Download 5100 User`s Manual

Transcript
Model 5100
Single Phase
Power Analyzer
User ’s Manual
MAGTROL, INC.
Sales and TTechnical
echnical Assistance
70 Gardenville Parkway
Buffalo, New York 14224 USA
Tel: (716) 668-5555 or 1-800-828-7844
Fax: (716) 668-8705
ww w.
magtr
ol.c
om
w.m
agtro
l.co
Manufacturers of:
Motor Test Equipment
!
Hysteresis Brakes and Clutches
While every precaution has been exercised in the compilation of
this document, Magtrol, Inc. assumes no responsibility for errors
or omissions. Additionally, no liability is assumed for any damages
that may result from the use of the information contained within
this publication.
Trademark Acknowledgments
GPIB-PC is a trademark of National Instruments Corporation.
IBM is a registered trademark International Business Machines Corporation.
QuickBASIC is a registered trademark of Microsoft Corporation.
GE-MOV is a registered trademark of the General Electric Corporation.
FLUKE is a registered trademark of the John Fluke Mfg. Company.
Microsoft is a registered trademark of the Microsoft Corporation.
Supercon is a registered trademark of the Superior Electric Company.
Rev. B 02/01
ii
Table of Contents
SALES AND TECHNICAL ASSISTANCE .............................................................................................. ii
TABLE OF REVISIONS.......................................................................................................................... vi
1 - INTRODUCTION ................................................................................................................................ 1
Abbreviations ...................................................................................................................................................... 1
Unpacking ........................................................................................................................................................... 1
Power .................................................................................................................................................................. 1
Fuse Replacement ............................................................................................................................................... 1
Safety .................................................................................................................................................................. 1
Connectors .......................................................................................................................................................... 1
Maximum Ratings ............................................................................................................................................... 1
Installation .......................................................................................................................................................... 2
ORIENTATION .................................................................................................................................................................... 2
ELECTRICAL LOAD ............................................................................................................................................................ 2
IEEE-488 (GPIB) ........................................................................................................................................................... 2
Initial Checkout ................................................................................................................................................... 2
Transient Overloads ............................................................................................................................................ 2
Current Overload ................................................................................................................................................ 2
2 - SPECIFICATIONS .............................................................................................................................. 3
Voltage ................................................................................................................................................................ 3
Current ................................................................................................................................................................ 3
Meter Impedance ................................................................................................................................................ 3
Resolution ........................................................................................................................................................... 3
Isolation............................................................................................................................................................... 3
Display Auto Zero ............................................................................................................................................... 3
Analog Outputs ................................................................................................................................................... 3
Data Acquisition ................................................................................................................................................. 3
ANALOG ........................................................................................................................................................................... 3
DIGITAL ............................................................................................................................................................................ 3
Measurement Accuracy ...................................................................................................................................... 4
Accuracy Certification ........................................................................................................................................ 4
3 - CONNECTING THE 5100 .................................................................................................................. 5
Surge Protection .................................................................................................................................................. 5
External Shunts ................................................................................................................................................... 5
Figure 1. External Shunt Connection ............................................................................................................ 5
Connectors .......................................................................................................................................................... 5
Single Phase AC or DC Connections.................................................................................................................. 6
Figure 2. Single Phase AC or DC with Remote Voltage Sense ..................................................................... 6
Three Phase, 3 Wire Delta Connections ............................................................................................................. 6
Figure 3. Three Phase, 3 Wire Delta, 2 Wattmeter with Remote Voltage Sense .......................................... 7
Three Phase, 3 Wire Wye, 2 Wattmeter Connections ........................................................................................ 7
iii
Figure 4. Three Phase, 3 Wire Wye, 2 Wattmeter with Remote Voltage Sense ............................................ 7
Three Phase, 4 Wire Wye, 3 Wattmeter Connections ........................................................................................ 7
Figure 5. Three Phase, 4 Wire Wye, 3 Wattmeter with Remote Voltage Sense ............................................ 7
Single Phase Current & Potential Transformer Connections ............................................................................. 8
Figure 6. Current & Potential Transformer - Single Phase ......................................................................... 8
Three Phase, 4 Wire Balanced Load, 1 Wattmeter Connections ........................................................................ 8
Figure 7. Three Phase, 4 Wire Wye, Balanced Load, 1 Wattmeter............................................................... 8
Three Phase, 3 Wire Balanced Load, 1 Wattmeter Connections ........................................................................ 8
Figure 8. Three Phase, 3 Wire, Balanced Load, 1 Wattmeter ...................................................................... 8
4 - OPERATION ...................................................................................................................................... 9
General ................................................................................................................................................................ 9
Amperes Display ................................................................................................................................................. 9
Voltage Display .................................................................................................................................................. 9
Watts or Power Factor ........................................................................................................................................ 9
Mode Hold .......................................................................................................................................................... 9
Mode Avg ......................................................................................................................................................... 10
Analog Output Option ....................................................................................................................................... 10
Figure 9. Analog Output Connections ........................................................................................................ 10
5 - GPIB COMMUNICATION ................................................................................................................. 11
GPIB (IEEE-488) .............................................................................................................................................. 11
Hardware Installation ........................................................................................................................................ 11
Software Installation ......................................................................................................................................... 11
Primary Address ............................................................................................................................................... 11
Figure 10. GPIB Address Selection ............................................................................................................... 11
IBM® and Compatibles Instructions ................................................................................................................ 11
READ CYCLE .................................................................................................................................................................. 12
QuickBASIC® Example ................................................................................................................................... 12
GPIB Instruction Set ......................................................................................................................................... 12
Special Functions .............................................................................................................................................. 13
6 - OPERATING PRINCIPLES .............................................................................................................. 14
Amperes Transducing ....................................................................................................................................... 14
Voltage Sensing ................................................................................................................................................ 14
Figure 11. 5100 Input Circuits ...................................................................................................................... 14
Analog Processing ............................................................................................................................................ 14
Figure 12. Block Diagram ............................................................................................................................. 15
Digital Processing ............................................................................................................................................. 15
7 - CALIBRATION ................................................................................................................................. 16
General .............................................................................................................................................................. 16
Test Setup .......................................................................................................................................................... 16
Figure 13. Calibration Verification Test Setup ............................................................................................. 16
Calibration Verification .................................................................................................................................... 17
VOLTS CALIBRATION CHECK ............................................................................................................................................. 17
AMPERES CALIBRATION CHECK ........................................................................................................................................ 17
WATTS CALIBRATION CHECK ........................................................................................................................................... 18
iv
MINOR ADJUSTMENT (IF NEEDED) ..................................................................................................................................... 18
VOLTS ZERO ................................................................................................................................................................... 18
AMPERES ZERO ............................................................................................................................................................... 18
VOLTS SCALE FACTOR ..................................................................................................................................................... 19
AMPERES SCALE FACTOR ................................................................................................................................................. 19
VOLTS BALANCE ............................................................................................................................................................. 19
CURRENT BALANCE ......................................................................................................................................................... 19
WATTS SCALE FACTOR .................................................................................................................................................... 19
APPENDIX A: SCHEMATICS .............................................................................................................. 20
Circuit Board 78B128 - LED display ............................................................................................................... 20
Circuit Board 78B141 ....................................................................................................................................... 21
Circuit Board 78B142 ....................................................................................................................................... 22
Circuit Board 78B175 ....................................................................................................................................... 22
Circuit Board 78B143 ....................................................................................................................................... 23
Circuit Board 78B144 ....................................................................................................................................... 24
Circuit Board 78B145 - Digital Readout & MPU ............................................................................................ 25
Parts Location for Circuit Board 78B143 ......................................................................................................... 26
MAGTROL LIMITED WARRANTY ....................................................................................................... 27
v
Table of R
evisions
Revisions
Date
Change
02/07/00 Added External Shunt Connection Drawing
vi
Page Number(s)
5
1 - Introduction
ABBREVIATIONS
SAFETY
SECURELY GROUND the 5100 PA case by
connecting a good earth ground at the ground stud that
is located on the rear panel. Use a number 12 AWG, or
larger wire.
PA
Model 5100 Power Analyzer
GPIB
IEEE-488 Instrument Bus Standard
LE D
front panel indicator light
A,V, W, PF
and VA
Amperes, Volts, Watts, Power Factor
and Volt Amperes, respectively
CONNECTORS
MPU
microprocessor unit
Plugs that mate with 5100 PA connectors:
LS D , LS B
least significant digit or bit
Superior Electric Supercon®
CMRR
common mode rejection ratio
INPUT (plug, white, female) - PS50GWT
OUTPUT (plug, white, male) - PP50GWT
UNPACKING
The Model 5100 is packed in reusable, shock resistant
packing material that will protect the instrument during
normal handling. In the event of shipping damage,
immediately notify the carrier and MAGTROL
Customer Service Dept.
VOLTS HIGH (plug, black, female) - PS25GB
VOLTS LOW (plug, white, female) - PS25GWT
For your convenience, the above connectors are supplied
with your 5100 PA.
Save all shipping materials for reuse when returning
the instrument for calibration or servicing.
Use only the above connectors.
POWER
The 5100 PA is factory wired for either 120 or 240
Vrms, 50/60 Hz, power at 40 volt amps, max. The line
cord is a detachable NEMA standard 3 wire which plugs
into the rear access power entry and filter module of the
5100 PA. The line cord must be detached from the PA
during servicing.
NOTE:
The standard 5100 is factory
wired for 120 Vrms power.
Wiring for 240 Vrms is available
on special order.
FUSE REPLACEMENT
Remove the line cord and carefully pry up and remove
the fuse holder. Use a 1/2 Amp slow blow fuse for 120
Vrms or a 1/4 Amp slow blow fuse for 240 Vrms power.
