 01,
which is how the switches are set at the
factory. If that is your current
configuration, then there's nothing more to
do regarding the Modbus Base Address.
The PC COM Port lets you choose which
serial port the computer should use to
communicate with the PowerScout™ (see
diagram at right). Select RS-485 from the
drop-down list.
With both the Modbus Base Address and
PC COM Port values entered correctly, click the Connect button to establish a connection to the PowerScout™
meter. The program will communicate with the meter and display its version information. If it could not
connect, you can change the settings or the hardware connection and try again until it works.
16
Step 3
Once you're communicating with the PowerScout™, you can use the other tabs in the ViewPoint™ program to
configure the PowerScout™. See the next section for a description of each tab.
Using the ViewPoint Program
The program has four tabs to bring up screens for a particular task. Click a tab to bring up the desired screen.
Below is a brief description of each tab:
Communications
The Communications tab lets you specify the PC COM Port and the Modbus Base Address to let the program
communicate with the PowerScout™.
Real Time Values
The Real Time Values tab displays the current readings to allow you to verify that the system is configured
properly. Select one of the six elements (on a PowerScout™ 18) using the radio buttons and click Update to get
the values for that element.
Set CT Values
The Set CT Values tab let you change the type of current transformers connected.
Read & Write Registers
The Read & Write Registers tab allows you to view or change the value of any PowerScout™ registers. See the
User's Manual for a list of the registers and their description. This tab is provided for diagnostic and special
configuration purposes, and is not required for a basic setup. Select one of the six elements (on a PowerScout™
18) using the radio buttons to choose which element to read or write to.
Help Menu
The ViewPoint™ program has a built-in Help file which you can bring up by clicking the Help button in the upper
right hand corner of the window. This will open your web browser and display help for the tab currently
selected in the program.
17
SECTION IV: RS-422/485 Adapter
Instructions for Installing the USB to RS-485 Adapter
1. Insert the B&B Electronics CD that came with the USB to RS-422/485 adapter into your PC.
2. Plug the USB to RS-422/485 adapter into a PC USB port.
3. The Found New Hardware Wizard will appear. The first screen will ask “Can Windows connect to
Windows Update to search for software?”
4. Click “No, not this time,” then Next>
5. Click “Install from a list or specific location (Advanced),” Next>
6. In the New Hardware Wizard select “Search for the best drivers in these locations” and “Search
removable media (floppy, CD-ROM…)”.
7. Click “NEXT>”
18
8. Ignore the Windows message about logo compatibility and click Continue anyway, and then Finish
when the installation is complete.
9. The New Hardware Wizard will come up a second time in order to install the serial port. Repeat steps
4-8.
10. When the “Completing the Found New Hardware Wizard” is displayed, remove the CD from your
computer and store.
11. Verify that the dip switches on the back of the USB to RS-422/485 adapter are set to: RS-422/485, Echo
Off, 2 Wire, 2 Wire
12. The adapter is now ready for use.
19
SECTION V: APPENDIX
APPENDIX A: HEXIDECIMAL to DECIMAL CONVERSION
Table A1: Decimal Value is the Modbus Meter Address. Hex Value Corresponds to the Two Rotary Switch
Settings. (Left switch is high digit, Right switch is low digit)
Decimal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Hex
--02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
Decimal
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
Hex
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
Decimal
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
Hex
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
80
81
Decimal
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
20
Hex
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
Decimal
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Hex
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5
D6
D7
Decimal
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
Hex
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
---
APPENDIX B: VERIS H8035/H8036 EMULATION
The PowerScout™ meter can be used as a direct replacement for the Veris, Inc. H8035/H8036 Series of
networked power meters. This mirroring of the Veris Modbus register assignments makes replacement with a
PowerScout™ simple. However, because the number of parameters that the Veris meters measure is less than
half of what the PowerScout™ can measure, the other Modbus registers described in Table 1 need to be used if
the additional capabilities of the PowerScout™ are desired.
Table B1: Veris Emulation Modbus Register Assignments*
Modbus Addr.