NOTE:
GPIB (IEEE-488) - 24 Pin bus
standard. Not included, must be
ordered separately.
MAXIMUM RATINGS
LOAD voltage: line to line, or line to common is 600
Vrms.
LOAD current: 50 Amperes rms, continuous.
100 Amperes rms, 30 sec. max.
REMOTE VOLTAGE SENSE: Line to line is 600
Vrms. Also, do not exceed 600 Vrms differential
between the VOLTS INPUT and AMPS OUTPUT
terminals.
1
Chapter 1 - Introduction
Magtrol Model 5100 Single Phase Power Analyzer
INSTALLATION
ORIENTATION
The 5100 PA must be mounted within ± 20 degrees
from horizontal. This insures proper operation of the
mercury shunt bypass relay.
ELECTRICAL LOAD
Use wire rated for the maximum load current and voltage
expected.
Hint - use wire gauge large enough to insure good
connector set screw compression on the wire leads.
Soldering may be used instead of, or in addition to the
set screw.
IEEE-488 (GPIB)
Damage to the 5100 can result from
excessive voltage transients generated
by unsuppressed inductive loads.
This damage is not within the scope of
the normal instrument service and is not
covered by the MAGTROL WARRANTY.
CURRENT OVERLOAD
NO FUSES are in the 5100 PA measuring circuits.
Therefore, excessive current passed through the AMPS
terminals will cause excessive internal heating and
possible unit damage.
Use only high quality shielded cable conforming to the
bus standards.
INITIAL CHECKOUT
Make sure the circuit is completely de-energized by
removing all voltage sources.
Plug the 5100 PA into the 50/60 Hz power mains.
Switch the POWER rocker switch (red) to ON and
observe that the digit readouts flash on-off-on and then
indicate zero or a small number. The VOLTS and
AMPERES range switch indicator lights will all
illuminate. The voltage ranges sequence down from 600
through 15 and current ranges sequence down from 50
through 2. The 15 Volt, 2 Amp and AUTO indicators
will remain illuminated. The MODE indicators do not
light during this power-on sequencing.
Your 5100 PA has passed the initial check.
TRANSIENT OVERLOADS
Connect an appropriate transient suppressor in parallel
with all inductive loads. Consult the suppressor vendors
application literature for proper selection and sizing.
2
This overload abuse is not covered by
the MAGTROL WARRANTY.
Know your load conditions and double check all
connections. If an overload should occur, immediately
remove all power , locate and correct the problem before
re-energizing your circuit. If a circuit breaker is
installed, it must be installed on the LOAD side of the
5100 (downstream). This will keep the low impedance
of the input line connected to the 5100 PA for surge
suppression. If the line side must also contain a breaker,
it should be delayed in operation to open after the load
side breaker has opened.
2 - Specifications
VOLTAGE
DISPLAY AUTO ZERO
Five DC and AC Ranges:
• 15, 30, 150, 300 & 600 Volts DC & Volts rms.
When the A and V, display indication is less than 0.5 %
of range, the displayed value is set to ZERO.
Refer to SECTION 5 - SPECIAL FUNCTIONS to
disable the AUTO ZERO function.
Remote Voltage Sensing:
• Differential input - 110 dB CMRR.
• Maximum of 30 Volts peak, volts low terminal
to amps output terminal.
CURRENT
Five DC and AC Ranges:
• 2, 5, 10, 20 and 50 Amps DC and Amps rms.
METER IMPEDANCE
Voltage, DC or AC:
• 3 Megohm load on each voltage range.
Current, DC or AC Ranges:
• 0.011 Ohm shunt resistance in the 2, 5, 10 and
20 Amp ranges.
• 0.001 Ohm shunt resistance in the 50 Amp
range.
ANALOG OUTPUTS
This is an optional feature.
Analog AMPS, VOLTS and WATTS output signals
are a relative value of approximately 5 Volts DC for
full scale on each range selected. These outputs are
calibrated to 5.00 Volts DC ± 0.2% for full scale input
on the 10 Amp current range and 150 Volt voltage range
(1500 Watt range). Ripple is less than 5 mV.
The outputs are operational amplifiers with an
impedance of < 1 Ohm and current capacity of < 4 mA.
Each output signal and common is electrically isolated
from the measured circuit by 750 Volts continuous and
2500 Volts test breakdown. Leakage current is less than
0.3 µA at 240 Vrms, 60 Hz.
DATA ACQUISITION
RESOLUTION
ANALOG
Processing resolution is 16 binary bits.
The conversion of true rms to DC is expressed as:
Voltage Display:
• All ranges ≤ 9.999 V is ± 0.001 Volt.
• Ranges ≥10 V and ≤ 99.9 V is ± 0.01 Volt.
• Ranges ≥ 100 V is ± 0.1 Volt.
Vrms ≡
•
Current Display:
• All ranges ≤ 9.999 A is ± 0.001 Amp.
• Ranges ≥ 10 A and ≤ 50 A is ± 0.01 Amp.
Power Display:
• ± 0.01% of active Volts and Amps range
• GPIB - Amps, Volts and Watts
Same as display resolution.
1500 Vrms break down from input circuit to chassis
(ground).
Rms to DC conversion averaging time constant:
Volts and Amps time constant TC ≅ 60 msec.
Watts time constant TC ≅ 120 msec.
Watts = V × I × cos θ (instantaneous)
DIGITAL
•
•
ISOLATION
1T 2
∫ v ( t ) dt
T0
Processing:
Integration period = 0.10 second.
Display update time = 2 readings per second.
IEEE-488 (GPIB):
Synchronized = 0.1 sec. per reading
Non-synchronized is 0.04 to 0.07 sec per
reading.
3
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 2 - Specifications
MEASUREMENT ACCURACY
ACCURACY CERTIFICATION
Specified test conditions: Ambient temperature of 72°
± 10°F and power factor of 0.1 to 1.0, lead or lag.
All instruments are shipped with a CERTIFICATE of
CALIBRATION from MAGTROL Inc. Magtrol
policies and procedures comply with MIL-STD45662A. Measurement standards are traceable to the
National Institute of Standards and Technology (NIST).
VOLTAGE - DC
+ (0.1% of reading + 0.2% of range)
VOLTAGE - AC:
10 Hz to < 20 Hz + 1.0% of range
20 Hz to < 45 Hz + (0.2% of reading + 0.3% of range)
Instrument calibration every six calendar months is
necessary to maintain full compliance with all
specifications.
45 Hz to < 10 kHz + (0.1% of reading + 0.2% of range)
10 kHz to 20 kHz + (0.2% of reading + 0.3% of range)
C U R R EN T - D C
2, 5, 10, 20 and 50 Amp Ranges
+ (0.1% of reading + 0.2% of range)
CURRENT - AC:
2, 5, 10 and 20 Amp Ranges
10 Hz to < 20 Hz + 1.0% of range
20 Hz to < 45 Hz + (0.2% of reading + 0.3% of range)
45 Hz to < 1 kHz + (0.1% of reading + 0.2% of range)
1 kHz to < 5 kHz + (0.2% of reading + 0.3% of range)
5 kHz to < 10 kHz + 1.0% of reading
10 kHz to 20 kHz + 2.0% of reading
50 Amp Range
10 Hz to < 1 kHz same as 20 Amp range
1 kHz to 2 kHz + 2.0% of range
POWER - DC
+ (0.1% of reading + 0.3% of VA range)
POWER - AC
+ (0.1% of reading + 0.2% of VA range)
POWER FACTOR
+ (VA error + W error)
DISPLAY
Digital display error ± 1 LSB
CREST FACTOR
Exceeds 3:1 (at 50% of range full scale)
TEMPERATURE
COEFFICIENT
+ 0.01% of range per deg. C. max
4
If a one year calibration cycle is used, all accuracy
specifications are reduced by 0.1%. After one calendar
year, the instrument is considered to be out of
calibration.
3 - Connecting the 5100
100
150
200
250
400
750
1000A
Always install a properly rated circuit
breaker or fuse between the 5100
analyzer and the load. Also, make sure
that your power source has it's own
disconnect and overload protection that
has an operating time lag that insures
the load breaker always operates first.
•
•
Wire according to all applicable wiring
codes, making sure the wire gauge and
insulation ratings are adequate for your
application.
•
•
SURGE PROTECTION
EXT Shunt must be plugged in (even if not in
use) or 5100 will display “HELP.”
EXT Shunt is calibrated with one 5100. Calibration
will be off if used with a different 5100.
Sense leads to shunt should not be disconnected
or calibration will be off.
Shunt must be sent back with 5100 for
recalibration.
CONNECTORS
Use Metal Oxide Varistors (MOV) or other
PROTECTION:equivalent transient suppressors
connected between lines at the load (across the load).
These suppressors are an absolute necessity when
inductive loads are used. In three phase systems, each
load must have a suppressor.
Use the supplied Supercon® connectors.
AMPS:
INPUT - PLUG, WHITE, FEMALE-(PS50GWT)
OUTPUT - PLUG, WHITE, MALE-(PP50GWT)
VOLTS:
HIGH - PLUG, BLACK, FEMALE-(PS25GB)
LOW - PLUG, WHITE, FEMALE-(PS25GWT)
EXTERNAL SHUNTS
Figure 1.
All watts
EXT-600V-KW
EXT-600-KW
EXT-300 & 600-KW
EXT-300 & 600
EXT-150, 300 & 600-KW
EXT-150, 300 & 600
External Shunt Connection
Black
5100 BACK PANEL
Black
Black
VOLTS
High
High
High
Ext. Shunt
Low
SOURCE
Low
Input
AMPS
LOAD
Low
Output
White
White
White
Black
White
External Shunt
5
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 3 - Connecting the 5100
SINGLE PHASE AC OR DC CONNECTIONS
This circuit utilizes the 5100 PA REMOTE VOLTAGE SENSE feature by measuring the voltage at the load. This
increases measurement accuracy by eliminating line voltage drop from the power measurement. For safety, an
overload circuit breaker (CB) removes all load voltage during an over current condition. Make sure that connections
from the remote voltage sense lines are connected very close to the circuit breaker and the lines from the breaker to
load are as short as possible.
If a circuit breaker is used in the input line to the 5100 PA, a circuit should be used that prevents
the breaker from opening until after the load side breaker has operated. Otherwise, potentially
damaging inductive transients will be applied to the 5100 PA. Damage caused by these
transients are outside the scope of the MAGTROL WARRANTY.
For voltage sense lines less than 25 feet in length, a twisted pair of #20 gauge (or larger) wire can be used. For lines
longer than 25 feet or lines grouped with other AC conductors, shielded cable should be used. Connect the shield at
the 5100 PA GND terminal. If the wires connecting the load to the 5100 PA OUTPUT are short and the resulting
voltage drop is insignificant, the voltage sense connections can be made at the rear panel of the 5100 PA.
Connect the chassis ground terminal to a good earth ground. Use at least #12 gauge
insulated copper wire.
Figure 2.
Single Phase AC or DC with
Remote Voltage Sense
VOLTS
5100 PA
HIGH
LOW
LOW
(WHITE)
AMPS
MOV
LINE
HIGH
OUTPUT
(BLACK)
EARTH
LOAD
INPUT
GND
CB
THREE PHASE, 3 WIRE DELTA CONNECTIONS
Load true power is the algebraic sum of the two wattmeter readings ( W = W1 × W2 ) regardless of load power
factor or balance. The general discussion from Figure 2 applies.
NOTE:
6
For load power factor = 0.5, one wattmeter reads zero, as the power factor goes less than 0.5
it's power is negative and is subtracted in the algebraic watts summation. The 5100 PA will
not display a minus sign for this condition. If your 5100 has the Analog Output Option, the
watts (relative) polarity is available by measuring both analog watts outputs. For power
factors greater than 0.5, the polarity of both wattmeters will be the same therefore, true power
in watts is simply the unsigned sum of the wattmeter readings.
Magtrol Model 5100 Single Phase Power Analyzer
5100 PA
VOLTS
HIGH
LINE
LOW
AMPS
Ø1
GND
OUTPUT
INPUT
MOV
MOV
D
EARTH
AD
Ø2
LO
Three Phase, 3
Wire Delta, 2
Wattmeter with
Remote
Voltage Sense
LO
A
Figure 3.
Chapter 3 - Connecting the 5100
CB
5100 PA
LOAD
VOLTS
HIGH
MOV
LOW
AMPS
Ø3
GND
OUTPUT
INPUT
EARTH
THREE PHASE, 3 WIRE WYE, 2 WATTMETER CONNECTIONS
True power is the algebraic sum of the two wattmeter readings regardless of power factor and degree of load balance
- see NOTE for Figure 3, concerning power factors less than 0.5. Also, the general discussion from Figure 2 applies.
Figure 4.
Three Phase, 3
Wire Wye, 2
Wattmeter with
Remote
Voltage Sense
5100 PA
VOLTS
HIGH
LINE
LOW
AMPS
Ø1
GND
OUTPUT
LOAD
INPUT
MOV
EARTH
Ø2
CB
5100 PA
VOLTS
HIGH
MOV
LO
AD
AD
LO
MOV
LOW
AMPS
Ø3
GND
OUTPUT
INPUT
EARTH
THREE PHASE, 4 WIRE WYE, 3 WATTMETER CONNECTIONS
Three wattmeters are required for unbalanced loads. Total power is the algebraic sum of the three wattmeter readings.
The general discussion from Figure 2 and the power factor discussion of Figure 3 applies.
Figure 5.
W1
5100 PA
VOLTS
HIGH
LINE
Ø1
LOW
AMPS
GND
CB
OUTPUT
INPUT
LOAD
Three Phase, 4
Wire Wye, 3
Wattmeter with
Remote
Voltage Sense
MOV
EARTH
AD
LO
W2
5100 PA
VOLTS
HIGH
MOV
LO
AD
MOV
LOW
Ø2
AMPS
GND
OUTPUT
INPUT
EARTH
W3
5100 PA
VOLTS
HIGH
LOW
Ø3
AMPS
GND
OUTPUT
INPUT
NEUTRAL
EARTH
7
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 3 - Connecting the 5100
SINGLE PHASE CURRENT & POTENTIAL TRANSFORMER CONNECTIONS
Voltage and current measurement ranges can be extended by using current and potential transformers. Frequency
response will be determined by the characteristics of the transformers used. The general discussion from Figure 2
applies. Three phase lines can be measured by using the two or three wattmeter techniques previously illustrated.
Figure 6.
Current & Potential Transformer Single Phase
VOLTS
HIGH
5100 PA
LOW
AMPS
GND
OUTPUT
INPUT
EARTH
MOV 2
MOV 3
CT
LOW (WHITE)
LOAD
LINE
PT
MOV 1
HIGH (BLACK)
CB
THREE PHASE, 4 WIRE BALANCED LOAD, 1 WATTMETER CONNECTIONS
With a balanced load, one wattmeter connected in one phase reads 1/3 of the total power consumed.
WATTSTOTAL = 3 × WATTMETER READING
The general discussion from Figure 2 applies. The three load impedances are equal for balanced loads.
Figure 7.
Three Phase, 4
Wire Wye,
Balanced Load,
1 Wattmeter
VOLTS
HIGH
5100 PA
LINE
01
LOW
AMPS
GND
OUTPUT
INPUT
LOAD
MOV
EARTH
NEUTRAL
02
03
MOV
LO
AD
AD
LO
MOV
CB
THREE PHASE, 3 WIRE BALANCED LOAD, 1 WATTMETER CONNECTIONS
WATTSTOTAL = 3 × WATTMETER READING
An artificial neutral is formed by a star connection of three identical resistors (R). The value of these resistors should
be high enough to avoid loading the lines and affecting the power measurement. The general discussion from Figure
2 applies. The three load impedances are equal for a balanced load.
Figure 8.
Three Phase, 3
Wire, Balanced
Load, 1
Wattmeter
5100 PA
LINE
Ø1
VOLTS
HIGH
LOW
AMPS
GND
OUTPUT
INPUT
LOAD
R
MOV
EARTH
MOV
Ø2
Ø3
R
R
AD
LO
MOV
CB
8
LO
AD
4 - Operation
GENERAL
Using Sections 1 and 3 as a guide, connect the 5100.
Before connecting the power mains, double check all
connections using an Ohmmeter.
Verify that the overcurrent circuit breaker is open and
connect the power mains.
Observing the 5100 front panel indicators. Turn the 5100
power switch ON and confirm proper operation - refer
to “Initial Checkout” under Chapter 1 - Introduction.
Energize the power mains and apply power to the load
by closing circuit breaker CB. If improper operation
occurs, immediately disconnect power mains, locate and
correct the problem.
The 5100 has three MODES - HOLD; PF (power factor)
and AVG (averaging); five AMPS ranges plus AUTO
(autoranging); and five VOLTS ranges plus AUTO. All
have adjacent red LED's indicating the active mode and
measurement range.
AMPERES DISPLAY
The AMPS display is a four digit, floating point display
of true AC rms or DC current flowing into the AMPS
INPUT connector (white) on the rear panel. For detailed
specifications refer to Chapter 2 - Specifications.
The 5100 defaults to AUTO (auto ranging) at turn on.
AUTO up-ranging occurs if the rms current exceeds
the top of the range value plus about 5% or, if a peak
value exceeds full range rms value × 1.414 plus
approximately 5%.
AUTO down ranging occurs when the current is just
less than full range value of the next lower range.
Selection of any amps range pushbutton activates the
selected range by overriding the AUTO- range selection
- AUTO LED goes off and selected AMPS LED
illuminates. However, the AUTO up-range function is
always silently monitoring the current and is ready to
up-range the instrument if the current increases above
the range full scale. If the current falls below the value
of the originally selected range, that range will then reactivate. The instrument will automatically up-range
from the measured current but will down-range only to
the selected range. The display will show "HELP" when
the 5100 PA maximum current is exceeded.
VOLTAGE DISPLAY
The VOLTS display is a four digit, unsigned floating
point display of AC rms or DC voltage between the
rear panel HIGH (black) and LOW (white) terminals.
The voltage input is differential (neither terminal tied
to common) allowing connection at a remotely located
load. This remote connection removes the voltage drop
in the load connection wires from the power
measurement. The VOLTS - LOW terminal (WHITE)
must be connected to the AMPS - OUTPUT line at the
load - see Figure 1.
The AUTO and manual VOLTS range selection is
identical in operation to the AMPS as described above.
WATTS OR POWER FACTOR
The WATTS display is five digit, unsigned floating
point display of power in WATTS or POWER FACTOR
as a decimal number.
WATTS is the power ON default MODE, press the
MODE - PF button for POWER FACTOR MODE.
Watts measurements are from milliwatts through 30
kilowatts, and Power Factors from 0.0001 through
0.9999.
WATTS = V × I × cos θ = TRUE POWER
The WATTS range is set by the AMPS and VOLTS
active ranges.
Power Factor ≡
True Power
V × I
MODE HOLD
The HOLD pushbutton may be depressed at any time.
When depressed, all internal machine functions are
halted except auto ranging. If the AVG (averaging)
function is active when the HOLD button is depressed,
the last running average value of AMPS, VOLTS and
WATTS will be latched on the display.