Offset
Description
Units
Comments
40001
System Total True Energy, LSW
kWh
40002
System Total True Energy, MSW
kWh
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
System Total True Power
System Total Reactive Power
System Total Apparent Power
System Total Apparent Power Factor
Average Line to Line Voltage
Average Line to Neutral Voltage
Sum of Line Currents
L1 Phase True Power
L2 Phase True Power
L3 Phase True Power
L1 Phase Apparent Power Factor
L2 Phase Apparent Power Factor
L3 Phase Apparent Power Factor
L1 – L2 Voltage
L2 – L3 Voltage
L3 – L1 Voltage
L1 – Neutral Voltage
L2 – Neutral Voltage
L3 – Neutral Voltage
L1 Current
L2 Current
L3 Current
System Average Demand
kW
kVAR
kVA
PF
Volts
Volts
Amps, X1
kW
kW
kW
aPF
aPF
aPF
Volts
Volts
Volts
Volts
Volts
Volts
Amps
Amps
Amps
kW
40026
40027
System Minimum Inst. Demand
System Maximum Inst. Demand
kW
kW
Multiplier Required,
Resetable
Multiplier Required,
Resetable
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Multiplier Required
Variable Window,
Resetable
Multiplier Required, 500mS
Multiplier Required, 500mS
™
*All values are 16 bit, unsigned integers. The PowerScout does not currently support the Veris floating point registers.
Consult DENT Instruments for availability.
21
Table B2. Veris Multipliers for Integer Registers 40001 - 40027
Address
Units
≤100A
101 - 400A
401 – 800A
801 - 1600A
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
KWH LSB
KWH MSB
KW
KVAR
KVA
aPF
VOLTS L-L
VOLTS L-L
AMPS
KW L1
KW L2
KW L3
aPF L1
aPF L2
aPF L3
VOLTS L1-L2
VOLTS L2-L3
VOLTS L3-L1
VOLTS L1-N
VOLTS L2-N
VOLTS L3-N
AMPS L1
AMPS L2
AMPS L3
KW
KW
KW
7.8125exp-3
512
0.004
0.004
0.004
3.0518exp-5
0.03125
0.015625
3.9063exp-3
0.001
0.001
0.001
3.0518exp-5
3.0518exp-5
3.0518exp-5
0.03125
0.03125
0.03125
0.015625
0.015625
0.015625
3.9063exp-3
3.9063exp-3
3.9063exp-3
0.004
0.004
0.004
0.03125
2048
0.016
0.016
0.016
3.0518exp-5
0.03125
0.015625
0.015625
0.004
0.004
0.004
3.0518exp-5
3.0518exp-5
3.0518exp-5
0.03125
0.03125
0.03125
0.015625
0.015625
0.015625
0.015625
0.015625
0.015625
0.016
0.016
0.016
0.0625
4096
0.032
0.032
0.032
3.0518exp-5
0.03125
0.015625
0.03125
0.008
0.008
0.008
3.0518exp-5
3.0518exp-5
3.0518exp-5
0.03125
0.03125
0.03125
0.015625
0.015625
0.015625
0.03125
0.03125
0.03125
0.032
0.032
0.032
.125
8192
0.064
0.064
0.064
3.0518exp-5
0.03125
0.015625
0.0625
0.016
0.016
0.016
3.0518exp-5
3.0518exp-5
3.0518exp-5
0.03125
0.03125
0.03125
0.015625
0.015625
0.015625
0.0625
0.0625
0.0625
0.064
0.064
0.064
1601 32,000A
0.25
16384
0.128
0.128
0.128
3.0518exp-5
0.03125
0.015625
0.125
0.032
0.032
0.032
3.0518exp-5
3.0518exp-5
3.0518exp-5
0.03125
0.03125
0.03125
0.015625
0.015625
0.015625
0.125
0.125
0.125
0.128
0.128
0.128
Per the Veris implementation, to obtain true engineering units, the values returned from the registers in Table
B1 must be multiplied by the scaling value found in Table B2. For example, if the PowerScout™ has 100A CTs
connected to it, then to get system reactive power (kVARs) multiply the value returned from reading register
40004 by 0.004.
22