9
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 4 - Operation
The HOLD and AVG functions can be combined. See
the MODE AVG paragraph, below.
MODE AVG
AVG is an integration or averaging function on VOLTS
, AMPS and WATTS.
Averaging remains active across manual or auto range
changes.
The averaging function is useful in stabilizing the display
when digits are changing because of slowly varying
values. Integration periods from seconds to minutes may
be needed.
The HOLD and AVG functions work together. When
entering AVG with HOLD off, the averaging registers
are cleared and integration starts from the current value.
With the HOLD function active first, pressing AVG
starts the integration point from the last stored values
of AMPS, VOLTS or WATTS. When AVG is turned
off, non-averaged values are displayed and the values
at that instant are stored in non-volatile RAM and upon
reentering the AVG mode will be returned as the new
averaging starting points. Also, when the Analyzer
power is turned off, the last averaged values stored will
be held and returned when the AVG function is
reactivated.
The HOLD - AVG function permits truly integrated
power measurements where power is applied
intermittently or, where a combination of devices require
integrated measurements with interruptions between
measurements.
NOTE:
WATTHOURS can be
determined by using the AVG
function and a timing clock.
Watthours = (watts avg × time in
hours)
Power Factor (PF) is not
averaged.
10
ANALOG OUTPUT OPTION
This option provides analog output signals for AMPS,
VOLTS and WATTS. These three analog outputs with
their common are isolated from the measured circuits
by 750 Volts continuous and 2500 Volts test breakdown.
The outputs are provided through a standard 5 pin DIN
style connector that is located on the rear panel of the
5100 - see figure 9 for connections.
The analog output voltage is calibrated to 5.00 Volts
DC for full scale input on the 10 Amp current range
and the 150 Volt voltage range (1500 Watt range). The
actual output on other ranges will be a relative value
close to 5 Volts due to tolerances in gain resistors and
instrumentation amplifiers. For example: Full scale
output on the 15 Volt range may be 4.95 Volts DC.
The analog output at 12 Volts input would be FS / Rng
× Rdg or 4.95 / 15 × 12 = 3.96 Volts DC.
NOTE:
Analog output of POWER
FACTOR is not provided
See Chapter 2 - Specifications.
Figure 9.
Analog Output Connections
N/C
5
WATTS
4
3
1
COM
2
AMPS
VOLTS
5 - GPIB Communication
GPIB (IEEE-488)
Figure 10.
The IEEE-488 or GPIB (General Purpose Interface Bus)
provides direct connection and control of the 5100 from
any appropriately equipped computer for the purpose
of data acquisition and display. MAGTROL factory
assistance is available.
(Address 12 shown)
HARDWARE INSTALLATION
A GPIB interface requires installation of an interface
card in the host computer and driver software resident
on the PC's hard disk. MAGTROL can supply the
National Instruments Corp. GPIB-PC2A® interface, for
IBM® or compatible PC's.
SOFTWARE INSTALLATION
Formatting and initialization assistance is available from
MAGTROL Customer Service.
All GPIB data acquisition systems require the use of
termination characters to signal the conclusion of a data
exchange. The 5100 uses the Hewlett Packard - HPIB™
standard ASCII termination characters "Carriage Return
(CR) and Line Feed (LF)", in that order. On a write
cycle, the 5100 looks for the CR-LF to signal completion
of an instruction and transmits these characters upon
conclusion of a data read cycle.
GPIB Address Selection
ADDRESS
SWITCH SEGMENT
1
LSB
2
3
4
5
MSB
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1 2 4 8 16
1 2 3 4 5 6 7 8
1
0
Not Used
PRIMARY ADDRESS
All instruments serviced on the bus have a separate
primary address code. The factory setting for the 5100
is twelve (12). This code can be changed by changing
the DIP switch settings that are located on the rear panel
and above the GPIB connector. Change this address
only if there is an addressing conflict with other
instrumentation on the bus. Refer to the table in Figure
10 to set the DIP switch pattern.
IBM® AND COMPATIBLES
INSTRUCTIONS
The 5100 PA is configured for the Hewlett Packard
standard termination characters of CARRIAGE
RETURN (CR hex OD) and LINE FEED (LF hex OA).
On a read cycle (5100 to PC), the 5100 expects the
standard IEEE-488 read protocols and primary address.
It responds with a data string followed by a CR and LF.
This signals the end of a transmission. Upon receipt of
these characters, the PC must be configured to terminate
GPIB communications and proceed with its own
program execution. On a write cycle (PC to 5100), the
5100 expects to receive: (1) the PRIMARY ADDRESS;
(2) INSTRUCTIONAL DATA STRING (3); the
TERMINATION CHARACTERS of CR and LF. If
11
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 5 - GPIB Communication
these characters are not forthcoming, the 5100 has no
way of knowing when to terminate handshaking, reset
the GPIB and continue with its program loop. If omitted,
the only way to restore operation is to cycle power OFFON or, force a GPIB interface reset - if available.
DO
CALL IBRD(dev12%, rd$)
LOCATE 12, 29: PRINT rd$
LOOP WHILE INKEY$ = ""
GOTO start
READ CYCLE
In read (5100 to PC) command mode, the 5100 will
output a data string containing the information on the
AMPS, VOLTS and WATTS display.
GPIB INSTRUCTION SET
AA
Sets AMPS AUTO ranging on.
A2
Sets AMPS range to 2, AUTO o
A5
Sets AMPS range to 5, AUTO o
A10
Sets AMPS range to 10, AUTO o
A20
Sets AMPS range to 20, AUTO o
A50
Sets AMPS range to 50, AUTO o
AZ
Sets AUTO zero o
Cycle POWER off/on to set AUTO zero on.
ww.www is the WATTS value as displayed on the
WATTS display.
CAL
Uncalibrated data
CALC
Calibrated data
The string length is always 24 characters. Most PC's
will require that the input string length be dimensioned.
DEV
Shifts GPIB operation to DEBUG.
DEVC
Shifts from DEBUG to standard GPIB.
If the 5100 is in PF (power factor) MODE instead of
WATTS, the "W" changes to "P".
H
Sets HOLD function on.
HC
Sets HOLD function off.
I
Sets the AVG function on.
IC
Sets the AVG function off.
L
Locks out all front panel controls
'$INCLUDE: 'c:\gpib-pc\qbasic\qbdecl.bas'
LC
Clears front panel lockout.
rd$ = SPACE$(24)
OPEN
Allows GPIB data access at random.
eos$ = CHR$(13) + CHR$(10)
P
Sets WATTS display to show PF.
CALL IBFIND("gpib0", gpib0%)
SYNC
Sync's data access to 0.1 sec
CALL IBFIND("dev12", dev12%)
VA
Sets VOLTS AUTOranging on.
CALL IBSIC(gpib0%)
V15
Sets VOLTS range to 15, AUTOzero o
start:
V30
Sets VOLTS range to 30, AUTOzero o
CLS
V150
Sets VOLTS range to 150, AUTOzero o
LOCATE 23, 1: PRINT "Press any key ..."
V300
Sets VOLTS range to 300, AUTOzero o
V600
Sets VOLTS range to 600, AUTOzero o
W
Switches from PF display to WATTS.
ZNV
Sets all nonvolatile memory to zero.
The ASCII output format is:
A= aa.aaV=vvv.vW=ww.www<CR><LF>
aa.aa is the CURRENT value as displayed on the AMPS
display.
vvv.v is the VOLTAGE value as displayed on the
VOLTS display.
QUICKBASIC® EXAMPLE
The following QuickBASIC
control and data transfer.
®
program provides bus
LOCATE 1, 1: INPUT "Enter the function
character(s)"; f$
f$ = UCASE$(f$)
wrt$ = f$ + eos$
CALL IBWRT(dev12%, wrt$)
12
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 5 - GPIB Communication
SPECIAL FUNCTIONS
Three special functions are available at power turn on:
(1) To disable autozero display function:
Turn 5100 power off; depress and simultaneously
hold the MODE-HOLD and the 2 AMPS range
buttons as POWER is switched ON. All least
significant digit (LSD) changes around zero will
display. Normal operation suppresses ± several
counts around zero.
(2) To remove the factory set calibration factors:
Turn the 5100 power off, depress and
simultaneously hold the MODE-PF and the 2
AMPS range buttons as POWER is switched ON.
Uncalibrated values (without factory programmed
calibration factors) are displayed.
(3) To remove all programmed calibration factors and
display the basic input binary word (integer BCD
format):
Turn the 5100 power off, depress and
simultaneously hold the MODE-AVG and the 2
AMPS range buttons as POWER switch ON.
NOTE:
These functions are provided for
the 5100 PA performance
evaluation and are not of use to
the average user.
13
6 - Operating P
rinciples
Principles
AMPERES TRANSDUCING
ANALOG PROCESSING
Current measuring is accomplished using two calibrated
manganin meter shunts. For the 2 ,5, 10 and 20 Amp
ranges, 0.011 Ohms resistance from two series
connected metering shunts provide a voltage to a
differential input calibration amplifier. In the 50 Amp
range, the low current section of the shunt is bypassed
by a low resistance mercury relay leaving 0.001 Ohm
of active shunt. See Figure 10.
Input signals proportional to AMPS and VOLTS are
amplified and scaled for each range. These scaled
signals pass through a true rms to DC converter, a
voltage to frequency converter and an optical isolation
coupler. The resulting signals represent true rms current
and voltage as a function of frequency (AF0 and VF0,
respectively).
Also, scaled AMPS and VOLTS signals are input to a
precision four quadrant X-Y multiplier, averaged by
passing through an active two pole Butterworth filter,
converted to frequency in a voltage to frequency
converter and isolated through an optical coupler. The
resulting signal, WF0, represents true power - (V × I ×
Cos θ) in WATTS as a function of frequency.
This autorange activated shunt bypass relay protects the
metering shunts from overheating for overloads up to
100 amps for about 30 seconds.
VOLTAGE SENSING
The VOLTS input terminal connects a 1.5 megohm
resistive voltage divider to a differential input amplifier
to provide scaled voltage for measurements.
There is 2500 volts isolation between the measured
circuit and the AF0, VF0 and WF0 frequency signals.
See Figure 12 for a block diagram.
See Figure 11.
Figure 11.
5100 Input Circuits
LINE, HIGH
(BLK)
HIGH
5100
HIGH
1.5M (BLK)
VE
AMP
1.5M
LOW
LOAD
VOLTS
U3
(COM)
(WHT)
LINE, LOW
RS1
.01 Ω
(WHT)
RS2
.001 Ω
(COM)
(COM)
CR
50A
AMP
2, 5, 10, 20A
(WHT)
AMPS, OUTPUT
VI
U1, U2, U7
14
LOW
5100 BURDEN
VOLTS = 3M OHM
CURRENT: 2, 5, 10, 20 AMP. = 0.011
50 AMP = 0.001 OHM
OHM
Magtrol Model 5100 Single Phase Power Analyzer
Figure 12.
Chapter 6 - Operating Principles
Block Diagram
U1, U2, U7
AMPS
INPUT
+
IAMP
-
VI
Vrms-
1
T
t
U8
U9
V 2dt
V/F
2 =100Khz
0.2
0
Adc
U10
OPTO
ISO
AFo
Avf
Abal/Gai
U11
Vo=
XYCos Q
10
ACTIVE
FILTER
U14
V/F
2 =100Khz
0.2
U12
U35
OPTO
ISO
WFo
U25
OPTO
ISO
VFo
Wvf
Wbal
Wcal
U23
VOLTS
INPUT
+ U3
VAMP
-
VE
Vrms-
1
T
t
2
V dt
0
Vdc
U24
V/F
2 =100Khz
0.2
Vvf
Vbal/Gai
DIGITAL PROCESSING
Frequency proportional signals of AMPS, VOLTS and
WATTS (AF 0 , VF 0 and WF 0 , respectively) are
integrated for a precise period of 0.1 seconds for digital
conversion and processing via an eight bit
microcomputer. The MPU controls functions of range
control, auto-zero, calibration, BCD conversion,
parameter display and GPIB transmission.
The MPU acquisition and conversion rate is 100
milliseconds (10 readings per second) and the display
updates at 500 milliseconds (2 updates per second).
The MPU scans all front panel pushbutton control inputs
25 times per second. When a pushbutton is depressed,
the appropriate program loop is entered and the function
is executed on the next program cycle. No damage
will result to the 5100 PA from any combination of
pushbutton selections.
In the AVG MODE (averaging), the 5100 PA integrates
the 10 data readings per second (AMPS, VOLTS and
WATTS) and then samples the averaged value for
display. As the sampled readings accumulate, the
changing display digits will steady down to provide a
stable measurement of true power (computed from
average VOLTS and AMPS). This technique works
well when the displayed digits are changing too fast to
be recognized resulting from changing power
consumption.
15
7 - Calibration
GENERAL
Sources of incidental circuit inductance include the
current shunts within the 5100, output impedance of
the calibrators, impedance of the load and wiring
inductance.
Complete calibration of the 5100 PA is beyond the
capabilities of most users. MAGTROL Inc.
recommends that the 5100 PA should be returned to
the factory for calibration certifying the instrument to
full specifications.
NOTE:
Since the current calibrator output is usually a low
impedance with low compliance voltage, the 5100's
current measuring shunts are the circuits major
resistance. Let's take a representative example and
compute the resulting phase shift:
breaking the factory CAL VOID
sticker voids the MAGTROL
WARRANTY - Please call the
MAGTROL Service Department
before you break this seal.
Let L = 10 µhenries (total of shunt, wiring, etc.)
Let RSHUNT = 0.011 Ohm;
RWIRING = 0.01 Ohm
R = 0.011 + 0.01 = 0.021 Ohms
Let F = 60 Hz ∴ 2π F L ≈ 0.004
θ = Arctan (2π FL / R) = Arctan (0.004 / 0.021)
θ ≈ 11 degrees, or about 1.8 % measurement error.
However, this section includes CALIBRATION
ACCURACY VERIFICATION procedures and steps
to make minor trim-ups of calibration.
NOTE:
This error can be eliminated by adjusting the calibrators
variable phase shift control. This demonstrates the need
for care in making power analyzer calibration
measurements.
Performing these steps VOIDS
the factory CALIBRATION
CERTIFICATION that comes
with the 5100 PA., the factory
seal will be broken.
TEST SETUP
The recommended test setup is shown by Figure 13.
The accuracy of the voltage and current
standards used for calibration should
be at least four times the accuracy of
the 5100 PA specifications. The
equipment shown in this test setup
meets this requirement.
To accurately measure AC power it is
important that the current source have
a phase shifting control. With such a
phase adjustment, phase shift caused
by incidental circuit inductances can
be compensated for by adjusting the
phase of the current wave form to be
exactly in phase (zero phase shift) with
the voltage wave form.
Figure 13.
Calibration Verification Test Setup
PHASE
LOCK
IN
VARIABLE
PHASE
OUTPUT
VOLTAGE CALIBRATOR
FLUKE 5700A OR
FLUKE 5100A OR
EQUIVALENT
VOLTAGE CALIBRATOR
FLUKE 5700A OR
EQUIVALENT
VOLTS
VOLTS, HIGH
OPTIONAL-FOR AMPS >2
TRANSCONDUCTANCE AMP.
FLUKE 5725A;5205A
GUIDELINE 7620A, OR
EQUIVALENT
LOW
CURRENT
HIGH
UUT
VOLTS
HIGH
5100 PA
LOW
AMPS
GND
OUTPUT
INPUT
EARTH
16
LOW
(REF)
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 7 - Calibration
CALIBRATION VERIFICATION
Refer to Figure 13, for the recommended test setup.
If other test equipment is used, appropriately modify
the test steps for your equipment.
Lethal Voltages are Used!
8. Compare the above readings to the 5100 PA
ACCURACY SPECIFICATIONS in Chapter 2 of
this manual.
Potentially lethal voltages are used in
the following test steps.- avoid
electrical shock. Refer to your
calibrator operator manual for
operating instructions - these
calibrators generate lethal voltages,
extreme care is necessary.
The (+) and (-) readings should be within ± 2 least
significant digit (LSD) of each other.
AC:
1. Set the volts calibrator for 60 Hz and repeat the
volts checks as outlined in the DC test above.
NOTE:
The three steps of the calibration verification are as
follows:
1. Volts Calibration Check
2. Amperes Calibration Check
3. Watts Calibration
If a beat frequency effect is
experienced between the
calibrator output and the 60 Hz
power line frequency, try setting
the calibrator for 80 Hz instead of
60 Hz.
2. Set the volts calibrator to standby mode.
Set both the VOLTS and AMPERES calibrators to
standby mode.
AMPERES CALIBRATION CHECK
VOLTS CALIBRATION CHECK
DC:
DC:
1. On the 5100, depress the 2 AMPERES range
pushbutton.
1. On the 5100 PA, depress the 15 volts range
pushbutton.
2. Set the current calibrator for zero amperes and
operate mode.
2. Set the volts calibrator for zero volts DC and operate
mode.
The AMPERES display should read zero + 0.0001%
max of range full scale.
The 5100 VOLTS display should read zero +
0.0001% max of volts full scale range.
3. Set volts calibrator for + 15 volts DC.
The 5100 VOLTS display should read 15.00 volts.
4. Record the VOLTS readings.
5. Set the calibrator for -15 volts DC and repeat the
above step.
6. Record the VOLTS readings.
7. Repeat the above 6 steps for the 30, 150, 300 and
600 volts ranges.
3. Set the current calibrator for + 2 Amperes DC.
The AMPERES display should read 2.000 Amps.
4. Record the current readings.
5. Set the current calibrator for -2 Amperes.
The AMPERES display should read 2.000.
6. Repeat the above 5 steps for the 5, 10, 20 and 50
Amp ranges.
7. Compare the above readings to the 5100 PA
ACCURACY SPECIFICATIONS in Chapter 2 of
this manual.
17
Chapter 7 - Calibration
The (+) and (-) readings should be within ± 2 LSD
of each other.
AC:
1. Set the current calibrator for 60 Hz and repeat the
current checks outlined above.
NOTE:
If a beat frequency effect is
experienced between the
calibrator output and the 60 Hz
power line frequency, try setting
the calibrator for 80 Hz instead of
60 Hz.
Magtrol Model 5100 Single Phase Power Analyzer
1. The phase shift control should be carefully set to
provide a peak 5100 PA WATTS indication, this
corresponds to zero volts to amps phase angle.
2. Repeat the procedure as used for the DC power
verification and record readings.
3. Compare the recorded reading to the 5100 PA.
ACCURACY SPECIFICATIONS in Chapter 2 of
this manual.
MINOR ADJUSTMENT (IF NEEDED)
NOTE:
2. Set the current calibrator to standby mode.
All trim pot adjustments are
located on the 78B143 circuit
board of the 5100 - see Chapter 8
- Schematics.
WATTS CALIBRATION CHECK
This step calls for the simultaneous application of
voltage and current to the 5100 PA.
DC:
1. On the 5100, select a VOLTS and AMPERES
range.
2. Set the volts and current calibrators for a voltage
and current near the center of each selected range.
3. Switch the CALIBRATORS to operate mode.
The WATTS readout should show a power that is
the product of the VOLTS and AMPS indications
( POWER = V × I ).
4. Compare the 5100 PA WATTS readout to the
product of VOLTS and AMPS from the
CALIBRATORS output. This difference is the
WATTS error.
AC:
POWER = V × I × Cos θ
where θ = phase angle between volts and amps.
NOTE:
18
maximum true power is delivered
only when θ = zero degrees (cos
θ = 1). Therefore, the volts
calibrator variable phase
adjustment is set for zero phase
between the volts and amps at the
input to the 5100 PA. Refer to
the calibrator instruction manuals
for this adjustment procedure.
Lethal Voltages are Used!
VOLTS ZERO
1. Disable the autozero function, refer to “Special
Functions” under Chapter 5 - GPIB
Communication.
2. Go to the 5100 VOLTS range that needs zero
adjustment.
3. Set the volts calibrator for zero volt DC output.
4. Adjust trim pot R16 for zero (+ 0.0001% max)
VOLTS display reading. This sets all voltage ranges
- all ranges should be zero + 0.0001% of range full
scale.
AMPERES ZERO
1. Disable the autozero function, refer to “Special
Functions” in Chapter 5 - GPIB Communication.
2. Go to the 5100 AMPERES range(s) that need
adjustment.
3. Set the current calibrator for zero amp DC output.
4. For the 2, 5, 10, and 20 amp ranges, adjust trim pot
R9, for zero AMPERES display indication.
For the 50 amp range, adjust trim pot R13 for zero
AMPERES display indication.
Magtrol Model 5100 Single Phase Power Analyzer
Chapter 7 - Calibration
VOLTS SCALE FACTOR
CURRENT BALANCE
1. Go to the 5100 VOLTS range(s) that need
adjustment.
1. Go to the 5100 PA 2 Amp. range.
2. Set the volts calibrator for an output equal to the
range maximum voltage.
3. Note the AMPERES display reading.
3. Adjust the trim pot(s) so the VOLTS display reads
the full scale voltage as shown below:
For the 15 volt range, adjust R17
For the 30 volt range, adjust R19
For the 150 volt range, adjust R21
For the 300 volt range, adjust R23
For the 600 volt range, adjust R25
AMPERES SCALE FACTOR
1. Go to the AMPERES range(s) that need adjustment.
2. Set the current calibrator DC output to the range
maximum current and adjust trim pot(s) so the
AMPERES display reads the full scale current:
For the 2 Amp. range, adjust R27
For the 5 Amp. range, adjust R29
For the 10 Amp. range, adjust R31
For the 20 Amp. range, adjust R33
For the 50 Amp. range, adjust R35
Note:
Calibration on the 20 and 50
Amps ranges may have to be
done at less than full range scale,
depending on your calibration
equipment.
2. Set the current calibrator for + 2 Amps DC output.
4. Reverse the calibrator polarity to - 2 Amps DC.
If the plus and minus display readings differ by more
than ± 2 LSD, connect digital voltmeter at amplifier
U8 pin 14 and adjust trim pot R41, for zero ± 0.1
millivolt.
WATTS SCALE FACTOR
1. Set the volts and current calibrators for 150 VDC
and 2 Amp DC output.
2. Adjust trim pot R48, for 300.00 WATTS display
reading.
3. Confirm AC measurement accuracy by setting the
calibrators for 150 VRMS and 2 Amps RMS at 60
Hz. The WATTS display should read close to
300.00 watts and be within the specification
accuracy.
See “Accuracy Specifications” in Chapter 2 Specifications.
NOTE:
Adjust current calibrator's phase
shift control for zero phase angle
between volts and amps (peak the
watts indication) - see
“Calibration Verification” step 3
for AC.
VOLTS BALANCE
1. Go to the 5100 PA 150 VOLTS range.
2. Set the voltage calibrator for + 150 volts DC. output.
3. Note the VOLTS display reading.
4. Reverse the calibrator polarity to -150 volts DC.
If the plus to minus display readings differ by more
than ± 2 LSD, connect a digital voltmeter at
amplifier U23 pin 14 and adjust trim pot R67, for
zero ± 0.1 millivolt DC.
19
c dp
ed
MSD
ab
digit 1
ed
g f
ed
g f
AMPS
c dp
ab
digit 2
c dp
ab
digit 3
c dp
ab
digit 4
LSD
ed
g f
c dp
ab
digit 5
MSD
ed
g f
ed
g f
ed
g f
VOLTS
c dp
ab
digit 6
c dp
ab
digit 7
C1
Com
+5
c dp
ab
digit 1
MSD
ed
g f
HP HDSP-5501
Common Anode
LED Displays
c dp
ab
digit 8
LSD
ed
g f
d5
d4
d3
d2
d1
g
e
f
d
a
c
b
dp
g
e
f
d
a
c
b
dp
d1
d2
d3
d4
d5
d6
d7
d8
20
+
1
ed
g f
c dp
ab
digit 2
c dp
ab
digit 3
WATTS
ed
g f
ed
g f
c dp
ab
digit 4
c dp
ab
digit 5
LSD
ed
g f
CIRCUIT BOARD 78B128 - LED DISPLAY
g f
J7
Appendix A
A:: Schematics
Magtrol Model 5100 Single Phase Power Analyzer
Appendix A: Schematics
CIRCUIT BOARD 78B141
CD4518
1
CK
2
EN
7
RST
6
U15 Q3
CD4520
1
3
CK Q0
2
4
EN Q1
7
5
RST Q2
6
U9 Q3
CD4518
CD4520
11
Q0
10
12
EN Q1
15
13
RST Q2
14
U9 Q3
10
EN
15
RST
14
U15 Q3
CD4518
74C244
18
2
A1 Y1
16
4
A2 Y2
14
6
A3 Y3
12
8
A4 Y4
9
11
A5 Y5
13
7
A6 Y6
15
5
A7 Y7
17
3
A8 Y8
1
1G
19
2G U2
74C244
18
2
A1 Y1
16
4
A2 Y2
14
6
A3 Y3
12
8
A4 Y4
9
11
A5 Y5
13
7
A6 Y6
15
5
A7 Y7
17
3
A8 Y8
1
1G
19
2G U3
CD4520
3
Q0
4
2
EN Q1
5
7
RST Q2
6
U10 Q3
2
EN
7
RST
6
U16 Q3
CD4518
CD4520
11
Q0
10
12
EN Q1
15
RST Q2
U10 Q3
10
EN
15
RST
14
U16 Q3
CD4520
1
3
CK Q0
2
4
EN Q1
7
5
RST Q2
6
U11 Q3
CD4518
2
EN
7
RST
6
U17 Q3
CD4518
11
Q0
74C244
18
2
A1 Y1
16
4
A2 Y2
14
6
A3 Y3
12
8
A4 Y4
9
11
A5 Y5
13
7
A6 Y6
15
5
A7 Y7
17
3
A8 Y8
1
1G
19
2G U4
CD4520
11
Q0
12
10
EN Q1
15
13
RST Q2
14
U11 Q3
10
EN
15
RST
U17
CD4520
3
Q0
2
4
EN Q1
7
5
RST Q2
6
U12 Q3
74C244
18
2
A1 Y1
16
4
A2 Y2
14
6
A3 Y3
12
8
A4 Y4
9
11
A5 Y5
13
7
A6 Y6
15
5
A7 Y7
17
3
A8 Y8
1
1G
19
2G U5
CD4520
11
Q0
12
10
EN Q1
15
RST
U12
CD4520
1
3
CK Q0
2
4
EN Q1
7
5
RST Q2
6
U13 Q3
74C244
18
2
A1 Y1
16
4
A2 Y2
14
6
A3 Y3
12
8
A4 Y4
9
11
A5 Y5
7
13
A6 Y6
5
15
A7 Y7
17
3
A8 Y8
1
1G
19
2G U6
CD4520
11
Q0
10
12
EN Q1
15
13
RST Q2
14
U13 Q3
Aol
CD4520
3
Q0
4
2
EN Q1
5
7
RST Q2
6
U14 Q3
Vol
a
b
c
d
e
f
Wpol
74C244
18
2
A1 Y1
16
4
A2 Y2
14
6
A3 Y3
12
8
A4 Y4
9
11
A5 Y5
7
13
A6 Y6
5
15
A7 Y7
3
17
A8 Y8
1
1G
19
2G U7
CD4520
11
Q0
10
12
EN Q1
15
13
RST Q2
14
U14 Q3
+5
W
V
A
74C244
2
18
A1 Y1
4
16
A2 Y2
14
6
A3 Y3
12
8
A4 Y4
9
11
A5 Y5
13
7
A6 Y6
15
5
A7 Y7
17
3
A8 Y8
1
1G
19
2G U8
12K
COM
+5
J5
C2
C1
J4
+5
COM
PA0
PA2
PA4
PA6
PA7
PA5
PA3
PA1
J1
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB6
+5
COM
E
PA0
PA2
PA4
PA6
PA7
PA5
PA3
PA1
PA0
PA2
PA4
PA6
PA7
PA5
PA3
PA1
74F138
1
15
A
Y0
2
14
B
Y1
3
13
C
Y2
12
6
Y3 G1
11
Y4
10
Y5
9
Y6
7
Y7 U1
PA0
PA2
PA4
PA6
PA7
PA5
PA3
PA1
PA0
PA2
PA4
PA6
PA7
PA5
PA3
PA1
PA0
PA2
PA4
PA6
PA7
PA5
PA3
PA1
Note: All capacitors in uF
All resistors in OHMS
Unless otherwise noted
U
1
2-8
9,11,13
15
10,12,14
16,17
18
19
20
COM
200
200 4
200
6
U19
7406
b
c
12
3
10
5
8
a
f
e
d
1
13
11
9
CD4724
1
4
Q0 A0
5
2
Q1 A1
3
6
Q2 A2
7
13
Q3
D
9
14
Q4
E
10
Q5
11
Q6
12
Q7 U18
PA0
PA1
PA2
PA3
+5
16
20
16
COM
4,5,8
10
8,9
16
1,8,9
16
14
3,11
16
8,15
7
1,8,9
FUNCTION C1 C2
HOLD 0 1
PF 1 0
AVG 1 1
12Kx8
2
AVERAGING
HOLD
POWER FACTOR
PA0
PA2
PA4
PA6
PA7
PA5
PA3
PA1
2
5
10
20
50
15
30
150
300
600
RANGE SWITCH
a b c d e f
1 0 0 x x x
0 1 0 x x x
1 1 0 x x x
0 0 1 x x x
1 1 1 x x x
x x x 1 0 0
x x x 0 1 0
x x x 1 1 0
x x x 0 0 1
x x x 1 1 1
x=don't care
21
Magtrol Model 5100 Single Phase Power Analyzer
Appendix A: Schematics
CIRCUIT BOARD 78B142
AVG
PF
SW3
HOLD
SW2
SW1
CR1
CR2
J4
CIRCUIT BOARD 78B175
Line
T1
120
6
7
4
9
3
10
BR1
240
120
Neu
I
PD05
1
12
14A-20-10
+5V
(Heatsink
7805 to chassis)
C1
4700uF
25V
C2
1uF
C
O
C3
1uF
Com
22
C4
.1uF
Vc
Vb
Va
Ac
Ab
Aa
R107
R106
R105
R104
R103
R102
120v
240v
120v
R97
+15
6
1
+5
U30
IN
10
+15
12
10
9
7
U32
-15
COM
12
18
17
10
+15
IN
16
15
-15
COM
12
U31
10
+15
IN
18
17
15
16
COM
12
18
-15
17
15
16
T2
14A-2.5R-36
4
3
R99
R100
+15
R94
R95
BAL
R98
CAL
-15
R92
5
4
6
5
4
6
5
4
6
5
4
6
5
4
6
5
4
6
+15
R89
R90
BAL
R93
CAL
-15
R87
U20
U19
U18
U17
U16
U15
BAL
R88
CAL
-15
1
2
1
2
1
2
1
2
1
2
1
2
-01 ANALOG OUTPUT OPTION
AC LINE
WATTS ANALOG
U12 PIN 6
VOLTS ANALOG
U23 PIN 6
AMPS ANALOG
U8 PIN 6
J7
R108
R109
R110
R111
R112
R113
7
7
7
2
BR2
+15
9 4
-15
2
8 R101
3
C40
+15
9 4
-15
-
C39
+15
8 R96
3
-15
2
8 R91
3
C38
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
U22
A
B
C
G1
G2A
G2A
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
U21
A
B
C
G1
G2A
G2A
9 4
1
2
3
6
4
5
1
2
3
6
4
5
+
+
C42
C41
+
6
5 U33
+
2
3 U33
+
13
12 U33
+
15
14
13
12
11
10
9
7
15
14
13
12
11
10
9
7
IN
R117
OUT
C46
C45
OUT
VR5
C
C
A
234
1
V
CR11 CR12
8
+
C3
3
+
2
14
-15
+
9
14
W
3
1
16
-15
+15
AC LINE
120v
4
3
1
T1
10
9
7
6
12
14A-10R-36
600v
300v
240v
120v
R25 R26
R23 R24
U6
15
2
-
A50 Bal
10
C4 6
R13
15
1
7
16
x200
R12
U2
-15
+15 -15
C5
+
8
R1 R14 CR13 CR14
+
2
7
+
12
C6 6
x100
C78
R2
+15
U3
9
-15
3
R15
10
15
CR15 CR16
1
14
V Bal
R17 R18
R16
14
15
15v
16
R19 R20
-15
11
10
30v
9
R21 R22
6
7
150v
8
U5
R11
R10 CR9 CR10
CR8
C77
+15
-15
R7
CR6 CR7
BACK PANEL
CONNECTOR
R3
RV1
VR4
+
C44
C43
+
IN
7
1
14
Vhi
Vlo
A50
Acom
+15
-15
BR1
+
1
3
1
C31
+
C30
+
14
16
11
9
6
8
3
15
2
2
7
IN
+
IN
+
C33
-15
R38
-15
C7
OUT
C35
C34
OUT
-15
+15
R75
Vc Vb Va
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
Ac Ab Aa
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
CR19
R74
-15
12
11
10
R48
R76
IN
RNG
15V
30V
150V
300V
600V
RNG
2A
5A
10A
20A
50A
C36
+
C
C37
OUT
VR3
C27
C25
U
11
33
21,22
12,26
9,13,14,24
8,23
6
-15
C29
+15
14
4
8
C50
R53
R68
C11
14
-IN +IN
13
Vo
14
-IN +IN
13
Vo
C16
1
C21
14
-IN +IN
13
Vo
+15
11
COM
5
10
C Cmp
6
7
Fo
U13
1
+15
16
+5
U29
U28
5
4
6
5
4
6
C56
C55
9,10
8
5
COM
R86
R81
+5
11
COM
5
10
C Cmp
C22 6
7
Fo
U24
R72
C52
R70
+15
R69
Vvf
C17
1
+15
11
COM
5
10
C Cmp
C12 6
7
Fo
R46 U9
R44
+15
R54
-15
11
4
4
7
3
4
R42
R43
Avf
R52
-15
Wvf+
-15
1
2
12
7
R85
1
2
C51
14
13
7
C49
C75
+
-15
-15
C10
+
-15
R80
+15
+15
1
4 R79
U27
+
8 5
+15
14
13
12
11
10
9
8
-15
4 5
6
U34
+
1
2 8 R84
3
2
3
+5
+15
4,5,6
R83
C28
R82
U23
-15
BFo
Vin
COM
OFFS +V
CS
-V
DENi RMSo
dBo
Cav
BFi
+15
C48
R78
C26
R77
1
2
3
4
5
6
7
C15
R50
2
6
3 U12
5
+
1
R51 Wbal
R66
+15
BFo 14
Vin 13
12
COM
OFFS +V 11
CS
-V 10
DENi RMSo 9
dBo
Cav 8
U8
R40
BFi
R49
1
2
3
4
5
6
7
C14
+
C66
R67 Vrms Bal
+15
C67
R116
+
R47
Wcal
R115
Arms Bal
R41
+15
2
6
3 U26
+
4
7
C24
+15 -15
OUT
Z1
Z2
6
Y1
7
Y2
U11
1
X1
2
X2
+15 -15
50a
R35 R36 R39 Abal
1
8
2
R37
6
3 U7
+
4 C9
C8
7
VR2
C
C
5a
2a
10a
R33 R34 20a
R31 R32
R29 R30
R27 R28
VR1
10
+15
C32
U5
U4
2
3
+15
U25
C19
Wpol R57
R56
R59
R58
-15
Wvf-
U10
2
3
+15
8
6
7
5
R73
+5
C23
+5
C13
14
-IN +IN
13
Vo
C18
R61
11
COM
5
10
C Cmp
6
7
Fo
U14
1
+15
8
6
7
5
+15
+5
R62
+
C47
CR18
U35
Vol
COM
+5
R64
2
3
+5
CR17
R63
C68
(U24)
R9
A20 Bal
2
+
15
12
10
x100
9
R8
U1
R114
C2 6
3
7
+
1
+
8
+15
C1
C69
(U14)
C76
C65
C70
(U13)
CR3
C64
C71
A20
C63
C61
C72
(U6)
(U9)
-15
C59
(U5)
14
C62
C60
C73
C74
(U4)
R6 CR4 CR5
R65
SIGNAL
CHASSIS
POWER
-15
+15
Aol
J5
A
V
W
8
6
7
5
+5
C20
Magtrol Model 5100 Single Phase Power Analyzer
Appendix A: Schematics
CIRCUIT BOARD 78B143
23
Magtrol Model 5100 Single Phase Power Analyzer
Appendix A: Schematics
CIRCUIT BOARD 78B144
U5
10
CTL
16
RELAY
1
J1
2
1D
3
2D
4
3D
5
4D
6
5D
7
6D
8
7D
9
8D
11
LE
1
OC
PA0
PA1
PA2
PA3
PA4
PA5
PB3
PB4
PB5
C5
1Q
2Q
3Q
4Q
5Q
6Q
7Q
8Q
+5
8
R22
19
18
17
16
15
14
13
12
+5
2A
5A
10A
R17
U2
50A
R13
AAR
C1
C7
SW11
f
e
d
c
b
a
R18
R15
1Q
2Q
3Q
4Q
5Q
6Q
7Q
8Q
J5
+
R20
20A
2
1D
3
2D
4
3D
5
4D
6
5D
7
6D
8
7D
9
8D
11
LE
1
OC
C9
SW12
R11
19
18
17
16
15
14
13
12
15V
SW10
SW9
1
2
8
SW8
SW7
3
4
5
SW6
R9
30V
SW5
13
11
12
R8
150V
SW4
9
U1a
6
U1b
10
U1c
R6
300V
SW3
R4
U3
600V
SW2
R2
VAR
C3
24
1Q
2Q
3Q
4Q
5Q
6Q
7Q
8Q
U4
19
18
17
16
15
14
13
12
Aa
Ab
Ac
R21
R1
Va
Vb
Vc
R3
R5
R7
R10
R12
R14
R16
R19
2
1D
3
2D
4
3D
5
4D
6
5D
7
6D
8
7D
9
8D
11
LE
1
OC
SW1
J7
U
1
2,3,4
+5
14
20
COM
7
10
Bypass with .1uF
SW
2A
5A
10A
20A
50A
15V
30V
150V
300V
600V
d
0
0
0
0
0
0
0
1
1
1
c
0
0
0
1
1
1
1
0
0
0
b
0
1
1
0
0
1
1
0
0
1
a
1
0
1
0
1
0
1
0
1
1
12
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
3
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
CODE B
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
U10
3
4
5
6
2
7
9
10
3
4
5
6
2
7
9
10
11
ROM CODE E000
=8192
FFFF
INT RAM 80 TO FF
EXT. RAM 2000 TO
27FF (NON VOL.)
PIA 8000 DDRA/ORA
8001 CRA
8010 DDRB/ORB
8011 CRB
GPIA C000 R0
C001 R1
C002 R2
C003 R3
COO4 R4
C005 R5
C006 R6
C007 R7
17
S R 1-4
8
S R5
MC3447
22
B1 2 D1
21
B2 4 D2
20
B3 6 D3
19
B4 8 D4
23
B0 srq D0
18
B5 rfd D5
16
B6 atn D6
15
B7 ren D7
MC3447
22
B1 1 D1
21
B2 3 D2
20
B3 5 D3
19
B4 7 D4
23
B0 dav D0
18
B5 dac D5
16
B6 eoi D6
15
B7 ifc D7
1
S R0 S R6
17
S R 1-4
8
S R5
P10 TO P13 = CODE B DATA
P14 = D.P.
P15 TO P17 = DIGIT ADDRESS
2
0
1
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
+5
U11
0 1 2 3 4 5 6 7 8 9 - E H L P (BLANK)
DECIMAL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$6000
$4000
ADDRESS BUS (AD15-0)
11 10 9 8 7 6 5
0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
P17 P16 P15 DIGIT
0
AMPS 1000
0
0
AMPS 100
0
0
1
AMPS 10
0
1
0
1
AMPS 1
0
1
1
VOLTS 1000
0
0
0
VOLTS 100
1
1
VOLTS 10
1
1
0
VOLTS 1
1
1
1
WATTS 10000
0
0
0
WATTS 1000
0
0
1
WATTS 100
0
1
0
WATTS 10
0
1
1
WATTS 1
1
0
0
15 14 13
1 1 1
1 1 1
0 0 0
0 0 1
0 0 1
1 0 0
1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
COM
J2
COM
J3
sw1
sw3
sw5
sw4
sw2
AD0
AD2
AD4
AD3
AD1
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
A0
A1
A2
U12
74HC367
2 A1 Y1 3
4 A2 Y2 5
6 A3 Y3 7
12 A5 Y5 11
14 A6 Y6 13
1 G1
15 G2
U9
MC68488
3
36
IB0
CS
34
37
RS0
IB2
32
38
IB4
RS1
30
39
IB6
RS2
16
19
DAV RES
17
40
DAC IRQ
6
25
EOI
E
21
5
IFC
RW
28
14
D7
T R1
27
13
D6
T R2
12
35
IB1
D5
11
33
IB3
D4
31
10
IB5
D3
29
9
IB7
D2
23
8
SRQ
D1
18
7
RFD
D0
26
4
ATN ASE
22
REN
D0
D1
D2
D3
DP
DA0
DA1
DA2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
+5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Vss
Seg a
Seg g
Seg d
Seg f
DIGIT 3
DIGIT 6
DIGIT 7
DIGIT 4
Vdd
DIGIT 8
DIGIT 5
DIGIT 2
DIGIT 1
COM
U1
28
27
26
25
24
23
22
21
20
19
18
17
16
15
28
27
26
25
24
23
22
21
20
19
18
17
16
15
27pf
Vss
Seg a
Seg g
Seg d
Seg f
DIGIT 3
DIGIT 6
DIGIT 7
DIGIT 4
Vdd
DIGIT 8
DIGIT 5
DIGIT 2
DIGIT 1
ICM7218C
U2
Seg c
Seg e
Seg b
D.P.
DA0
DA1
DPin
WRITE
MODE
DA2
D1
D0
D2
D3
Seg c
Seg e
Seg b
D.P.
DA0
DA1
DPin
WRITE
MODE
DA2
D1
D0
D2
D3
27pf
4MHz
1N482x2
+ 47
ICM7218C
4.7kx5
COM
MC6803
E
X1
EX2 SC1
NMI SC2
P30
IRQ
RST P31
P32
8 P20
P33
9 P21
P34
10 P22
P35
11 P23
P36
12 P24
P37
13 P10
P40
14 P11
P41
15 P12
P42
16 P13
P43
17 P14
P44
18 P15
P45
19 P16
P46
20 P17
P47
2
3
4
5
6
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
A8
A9
A10
A11
A12
A13
A14
A15
U8
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
22
20
U5
A0
A1
A2
A3
A4
A5
A6
A7
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
1
+
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
U4
11
12
13
15
16
17
18
19
U7
DS1220
8
9
A0 DQ0
7
10
A1 DQ1
11
6
DQ2
A2
5
13
A3 DQ3
4
14
A4 DQ4
3
15
A5 DQ5
2
16
A6 DQ6
17
1
DQ7
A7
23
CE 18
A8
22
20
A9 OE
19
21
A10 WE
2764
10
A0 DQ0
9
A1 DQ1
8
A2 DQ2
7
A3 DQ3
6
A4 DQ4
5
A5 DQ5
4
A6 DQ6
3
A7 DQ7
25
A8
24
A9
21
A10
23
G
A11
2
E
A12
74HC373
2
3
1D 1Q
5
4
2D 2Q
6
7
3D 3Q
9
8
4D 4Q
13
12
5D 5Q
15
14
6D 6Q
16
17
7D 7Q
18
19
8D 8Q
11
LE
D5
D4
D3
D2
D1
g
e
f
d
a
c
b
DP
g
e
f
d
a
c
b
DP
D1
D2
D3
D4
D5
D6
D7
D8
J7
A13
A14
A15
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
A0
A1
1
2
3
6
4
5
U6
74F138
A
Y0
B
Y1
C
Y2
G1 Y3
G2A Y4
G2B Y5
Y6
Y7
15
14
13
12
11
10
9
7
U3
MC6821
33
2
D0
PA0
32
3
D1
PA1
31
4
D2
PA2
30
5
D3
PA3
29
6
D4
PA4
28
7
D5
PA5
27
8
D6
PA6
26
9
D7
PA7
36
40
RS0 CA1
35
39
RS1 CA2
10
PB0
11
PB1
23
12
CS2 PB2
25
13
E
PB3
21
14
R/ W PB4
15
38
IRQA PB5
16
37
IRQB PB6
17
34
RES PB7
18
CB1
19
CB2
U
3
4
5
6
7
8
9
10
11
12
Note:
COM
12kx2
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
LL2
LL1
RL
FCT
RNG
RES
DAV
CT
1 +
COM
1
14
12
8
1,10
1
1,2
8
+5
20,22,24
1,27,28
24
16
20
7,21
20
16
All capacitors in uF
All resistors in OHMS
Unless otherwise noted
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
J1
E
+5
COM
Magtrol Model 5100 Single Phase Power Analyzer
Appendix A: Schematics
CIRCUIT BOARD 78B145 - DIGITAL READOUT & MPU
25
Appendix A: Schematics
PARTS LOCATION FOR CIRCUIT BOARD 78B143
26
Magtrol Model 5100 Single Phase Power Analyzer
Magtrol Limited W
arranty
Warranty
Magtrol, Inc. warrants its products to be free from defects in material and workmanship under normal use and
service for a period of one (1) year from the date of shipment. Software is warranted to operate in accordance with
its programmed instructions on appropriate Magtrol instruments. This warranty extends only to the original purchaser
and shall not apply to fuses, computer media, or any other product which, in Magtrol’s sole opinion, has been
subject to misuse, alteration, abuse or abnormal conditions of operation or shipping.
Magtrol’s obligation under this warranty is limited to repair or replacement of a product which is returned to the
factory within the warranty period and is determined, upon examination by Magtrol, to be defective. If Magtrol
determines that the defect or malfunction has been caused by misuse, alteration, abuse or abnormal conditions of
operation or shipping, Magtrol will repair the product and bill the purchaser for the reasonable cost of repair. If the
product is not covered by this warranty, Magtrol will, if requested by purchaser, submit an estimate of the repair
costs before work is started.
To obtain repair service under this warranty, purchaser must forward the product (transportation prepaid) and a
description of the malfunction to the factory. The instrument shall be repaired at the factory and returned to purchaser,
transportation prepaid. MAGTROL ASSUMES NO RISK FOR IN-TRANSIT DAMAGE.
THE FOREGOING WARRANTY IS PURCHASER’S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF
ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTY OF MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE OR USE.
MAGTROL SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES OR LOSS WHETHER IN CONTRACT, TORT, OR OTHERWISE.
CLAIMS
Immediately upon arrival, purchaser shall check the packing container against the enclosed packing list and shall,
within thirty (30) days of arrival, give Magtrol notice of shortages or any nonconformity with the terms of the order.
If purchaser fails to give notice, the delivery shall be deemed to conform with the terms of the order.
The purchaser assumes all risk of loss or damage to products upon delivery by Magtrol to the carrier. If a product is
damaged in transit, PURCHASER MUST FILE ALL CLAIMS FOR DAMAGE WITH THE CARRIER to obtain
compensation. Upon request by purchaser, Magtrol will submit an estimate of the cost to repair shipment damage.